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ABSTRACT
Motivation: As the scientific curiosity in genome studies shifts
toward identification of functions of the genomes in large scale,
data produced about cellular processes at molecular level has
been accumulating with an accelerating rate. In this regard, it
is essential to be able to store, integrate, access and analyze
this data effectively with the help of software tools. Clearly this
requires a strong ontology that is intuitive, comprehensive and
uncomplicated.
Results: We define an ontology for an intuitive, comprehens-
ive and uncomplicated representation of cellular events. The
ontology presented here enables integration of fragmented
or incomplete pathway information via collaboration, and sup-
ports manipulation of the stored data. In addition, it facilitates
concurrent modifications to the data while maintaining its
validity and consistency. Furthermore, novel structures for rep-
resentation of multiple levels of abstraction for pathways and
homologies is provided. Lastly, our ontology supports efficient
querying of large amounts of data.

We have also developed a software tool named path-
way analysis tool for integration and knowledge acquisition
(PATIKA) providing an integrated, multi-user environment
for visualizing and manipulating network of cellular events.
PATIKA implements the basics of our ontology.
Availability: PATIKA version 1.0 beta is available upon request
at http://www.patika.org
Contact: patika@cs.bilkent.edu.tr

INTRODUCTION
Human genome is expected to create an extremely complex
network of information, composed of hundred thousands of
different molecules and factors (Arnone and Davidson, 1997;
Miklos and Rubin, 1996). Knowing the exact map of this
network is very important since it will potentially explain
the mechanisms of life processes as well as disease condi-
tions. Such knowledge will also serve as a key for further

∗To whom correspondence should be addressed.

biomedical applications such as development of new drugs
and diagnostic approaches. In this regard, a cell can be con-
sidered as an inherently complex multi-body system. In order
to make useful deductions about such a system, one needs
to consider cellular pathways as an interconnected network
rather than separate linear signal routes.

Our knowledge about cellular processes is increasing at a
rapidly growing pace. Novel large scale analysis methods are
already applied to yeast to provide data about the yeast pro-
teome (Ito et al., 2001; Zhu et al., 2001). However, most of
the time these data are in fragmented and incomplete forms.
One of the most important challenges in bioinformatics is to
represent and integrate this type of knowledge. Efficient con-
struction and use of such a knowledge base depends highly
on a strong ontology (i.e. a structured semantic encoding of
knowledge). This knowledge base then can act as a blue-
print for simulations and other analysis methods, enabling
us to understand and predict the behavior of a cell much
better.

A conventional approach for representation of cellular
pathways is based on pathway drawings composed of still
images (BPC, 2001; BBID, 2001, http://bbid.grc.nia.nih.gov;
BioCarta, 2001, http://www.biocarta.com; SPAD, 2001,
http://www.grt.kyushu-u.ac.jp/spad/index.html). Although
easy to create, such drawings are often not reusable and the
ontologies used are far from being uniform and consistent,
highly depending on implicit conventions rather than explicit,
formal rules. Clearly, this approach does not support pro-
grammatic integration regardless of the underlying ontology.
Another approach is the development of interaction databases,
in an attempt to cope with rapidly emerging protein–protein
and protein–DNA interaction data (Xenarios et al., 2001;
BRITE, 2001, http://www.genome.ad.jp/brite/; Bader et al.,
2001). However these approaches deal with intermolecular
interactions, but not with cellular processes per se, lacking
desired details of information.

It appears that our knowledge about metabolic pathways
are much more detailed and structured. As a result, data-
bases mainly focusing on the metabolic parts of an organism
are more extensive compared to their signaling counterparts
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(Ogata et al., 1999; Karp et al., 2002c; WIT, 2001, http://
wit.mcs.anl.gov; BRITE, 2001, http://www.genome.ad.jp/
brite/). In all of these databases, the enzymes are classified
according to the Enzyme Commission list of enzymes (EC
numbers). Although these databases have strong ontology,
they are centered around enzymatic activities; thus their scope
is strictly limited to metabolic pathways.

In general, signaling pathway databases focus on the direc-
tion of signal flow, showing activation and inhibition relations
among signaling molecules (Wingender and Chen, 2001;
Takai-Igarashi and Kaminuma, 1999). In these systems one
can follow the transduction of a signal. However, the mech-
anisms of regulation is often omitted in favor of simplicity,
leading to ambiguities in the model, and hindering any pos-
sible functional computations. Considering a molecule to be
only in active and inactive states is clearly an oversimplific-
ation since a molecule often times has more than one active
state, each performing a different activity.

Karp et al. deserves a special attention due to their extensive
work on an ontology for cellular processes (Karp, 2000; Karp
et al., 2002a). They define different types of molecules, each
with its own class, and consider different states of a molecule
as different actors. In addition, reactions are defined to be
independent entities, and molecules are linked to the reactions
by distinct relations, which they call slots. Each molecule
may optionally be tagged with a cellular compartment. Their
ontology also makes use of the ‘pathway’ concept to define
summary abstractions, which may be used for defining data
at varying levels of detail.

Collaborative construction of cellular pathways poses addi-
tional constraints on an ontology. Our current knowledge on
signaling pathways is often incomplete due to the nature of
data and the way it is collected. For instance, most experi-
mental data captures indirect regulations among molecules,
leaving out intermediate steps. An ontology should also be
able to represent available information even when it is in
incomplete form, so as to support incremental construction
of pathways.

Another issue to consider in constructing a strong ontology
for cellular pathways is dealing with concurrent modifications
to the data. It is reasonable to assume that a user will view
only a limited portion of the complex network of available
cellular pathways at a time. Hence a modification to the exist-
ing data in this small window may affect the integrity of this
entire network. On account of this, an ontology should also
state the integrity rules of the pathway data, enabling us to
construct a rigid model. Only with the help of such rules, auto-
mated integration of data into the existing knowledge base is
possible.

Because of the aforementioned reasons, efforts for devel-
oping common, standard ontologies are gaining increasing
support in the scientific community. There are efforts in
multiple levels (Hucka et al., 2003; Ashburner et al., 2000).
We believe that coercion between these different levels are

important for the integration of biological data at different
levels. For example, sequence, yeast two hybrid, microar-
ray and metabolic simulation data have different perspective
and level of detail, although they describe the same system.
An ontology which could integrate and store data from such
different sources and present them seamlessly in different per-
spectives, isolating a user from such heterogeneities, is critical
to modeling of such a complex system.

Even though the ultimate goal in analysis of pathway
data is support for functional computations and simulations
on the model created, a simpler yet very effective form
of analysis is possible through visualization. First of all,
an effective visualization is only possible through an onto-
logy that permits drawings of pathways with intuitive images
(i.e. graphical user interfaces). Another necessary tool for
effective visualization is automated layout, with which aes-
thetically pleasing, comprehensible drawings of pathways
can be produced. It is also crucial to have proper complexity
management tools for analysis of complex pathways. Such
techniques are necessary at both the visualization level and
at the level of knowledge base, which is free of geometrical
information for pathways. Thus the ontology should suggest
various ways to reduce the complexity of the information
that the user deals with at one time. Another way of dealing
with complexity is by supplying powerful querying mech-
anisms. Such mechanisms enable researchers to find their
ways around in the ‘jungle’ of paths, again requiring a rigid
ontology.

In what follows, we describe our ontology to model net-
works of cellular processes through integration of information
on individual pathways. Our ontology is suitable for model-
ing incomplete information and abstractions of varying levels
for complexity management. Furthermore, it facilitates con-
current modifications and extensions to existing data while
maintaining its validity and consistency. Then we present a
partial implementation of our ontology, and end up with a
discussion and concluding remarks.

SYSTEM AND METHODS
An ontology for cellular processes
States and bioentities In every second, a cell makes hun-
dreds of decisions, based on its internal status and its inputs.
The underlying decision-making mechanism is a complex
network of molecular level interactions.

Actors of this network are macromolecules (e.g. DNAs,
RNAs and proteins), small molecules (e.g. ions, ATP and
lipids), or physical events (e.g. heat, radiation and mechanical
stress).

More than often these actors, especially macromolecules,
have a common path of synthesis and/or are chemically very
similar. For example, p53 protein has many states like its
native, phosphorylated and MDM2-bound forms. In path-
way drawings, it is common to represent these molecules as a
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single biological entity. This is an oversimplification as differ-
ent states can have very different and sometimes conflicting
effects. It is therefore preferable to represent states individu-
ally while maintaining their biological or chemical groupings
under a common bioentity.

Our ontology has similarities with (hierarchical) Petri-net
approach of Choo (1982) in the way that Petri-net modeling
has places (states) and transitions as nodes in the interaction
graph and certain concepts such as abstractions may be defined
recursively as will be discussed later on.

Transitions A cell is not a static entity, neither are its
actors. Molecules in a cell are synthesized, modified, trans-
ported and degraded constantly to respond to changes in
the environment, or to accomplish a task. One can model
such changes as quantitative chemical reactions. However
this would reduce the coverage of the model, as currently
both molecular concentrations and rate constants for most of
these reactions are unknown. It is often preferred to repres-
ent these changes qualitatively since this better suits current
experimental data.

A transition occurs only when all of its substrates are present
and activation conditions are satisfied; therefore it is a function
of the presence (or absence) of certain other actors. Under dif-
ferent conditions, different subsets of transitions may occur,
leading to different cellular responses. A state may go through
a certain transition, may be produced by a transition, or may
effect a transition without getting changed. When a transition
occurs, all of its products are generated.

Under certain circumstances, multiple transitions having
the same state as a substrate may affect each other through
depleting this common substrate. This happens when the equi-
librium constant of a transition is relatively much higher than
the others. If such a difference occurs among the equilib-
rium constants of transitions, we call the transition with the
highest equilibrium constant exhaustive over other transitions
for the common substrate. Transitions having the same order
of equilibrium constant, on the other hand, are said to be
cooperative.

Compartments A significant number of transitions trans-
port molecules between cellular compartments. The set of
transitions that a state can participate in is strictly related
to its compartment; thus a change in the compartment
means a change in the state’s information context. So
we choose to incorporate the state’s compartment in the
model.

As the compartments and their adjacencies are cell type
dependent, compartmental structure should be modeled as
part of the ontology. Membranes pose an additional problem
since not only a molecule may be located completely inside the
membrane but also it may span one or both of its neighboring
compartments.

Figure 1 illustrates the basics of our ontology with an
example.

Fig. 1. An example illustrating the basics of our ontology, where
states, transitions and interactions are represented with circles,
rectangles and lines, respectively.

Fig. 2. A portion of a pathway containing a molecular complex of
three states.

Molecular complexes In biological systems molecules often
form clusters for performing proper tasks, behaving like a
single state. We consider each member of a molecular complex
as a new state of its biological entity.

The function of a molecular complex is affected by the spe-
cific binding relations within itself. Therefore these binding
relations must be represented in the model as well. Moreover,
members of a molecular complex may independently particip-
ate in different transitions; thus one should be able to address
each member individually (Fig. 2). In addition, a molecu-
lar complex may contain members from multiple neighboring
compartments.

Abstractions Network of molecular interactions derived
from current biological data is incomplete and complicated.
Complete network of cellular events is clearly beyond human
perception. So different levels of abstractions are necessary
to make effective analysis of cellular processes and dealing
with complexity better.

Representing a cellular pathway as a single process or
grouping related processes under a certain cellular mechan-
ism would enhance the comprehensibility of the network of
events (Fig. 3).

Since the data on cellular processes is not complete, differ-
ent levels of information may be available for certain events.
In cases where it is not identified which state among a set of
states constitutes the substrate, product or effector of a trans-
ition, or where target transition of an effector is obscure, we
may need to abstract these states (transitions) as a single state
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Fig. 3. Abstractions help better handling of complex information. For instance, part of a pathway graph may be ‘collapsed’ (left) to simplify
a relatively more complex pathway graph (right).

Fig. 4. Two types of abstractions for representing information of incomplete nature. Transition abstraction: it is unknown whether S4 activates
t1 or t2 (left) and state abstraction: it is unknown whether S1 or S1′ inhibits t2 (right).

(transition) to represent the available information despite its
incomplete nature (Fig. 4).

In biological systems, a gene is often duplicated throughout
its evolution serving a different function. A special case occurs
when this differentiation serves as a specialization of a gen-
eric mechanism. For example, when referring to the wnt gene,
we actually mean 19 various similar genes in human (Miller,
2001). These genes are all activated by different stimulus
at different tissues and can lead to different responses even
though the signal processing mechanism is similar. Bhalla
also describes common process motifs in signaling pathways,
which are even more elementary operations that are reused
through the entire network (Bhalla, 2002). Our ontology sup-
ports representation of such homologies using abstractions
(Fig. 5).

Fields, tissues, phases Contents of a complete network of
pathways may be classified according to varying fields of
studies such as apoptosis, lipid metabolism, cell cycle, etc.
Similar classification may be performed based on tissue or
phase specific processes. Looking at such an entire, complex

Fig. 5. In our ontology, homologies form another type of an
abstraction.

network from the point of specific interest fields, tissues, or
phases of cellular processes would simplify the understanding
of the network by filtering out the undesired parts.

Figure 6 shows a sample pathway described using our
ontology.
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Fig. 6. Canonical wnt pathway represented by our ontology: there
are 19 wnt genes and eight frizzled genes identified (Dale, 1998), both
represented as homology abstractions (drawn with black labels). Wnt
homology abstraction also has an expanded view with 5 of the 19 wnt
genes, which activate the wnt pathway. In addition, there are regular
abstractions, ‘protein degradation’ and ‘gene expression’, repres-
ented as solid rectangles with black labels. Examples of complex
molecule structure include APC:Axin:beta-Catenin and APC:Axin
complexes.

A formal definition for the ontology
A pathway is an abstraction of a certain biological phenomena
and is the uppermost abstraction in our ontology. Its context
can change from a single molecule–molecule interaction to
a complete set of all the interactions in a cell. In our onto-
logy a pathway is represented by a pathway graph, which is a
compound graph (Fukuda and Takagi, 2001). For the sake of
simplicity, we will first describe a simple pathway graph and
extend our definition to a more complete, complex compound
graph.

A simple pathway graph is defined by an interaction graph
G = (V , E) along with a number of constraints on the topo-
logy as discussed below. V is the union of a finite set of states
Vs and a finite set of transitions Vt . E is a union of interactions
of four sets: substrate edges Es, product edges Ep, activator
edges Ea and inhibitor edges Ei, each directed edge belong-
ing to either Vt × Vs (for product edges) or to Vs × Vt (for
remaining interaction edge types).

Every state has a type: DNA, RNA, protein, small molecule
or physical factor. It is also associated with a specific com-
partment. Chemically identical molecules in different com-
partments are considered as separate states. States of the
same biological origin and/or similar chemical structure are
grouped under a biological entity or simply bioentity.

Generic

Chemical Modification

Non-Covalent Transition

Replication

Translation

Transcription

Membrane Transport

Cleavage

Group Addition

Group Removal

Allosteric Change

Redox

Association

Dissociation

Multimerization

Fig. 7. Tree structure used to classify transitions.

Every transition must be incident with at least one substrate
and one product edge. It may have an arbitrary number of
effectors, a combination of which define the exact activation
condition for the transition. Transitions are classified as a tree,
according to the chemical nature of the transition (Fig. 7). A
transition is not associated with a compartment; instead, its
compartment is implied by its adjacent (interacting) states.
A substrate edge can be labeled as exhaustive indicating the
exhaustive effect of the associated transition for the incident
substrate.

Every pathway graph has an associated cell model, which
defines compartments, sub-cellular locations (e.g. axon) and
their adjacencies. Cell models do not necessarily represent a
single cell type. For users who want to model and analyze at
a more generic level, a generic model comprised of compart-
ments common to all cells of that organism may be used.

A more comprehensive ontology addressing molecular
complexes as well as various types of abstractions can be
defined with the notion of a compound graph. A compound
pathway graph CG = (G, I ) is a 2-tuple of a pathway graph
G and a directed acyclic inclusion graph I where:

• V (G) = V is the union of states Vs, transitions Vt , molec-
ular complexes Vc, and abstractions of four distinct
types: regular, incomplete state, incomplete transition
and homology, respectively denoted by V r

a , V s
a , V t

a
and V h

a .

• E(G) is the union of directed interaction edges of four
distinct types: substrate, product, activation and inhib-
ition, respectively denoted by Es, Ep, Ea and Ei, and
undirected bind edges Eb, used to form molecular com-
plexes such that Ep → Vt × Vs; Es, Ea, Ei → Vs × Vt;
and Eb → [Vs]2.

• V (I) = V (G).

• E(I) is the union of inclusion edges Ec
i for defin-

ing molecular complexes and Er
i , Es

i , Et
i and Eh

i for
various types of abstractions such that Ec

i → Vc × Vs;
Er

i → V r
a × V ; Es

i → V s
a × V ; Et

i → V t
a × V ; and

Eh
i → V h

a × Vs.
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Fig. 8. A snapshot look at a signaling pathway in the PATIKA client.

In order for a compound pathway graph CG = (G, I ) to
comply with our ontology, it needs to satisfy certain invariants
as defined below:

• Molecular complexes cannot be nested; thus any directed
path in I can contain at most one edge in Ec

i . A state can
be incident to a bind edge in Eb, only if it has an incoming
complex edge in Ec

i . Complexes are not allowed to over-
lap, a state can have at most one incoming complex edge.
A complex state has no associated bioentity, although its
children in I have their own bioentities.

• Regular abstractions represent pure grouping; thus they
are not allowed to have incident edges in E(G). However,
they may be nested for representing multiple levels of
detail.

• Homology abstractions are not allowed to be nested;
therefore, any directed path in I can contain only one
homology abstraction edge.

• A vertex in V is allowed to have any number of incoming
abstraction edges in E(I) since abstractions may overlap.
Two overlapping abstractions do not necessarily define
two vertex sets where one is a proper subset of the other.

IMPLEMENTATION
The basics of our ontology has been implemented within a
software tool named PATIKA (Demir et al., 2002).

Different types of molecules (e.g. protein, DNA and RNA)
have distinct user interfaces for easier visual discrimina-
tion in PATIKA. Compartmental information is also modeled
(Fig. 8).

In addition, advanced, graph theoretic querying facilities
on the existing knowledge base is facilitated in PATIKA. The
results are presented as a PATIKA (pathway) graph.

PATIKA also implements collaborative construction and
concurrent modification issues addressed by our ontology.

PATIKA maintains version numbers as part of the ID of each
graph object. Thus it is possible that while a user is working
on a PATIKA graph locally, others might change the topology
and/or properties of states and transitions in the PATIKA data-
base. In that case, some of the local graph objects will have
version numbers smaller than the ones in the database making
the user’s local PATIKA graph (partially) out-of-date. In other
words, the user will have an out-dated view of the PATIKA
database.

Whether a PATIKA graph is up-to-date can be checked by
the client. As a result the user’s graph objects are colored to
indicate their status. For instance, green means this graph
object exists in the database but its properties are locally
modified.

If a user has any out-of-date graph objects, they may update
their view of the database. For all graph objects that are out-
of-date, the system will perform a check to see if the local
copy can be updated automatically. If not, the user is asked
to resolve any conflicts. When the user completes the update
process, each object in the current PATIKA graph is brought
up-to-date, and should have the same version as the ones in
the database.

There are certain invariants that each PATIKA graph must
satisfy, so that it is sensible from a biological point of view. For
instance, each transition must have at least one substrate and at
least one product. Once your graph is up-to-date and satisfies
invariants imposed by the underlying ontology for validity,
you may submit it to be integrated into the PATIKA database.
Notice that validity of your data locally does not guarantee that
its integration to the database will not create invalid situations
in the ‘big picture’. Upon submission, PATIKA checks for
such global inconsistencies and notifies the user of any such
integration problems.

DISCUSSION
Several aspects have been especially kept in mind when
designing our ontology. Coverage refers to the amount of data
an ontology is able to model, compared to the entire biolo-
gical knowledge corpus. Content describes an unambiguous
and regular structure in the information to be modeled. Finally,
clarity refers to the intuitiveness and comprehensibility of the
model itself. These principles often conflict with each other,
and a compromise must be made, considering the nature of
the data at hand.

One conflict arises due to the heterogeneous nature of biolo-
gical knowledge. There are fields, as in metabolic pathways,
where our understanding is deeper, with a nearly complete
map of reactions, their reaction constants and even typical
concentrations. On the other hand, data on most signal-
ing pathways are still vague at best, with indirect relations,
ambiguous mechanisms and unknown reaction constants. A
detailed model would dismiss a lot of signaling data, where
a lax model would poorly model metabolic pathways. Abil-
ity to represent multiple levels of detail gets more important,
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when we consider collaborative construction, as desired mod-
eling detail level of one user can be drastically different from
another. A user may not be able to integrate their know-
ledge if the existing level of detail in the database does not
match theirs. We address this problem by allowing multiple
levels of detail. A user can represent a metabolic pathway in
a very detailed form, and can include an abstract level signal-
ing pathway regulation in the same graph using incomplete
abstractions, even though the exact knowledge of mechanism
is unknown at the metabolic level.

Another important tradeoff is between clarity and content. A
more vigorous model, for most of the time, means a more com-
plex representation, which in turn leads to models cluttered
with states and interactions that are possibly of no interest to
certain users. It is therefore desirable to manage complexity,
such that the part of the model that a user currently focuses on
is represented in full detail, where other portions are hidden
or represented at a more abstract level. Our regular and homo-
logy abstractions are an attempt to reduce complexity through
capturing groupings and similarities, and hiding their details
when desired. Molecular complexes provide yet another way
to hide unnecessary details.

Specification of inhibitors and activators of a transition
does not necessarily establish an exact activation condition.
Similarly, exhaustive substrate edges are an oversimplifica-
tion of depletion of a substrate. This is a choice made to
increase coverage since vigorously modeling activation condi-
tion and substrate concentrations require a linear (and possibly
stochastic) set of equations (Tomita et al., 1999; Schaff and
Loew, 1999; McAdams and Arkin, 1997; Regev et al., 2001),
which are unknown for most signaling pathways. Our primary
aim is to build a framework, albeit not precise, with the avail-
able biological data. However it would still be possible to
add simulation support, at the software level by using a plug-
gable interface to a simulation engine. Our ontology would
then serve to intuitively represent and investigate a model,
where the simulation engine would be used for functional
computations.

Our transition tree is far from being complete even though
we believe it provides a fair amount of coverage without
disturbing clarity. It can be expanded both vertically and hori-
zontally. However, a more elaborate classification could be
harder to represent, at least visually.

Up to now we have implicitly assumed that our model is built
for a single organism. We believe that representing multiple
organisms would overcomplicate the model and is not neces-
sary since for most purposes, cellular networks of different
organisms do not interact. Still a hybrid database such as Meta-
Cyc (Karp et al., 2002b), with the ability to encompass more
than one organism, would be useful for experimental studies
where two molecules from different organisms are allowed
to interact (e.g. yeast two hybrid) or for modeling homolo-
gies between organisms. As our ontology distinguishes states
of different bioentities and provides facilities for representing

homologies, it can be readily extended to encompass a hybrid
model.

Finally, bioentities such as small molecules and macro-
molecules are not always grouped using the same criteria.
For example, based on their path of synthesis, gene, mRNA
and protein of p53 are all associated with the same bioentity
even though they are chemically very different. On the other
hand, cytosolic and extracellular Ca++ ions are associated
with the same bioentity purely based on their chemical struc-
ture. Such choices are for practical reasons since one of
the main use of the bioentity concept is linking a molecule
to external databases such as GeneBank, SWISS-PROT and
Ligand (Karsch-Mizrachi et al., 2000; Bairoch and Apweiler,
2000; Goto et al., 2002).

CONCLUSION
We have described an ontology for collaborative construction
and analysis of cellular pathways. Based on this ontology,
we have also developed a software tool named PATIKA
providing an integrated, multi-user environment for visual-
izing and manipulating network of cellular events. PATIKA
promises quite important benefits for many research fields in
life sciences, including but not limited to, rapid knowledge
acquisition, microarray data analysis and drug development.

The ultimate goal is to build a model for a cell as a whole
with mechanistic details and to be able to perform functional
computations and simulations over this model. Although tools
such as PATIKA are far from fulfilling such an expectation,
their concepts and ontology may serve helpful for future
efforts in this direction.
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