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Many objects that we encounter have typical material
qualities: spoons are hard, pillows are soft, and Jell-O
dessert is wobbly. Over a lifetime of experiences, strong
associations between an object and its typical material
properties may be formed, and these associations not
only include how glossy, rough, or pink an object is, but
also how it behaves under force: we expect knocked
over vases to shatter, popped bike tires to deflate, and
gooey grilled cheese to hang between two slices of
bread when pulled apart. Here we ask how such rich
visual priors affect the visual perception of material
qualities and present a particularly striking example of
expectation violation. In a cue conflict design, we pair
computer-rendered familiar objects with surprising
material behaviors (a linen curtain shattering, a
porcelain teacup wrinkling, etc.) and find that material
qualities are not solely estimated from the object’s
kinematics (i.e., its physical [atypical] motion while
shattering, wrinkling, wobbling etc.); rather, material
appearance is sometimes “pulled” toward the “native”
motion, shape, and optical properties that are
associated with this object. Our results, in addition to
patterns we find in response time data, suggest that
visual priors about materials can set up high-level
expectations about complex future states of an object
and show how these priors modulate material
appearance.

Introduction

The material an object is made of endows it with
a certain utility or function: chairs are usually rigid,
to afford sitting; spoons are hard to afford eating;
and towels are soft and absorbent to afford drying.
The material choices for many types of man-made
objects (keys, cups, cushions) tend to be restricted, and
thus many objects that we encounter have a “typical”
material: bookshelves are made from wood, pillows
from cloth and down, and keys from metal. Over
a lifetime of interacting with objects, we learn not

only what they look like, but also how their material
“behaves” under different types of forces. For example,
we know that porcelain vases shatter when knocked
over, that soft Jell-O wobbles when poked, and that
rubber balls bounce when thrown at the wall. Strong
associations are formed between the object’s shape and
its optical and mechanical material properties.

Observers rely on these associations when estimating
material qualities, which can lead to paradoxical
findings. For example, physically, the softness of
an object (compliance) is independent of its optical
properties (color, gloss, or translucency), and with
sophisticated production techniques, it is possible
to manufacture soft objects with any set of optical
properties. Yet, when judging the softness of an object
in static images, research has shown that that optical
characteristics of the material affected observers’
judgements, for example, a velvety cube was perceived
as softer than a chrome cube of the same shape and size
(Paulun et al. 2017; Schmidt et al., 2017). To account
for these results, Paulun et al. (2017) propose an indirect
route to perception, where image cues activate the
memory of a particular material along with its learned
associations, including its typical mechanical properties
(e.g., “This looks like honey—so it’s probably quite
runny”). They suggest that this route operates in parallel
with a more direct one, where image cues directly
convey something about the properties of the material
(e.g., Paulun et al., 2017; Paulun et al., 2015; van Assen
& Fleming, 2016; van Assen et al., 2018; Marlow &
Anderson, 2016; see Figure 1 for an illustration).

Learned associations about material properties are
not only evoked by the optical characteristics of an
object, but may also be elicited by its shape: Experience
with soft materials or liquids seems to create strong
associations between shape deformations and perceived
material qualities (e.g., Bi et al., 2019; Kawabe, 2018;
Kawabe et al., 2015; Mao et al., 2019; Paulun et al.,
2015; Paulun et al., 2017; Schmid & Doerschner,
2018; Schmidt et al., 2017; van Assen & Fleming,
2016; van Assen et al., 2018). Similarly, if a shape
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Figure 1. Contribution of prior associations and image cues on perceived material qualities. The role of predictions or associative
mechanisms in material perception is not well understood. (A) The perception of material qualities (such as gelatinousness) can be
influenced by prior associations between dynamic optics, shape, and motion properties. (A) Watching the green (left) object deform
may evoke an association with green Jell-O (B), and may therefore be perceived as wobblier and more gelatinous than the matte
object, despite both objects wobbling in identical ways (as shown in Supplementary Movies S1 and S2). (C) Alternatively, the green
object may be perceived as wobblier owing to larger image differences between frames, and potentially higher motion energy, as
illustrated on the right (Doerschner et al., 2011, Doerschner, Kersten, & Schrater, 2011). A combination of associative and modulatory
mechanisms is also possible. The difference in motion energy in images of the translucent object in (C) is about seven (6.8) times
larger than that of the matte one, purely owing to the difference in optical properties between these two objects.

reminds the observer of a specific object, its typical
mechanical material properties might also become
activated. Consequently, recognizing an object should
cause observers to activate strong predictions about
the object’s material properties, and how it should
behave under physical forces. Here we ask whether these
predictions in turn affect how we perceive material
properties.

The human brain uses prior knowledge to
continuously generate predictions about visual input
to make quick decisions and guide our actions (for a
review, see Kveraga et al., 2007). Predictions about
material properties should be no exception to this:
To avoid small daily disasters, we need to be able
to predict how bendable and heavy a cup is before
picking it up. How prior knowledge is combined with
visual input has been investigated in several areas of
vision. For example, researchers have studied how
color memory for objects influences perceived color
(e.g., Hansen et al., 2006; Olkkonen & Allred, 2014),
or how memory modulates the perception of motion
direction or dynamics of binocular rivalry (Chang
& Pearson, 2018; Scocchia et al., 2013; Scocchia et
al., 2014). Within the framework of Bayesian models
(e.g., Ernst & Banks, 2002; Hillis et al., 2002; Kersten
et al., 2004; Landy et al., 1995) the influence of prior
knowledge on the integration of different types of
sensory input has been looked at more formally. In
particular, cue conflict scenarios have proven extremely
useful to generate insights about the complex interplay
of prior selection and the weighting of sensory input in
the perception of object properties (e.g., Knill, 2007a,
b).We will use an experimental paradigm analogous to
cue conflict by juxtaposing indirect (prior) and direct
(sensory) information in the perception of material
properties to formally test whether expectations
about an object’s mechanical properties are
generated.

Figure 2. Three frames from “Preposterous” by Florent Porta.
Artists have played with our expectation of how objects and
their materials should behave. In this study, we compare
material perception for falling objects that deform in surprising
and unsurprising (i.e., expected) ways. Retrieved from
https://vimeo.com/191444383.

Violating the expected mechanical properties of
materials necessarily involves image motion. Figure 2
illustrates this phenomenon. Shown below are three
frames from an animation by Florent Porta. The
first panel sets up the viewer’s expectations about the
objects material properties (i.e., the balloon will pop
when it comes into contact with the spines of the
cactus). As the movie proceeds, our expectations about
the event to unfold are violated, and the viewer is
quite surprised when the cactus pops like the balloon
would. In the present study, we directly test how such
expectations affect the perception of material properties
by comparing material perception for falling objects
that deform in surprising and expected ways.

We anticipate our results using the Bayesian
framework for analogy. Suppose the task of an observer
watching the movie in Figure 2 was to rate the cactus’
rigidness. If the observer recognizes the object as a
cactus, it is probably safe to assume that they have a
strong prior belief about how rigid cacti are, but it is

https://vimeo.com/191444383
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also possible that other, weaker prior beliefs exist. When
confronted with a popping cactus, the visual system
may either veto all cues that previously suggested that
the cactus was rigid (e.g., Landy et al., 1995) and
judge the cactus as very soft, or the visual system may
down-weigh cues to rigidness (Knill, 2007a). If cue
vetoing occurs, we would expect to find no difference
in the perception of mechanical material properties
(e.g., perceived rigidness in our example) between
objects that deform in surprising (popping cactus) and
expected (popping balloon) ways, because in either case
the strongest cue is used (i.e., the visual sensory input
that shows the cactus is popping and thus really not
that rigid). If, however, a down-weighing of the visual
input occurs, the visual prior (on the typical rigidness
of cacti) would exert an influence when observers rate
the rigidness of the popping cactus, and we would find
they are rated as somewhat more rigid than popping
balloons. The Bayesian framework predicts another
result: when expectations are violated—as in the
exploding cactus scenario—the visual system needs to
update its internal model of the world (the generative
model; e.g., see Kersten et al., 2004) to minimize the
prediction error for future tasks. This updating (or
prediction error correction) is thought to be a reiterative
process, which may take time to complete. In fact, a
recent study by Urgen and Boyaci (2019) modelled
an individuation task and showed that, for surprising
trials, the model predicted longer duration thresholds.
By analogy, we expect to find that it takes observers
longer to perform perceptual tasks when judging
material attributes of surprisingly deforming objects
(e.g., popping cacti) than ones that deform as expected
(e.g., popping balloons).

In this study, we use a violation of expectation
paradigm to investigate how predictions about object
deformations based on object knowledge influence how
we perceive the material of an object. To manipulate
object familiarity, we rendered two types of objects:
familiar objects, for which there exist strong predictions
about their mechanical material properties; and novel,
unfamiliar objects, for which no strong predictions
should exist. For each of these object types, we
rendered two motion sequences that showed how
objects deformed when being dropped on the floor:
an expected sequence, in which objects’ deformations
were consistent with the observers’ prior beliefs about
the mechanical properties of the material; and a
surprising sequence, in which they were not. The novel
objects inherited their optical and motion properties
from a corresponding familiar object. Participants
rated the objects in these movies on various material
attributes. Although we expected to find differences
in ratings and response times between expected
and surprising events for familiar objects (discussed
elsewhere in this article), we also expected to find
differences—although attenuated—for novel shapes,

owing to optical cues and/or the fact that they were
bounded three-dimensional (3D) objects potentially
eliciting prior expectations (e.g., a rigidity prior) about
these objects’ mechanical material properties. We
included two additional experimental conditions in
which observers rated the same attributes on static
images that showed each familiar and novel object
during the first and last frame of the motion sequence
to explicitly assess existing priors on material properties,
in addition to the influence of shape recognizability (i.e.,
after the object had deformed) on ratings, respectively.

Methods

Stimuli

Objects
We used two types of objects: familiar and

novel. Figure 3 gives an overview of all objects used
in the experiment. To create a stimulus set with a
broad range of typical material classes, we choose
15 familiar objects belonging to one of five material
mechanics: nondeforming (wooden chair, metal key,
metal spoon), wobbling (red and green Jell-O, custard),
shattering (wineglass, terracotta pot, porcelain teacup),
wrinkling (linen, velvet, and silk curtain), and splashing
(milk, honey, and water drops). All objects were
rendered (Blender 2.77a, Stichting Blender Foundation,
Amsterdam, the Netherlands) with their typical optical
material properties, for example, a metallic-looking
key, green transparent Jell-O, or a silky appearing
curtain). Objects were located in a room that had
brown walls and a hardwood, polished floor, and were
illuminated by the Campus environment map (Debevec,
1998). The 3D meshes of the familiar objects were
obtained or adapted from TF3DM (www.tf3dm.com)
and TurboSquid (www.turbosquid.com) or created
by hand. Unfamiliar shapes (Glavens; Phillips, 2004)
inherited their optical and mechanical properties from
the corresponding familiar object.

The objects were rendered at approximately the same
size as each other so that, for example, the key was
the same “physical” (simulated) size as the chair, even
though in real life chairs are larger than keys. We chose
to do this so that the objects would hit the ground at the
same time, and behave in a similar way under gravity.
This factor is important for some of our analyses (see
Analysis—Response time).

Deformations
For each object, we rendered short movies that

showed an object falling from a height and interacting
with the ground. To manipulate surprise in our

http://www.tf3dm.com
http://www.turbosquid.com
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Figure 3. Stimuli expected motion. Shown are all 15 familiar (top) and corresponding novel objects (bottom) used in the experiments.
Objects are organized according to their typical material kinematics, that is, how they deform under force. Note that individual scenes
are scaled to maximize the view of the object (first frame, left columns), or to give a good impression of the material kinematics (last
frame, right columns).

Non deforming Wobbling Shattering Wrinkling Splashing

Expected Painted chair Green Jell-O Clay pot Linen curtain Honey droplets
Brass key Red Jell-O Wine glass Silk curtain Milk droplets
Metal spoon Custard Teacup Velvet curtain Water droplets

Surprising Milk drops Wine glass Custard Green Jell-O Painted chair
Red Jell-O Honey droplets Linen curtain Metal spoon Clay pot
Velvet curtain Brass key Water droplets Teacup Silk curtain

Table 1. Overview of Objects and Conditions in the Experiment. Columns show the five categories of typical material kinematics
(material class) in the experiment; rows show which objects occurred in the expected and surprising conditions. Every object in the
expected condition would also appear exactly once in the surprising condition, where it would be rendered with very atypical
mechanical properties, for example, the silk curtain would splash (see Figure 3 and Supplementary Figure 1 for corresponding
renderings). Novel objects had no familiar shape but had the same optical and mechanical material properties as the familiar objects
in this table.

experiment, an object could either behave as expected—
for example, a glass would shatter—or it could
inherit the mechanical material behavior from another
object—for example, milk drops would stay rigid
upon impact (Figure 4B shows two more examples of
surprising material behaviors; also see Supplementary
Figure 1). We created corresponding expected and
surprising movies for novel objects (Figure 3, Figure 4C,
and Supplementary Figure 1). Table 1 shows which
objects inherited which material mechanics in the

surprising condition. All experimental movies can be
downloaded at https://doi.org/10.5281/zenodo.2542577.

Our stimulus set was balanced in the sense that
for every type of deformation (splashing, wrinkling,
etc.), we found three familiar objects that “naturally”
have these material kinematics. In the surprising
condition the deformations were paired with other
familiar objects such that a given deformation might be
perceived as unusual for this type of object (e.g., a chair
splashing).

https://doi.org/10.5281/zenodo.2542577
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Figure 4. Trial and stimuli. (A) An exemplar trial. (B, C) A subset of familiar objects (B) and corresponding novel objects (C) used in the
experiments. Familiar objects could either behave as expected, or in a surprising manner. Note that this distinction (expected vs
surprising) is only meaningful for familiar objects. Note that individual scenes are scaled to maximize the view of the object (first
frame), or to give a good impression of the material kinematics (last frame). Figure 3 (expected condition) and Supplementary
Figure 1 (surprising condition) show corresponding views for the entire stimulus set. The objects were rendered at approximately the
same size as each other, so that for example the key was the same “physical” (simulated) size as the chair, even though in real life
chairs are larger than keys. We chose to do this so that the objects would hit the ground at the same time, and behave in a similar way
under gravity. This is important for some of our analyses (see Analysis—Response time).

Animations
Each movie consisted of 48 frames, depicting an

object suspended in air, which then fell to the ground.
Impact occurred exactly at the 11th frame for all objects.
The largest extent of the objects in the first frame varied
between 6.91 (clay pot) and 12.6 (spoon) degrees visual
angle. The largest extent of the objects in the last frame
depended on the deformation, but varied between
48.85° visual angle for shattering or splashing items
and 4.29° visual angle for rigidly falling items. Object
deformations were simulated using the Rigid Body,
Cloth, and Particles System physics engines in Blender.
For technical specifications about the Particle System
simulations, we refer the reader to the parameters listed
in (Schmid & Doerschner, 2018).

Apparatus

The experiment was coded in MATLAB 2015a
(MathWorks, Natick, MA) using the Psychophysics

Toolbox extension (version 3.8.5, Brainard, 1997;
Kleiner et al., 2007; Pelli, 1997), and presented on a
24-5/8” PVM-2541 Sony (Sony Corporation, Minato,
Tokyo, Japan) 10-bit OLED monitor, with a resolution
of 1024 × 768 and a refresh rate of 60 Hz. Videos
were played at a rate of 24 frames per second. The
participants were seated approximately 60 cm from the
screen.

Task and procedure

Main (motion) experiment
Observers were asked to watch a short video clip to

the end and then to rate the object they saw on one of
four attributes (hardness, gelatinousness, heaviness, and
liquidity) as quickly (but as accurately) as they could.
We choose the attributes such that they would capture
some aspect of the mechanical material qualities of the
objects. For example, a splashing object is likely to be
rated as very liquid, and a nondeforming object not; a
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wiggling object is likely to be rated as very wobbly but
a shattering object not. To familiarize observers with
the rating task, the use of the slider bar and the key
presses, they completed four practice trials with two
objects that did not occur in the actual experiment and
with two rating adjectives that also did not occur in the
experiment (e.g., rate how shiny this object is).

The experiment was organized into four blocks,
with one block per attribute. Before the block started,
the observer was familiarized with the rating question
and then proceeded with a button press to start the
trials. On every trial, a reminder of the question of this
block remained at the top of the screen, for example,
hard (for “How hard is the object?”), together with the
first frame of a movie, which was held static for three
seconds before the movie was played to the end. After
this the movie clip repeated two more times (without
the hold at the beginning), if necessary. Participants
were asked to first watch the video until it finished (i.e.,
the first play through) and then to rate the object as
quickly as they could (while still maintaining accuracy).
They indicated their rating by using the mouse to adjust
the height of a slider bar placed on the right side of
the screen (Figure 4A). A zero setting indicated the
absence of an attribute, for example, not gelatinous at
all, whereas a maximum setting would correspond to
the subjective maximum value of an attribute. The trial
was completed when the observer pressed the space key
on the keyboard, after which time the next trial would
immediately begin. Response time was measured from
the beginning to the end of a trial (between spacebar
presses). The slider position of the previous trial was
carried over the new trial to give the experimental
interface a more natural feel to it.

Participants completed 240 trials in total (2 surprise
conditions [expected, surprising] × 2 object types
[familiar, novel] × 4 attributes × 15 objects). Surprise
condition and object type were the two relevant
manipulations in the experiment. While the order of
blocks was the same for all observers (hard, gelatinous,
heavy, liquid), the trial order in each block was
randomized.

First frame/last frame experiment
The tasks, setup, and procedures were identical to

that of the motion experiment. In contrast with the
motion experiment, in these experiments, the first/last
frame of each of the videos was held on-screen for the
same duration as a single presentation of the video.

Participants

Motion experiment
Twenty-five participants, mean age of 24.8 years,

18 female, participated in the experiment; 23 were

right handed and all had self-reported normal or
corrected-to-normal vision.

First frame experiment
Fifteen participants, mean age of 26.40 years,

13 female, participated in this experiment; 13
participants were right handed and all had self-reported
normal or corrected-to-normal vision.

Last frame experiment
Fourteen participants, mean age of 26.85 years,

10 female, participated in the static last frame condition
of experiment 1; 12 were right handed. All participants
had self-reported normal or corrected-to-normal vision.

All participants were native German speakers, and
the experiment was given entirely in German. The
experiment followed the guidelines set forth by the
Declaration of Helsinki, and participants were naïve
as to the purpose of the experiment. All participants
provided written informed consent and were reimbursed
at a rate of €8 per hour.

Analysis

Rating differences: Expected versus surprising
To measure the influence of object knowledge on

perceived material properties, we computed rating
differences between expected and surprising conditions.
To do this, we first computed average ratings (across all
observers), for each object type (familiar, novel), each
attribute (how hard, how gelatinous, how heavy, how
liquid), each material class (nondeforming, wobbling,
shattering, wrinkling, splashing), and each outcome
(expected, surprising). Note, that in expected and
surprising conditions, how an object deformed was the
same, but which objects would deform was different.
For example, honey, milk, and water would splash in
the expected splashing condition, and the chair, pot,
and curtain would splash in the surprising conditions.

After obtaining average ratings we computed rating
differences between expected and surprising outcomes
for each object type, each attribute and each material
class. This resulted in 20 differences scores (5 material
classes × 4 attributes), in the familiar object condition
and 20 in the novel object condition (see Supplementary
Figure 2A). If object knowledge influences perceived
material properties, then ratings should differ between
familiar objects that behave as expected, and familiar
objects that behave in a surprising way.

We expected this difference to be overall larger for
familiar objects than for novel objects. Thus, to obtain
an overall measure of whether expectations affect
the perception of object properties at all we took the
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absolute value of each of these 40 difference score
as an index (effect of expectation index, ∈; also see
Supplementary Figure 2B):

∈= | av. ratings Expected − av. ratings Surprising | (1)

and assessed whether ∈Familiar Object > ∈Novel Object, with
a paired t-test.

Prior pull
The four attributes that observers rated in our

experiments are related to the kinematic properties of
objects. Such properties can be best estimated when we
observe how an object interacts with another one; for
example, if two objects collide and one deforms more
than the other, we can tell that one object is softer.
Conversely, it should be difficult to judge such properties
(hardness, gelatinousness, etc.) in static frames, unless
we rely on our previous experiences observing how
objects interact. Therefore, one could use the first
frame ratings of familiar objects as a measure of prior
knowledge about the material qualities from familiar
shape and optics associations. Ratings of moving novel
objects, in contrast, could be used as a measure of how
much the image motion, generated by the kinematics
of the material (‘sensory’ route), influences the rating
(no influence of familiar shape, equating for the effect
of familiar optical properties). These two conditions
make similar predictions (i.e., yield similar ratings)
when the material behavior is expected but make
different predictions (i.e., yield different ratings) when
the material behavior is surprising. We operationally
define and measure the “prior pull” as the distance
between familiar and novel object motion ratings in the
direction of first frame ratings. This property could be
stated as a conditional statement: a prior pull occurs if:

FFFamiliar Ob jects > MFamiliar O jbects > MNovel O jbects

or if

FFFamiliar Ob jects < MFamiliar O jbects < MNovel O jbects

If one of these two conditions is true, then the
magnitude of the prior pull can be computed as:

|MFamiliar Ob jects − MNovel Ob jects|

We assess whether prior pull occurs more frequently
in the surprising motion condition compared with the
expected motion condition.

Response times
The time taken to make each judgment (response

time) was measured. We reasoned that rating the
material properties of materials that behave surprisingly

might involve the reiterative correction of a prediction
error by the visual system, and this error correction
might be associated with an increase in response
time when rating objects that behave in a surprising
way. Before computing the difference in response
time between expected and surprising conditions,
we preprocessed response time data as follows: we
subtracted the time to impact (3 seconds static first
frame + 0.45 seconds to impact) from the raw response
times so that a response time of zero would now indicate
time of impact. For each participant, we averaged their
response times over objects and attributes. A repeated
measures analysis of variance was performed on this
averaged response time data to determine whether
response times differed between expected and surprise
conditions, or familiar and novel object conditions.

Exclusions
For the first 10 participants in the motion

experiment, data points for the novel object matched
to the surprising key object were excluded owing to
a stimulus presentation error that showed the rigid
version of the object instead of the wobbling one
(10 subjects × 4 attributes = 40 data points excluded).
For the remaining 15, subjects this error was fixed.

Data points that were faster than 0.75 seconds after
impact (fastest possible button press) were excluded,
because a shorter response time than this would
indicate that observers started pressing the space
bar (for the next trial) before watching the impact
frame of the movie (which would be a violation of
the instructions). Response latencies that were longer
than 2 standard deviations above the mean were also
excluded. By opting for a 2*SD cutoff as opposed to
the traditional cutoff of 3*SD (Magnussen et al., 1998)
we excluded more of the longer RTs, which occurred
more for familiar objects that behaved surprisingly
(see Supplementary Figure 3). Therefore, this cutoff
criterion was more conservative.

After these exclusions, approximately 6% of the data
were excluded for response times that were too fast
or too slow according to this criterion (approximately
1.3% too fast and approximately 4.7% too slow; see
Supplementary Figure 3 for a breakdown of exclusions
per experimental condition).

Results

Ratings and the effect of expectation (∈)
Figure 5 provides an overview of average observer

ratings in in all experiments and conditions. Each of
the five polar plots in each row shows average ratings
for three (symbolized by icons) of the 15 familiar
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Figure 5. Ratings results from all experiments. Shown are average observer ratings of all experiments for the four different questions
about material qualities, for example, how hard, liquid, heavy, or gelatinous an object appears. Each column shows the data across
experiments for one particular type of material kinematics (wobble, splash, etc.). Icons symbolize individual familiar objects (chair,
key, cup, pot, glass, spoon; blue droplet, water; yellow droplet, honey;white droplet, milk; violet curtain, silk; red curtain, velvet;white

→



Journal of Vision (2020) 20(12):1, 1–20 Alley, Schmid, & Doerschner 9

←
curtain, linen; yellow custard, red and green Jell-O). Each rating question and corresponding data are coded in the same color (red,
How hard?; blue, How liquid?; purple, How heavy?; and green, How gelatinous?). Ratings could vary between 0 (lowest) and 1
(highest). The circle and star symbols correspond with ratings of familiar and novel objects, respectively. The symbol style—filled,
desaturated, and open—correspond with the different experiments—that is, first frame, last frame, and motion, respectively.
Standard deviations denote 1 SE of the mean. Overall, ratings of familiar and novel objects tended to overlap much more in the
motion condition (C, E), in particular the expected motion condition (C), than compared with the first frame (A) and last frame (B, D)
experiments. In the surprising conditions, the object identity and how the object deforms after falling onto the floor mismatch (e.g.,
shattering water, splashing chairs, etc.). Data from the first frame (A) and motion conditions (C, E) are replotted in Figure 7 to illustrate
the influence of prior expectation on material quality judgements.

objects (circles) and corresponding novel objects
(stars) in response to each of the four questions (how
hard [red], gelatinous [green], heavy [magenta], or
liquid [blue]). The grouping of the objects into one
polar plot was done according to how these objects
(familiar and corresponding novel) would deform
(i.e., nondeforming, wobbling, shattering, wrinkling,
or splashing). Note that, in the surprising conditions
the object identity and how the object deforms after
falling onto the floor mismatch (e.g., shattering water,
splashing chairs, etc.) Overall, observers’ responses
made sense. For example, in Figure 5A static rigid
objects were all rated as hard (red circles), Jell-O was
rated as very gelatinous (green circle), and liquids were
rated as very liquid (blue circles). Ratings for novel
objects (stars) that inherited material properties from
corresponding familiar objects tended to overlap with
that of the familiar objects; however, this overlap
tended to vary between the different experiments
(Figure 5A–5E): for example, overlaps in the expected
motion condition (Figure 5C) were much larger than
in the first frame (Figure 5A) or last frame conditions
(Figure 5B, 5D), likely owing to the different types of
information available in each case (e.g., image motion
or not, surprising motion or expected motion, etc.). In
the regression analysis provided elsewhere in this article,
we aim to explain the differences in ratings between
familiar and novel objects, allowing for different high
and low-level factors to account for the data.

To determine whether object knowledge influences
perceived material properties, we computed the effect
of expectation Index ( ∈ ) for familiar and novel
objects. We postulated that this effect would be on
average different (greater) for familiar objects because
expectations about material properties should not
be triggered as strongly when the object shape is
unfamiliar. This is what we found, t(19) = 3.41,
P < 0.003 (also see Figure 6). This result supports our
hypothesis that judgments of material qualities are
not based purely on the observed material mechanics,
but are also affected by prior knowledge about the
typical material mechanics of a (familiar) object.
Note that the effect of expectation index for novel
objects was not zero, which suggests that observers
might generate some predictions about the mechanical

Figure 6. Effect of the expectation index (∈). Shown are the
averages across participants, material types and rating
attributes for familiar and novel objects. ∈ was calculated as
the absolute value of the average rating differences between
expected and surprising conditions (see analysis
section, Equation 1). Error bars are one standard error of the
mean.

properties based on the estimated optical properties
of these objects, and/or based on associations they
have with the general material properties of a bounded
convex shape, for example, a rigidity prior (Grzywacz
& Hildreth, 1987; Ullman, 1976; but also see Jain &
Zaidi, 2011). We break down these specific influences on
material judgements and based on this develop a linear
regression model that tries to account for the observed
rating differences in expected and surprising conditions.

Prior pull

In some cases, the directionality of the rating
differences (expected vs surprising) is directly
interpretable. For example, the spoon that wrinkled
surprisingly (Figure 5E, fourth plot) was rated as
harder (red circle, 0.25) than the linen, silk, or velvet
curtains that wrinkled expectedly (Figure 5C; 0.18).
Prior knowledge about spoons being hard seems to have
led to increased ratings of hardness compared with their
soft curtain counterparts, despite all of these objects
wrinkling. Thus, our results suggest that prior object
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knowledge about hardness pulled ratings of hardness
toward this expectation. We visualize this prior pull in
the data in Figure 7.

Prior pull can only occur if ratings on a given quality
in first frame (filled dots) and surprising motion (open
stars) conditions differ substantially, as indicated by
the length of the dark gray lines between these two
types of data points in Figure 7. We would expect to
find this occurring more frequently in the surprising
motion condition, and our results confirm this: first
frame ratings differed significantly from novel object
motion ratings for 48 of 60 or 80% of conditions in the
surprising motion condition, and only 24 of 60 or 40%
of conditions in the expected motion condition (also
see Table 1). A meaningful prior pull occurs only when
the ratings of atypically moving (surprising) familiar
(unfilled circles) and novel objects (unfilled stars) do
not overlap and when ratings of atypically moving
(surprising) familiar objects are pulled in the direction
of first frame ratings (filled circles; see Figure 7C, ii).
Significant cases of the prior pull effect are highlighted
in yellow in Figure 7 (see Supplementary Table 1
for significance tests). If, instead, ratings of moving
familiar (open circles) and novel objects (open stars)
overlap completely, this shows that the object shape
prior did not exert any significant influence on the
rating (see Figure 7C, ii). We found that the more the
familiar object remained intact and thus recognizable in
the surprising motion condition (Figure 7B, left plots),
the more likely the prior exerted an influence over the
material appearance (also see Supplementary Figure 4,
which assesses object intactness).

That only a subset of our objects exhibits a pull
toward the prior is consistent with literature that
shows that, when sensory input is unambiguous,
it will dominate the percept, and prior knowledge
does not have an effect (Summerfield & De Lange,
2014). In our case, particular combinations of shape
and optics (often involving “shape recognizability”)
at the end of the animation may lead observers to
essentially “ignore” sensory information. For example,
the rigid Jell-O is perceived as gelatinous despite not
wobbling. Interestingly, prior associations with specific
combinations of motion, shape, and optics at the
end of the movie may “enhance” differences between
familiar and novel object ratings (e.g., in the case of
the wobbling glass, the particular combination of
translucent optics forming what looks like a puddle
might evoke strong representations of liquidity, so
despite the wobble, it is not considered gelatinous).

One might argue that the reason why we see relatively
few instances of significant prior pull is that novel
objects might also elicit expectations (after all, they are
bounded shapes with particular optical properties).
The correlations in Figure 8 between first frame and
motion ratings, however, suggests that, for the most
part, this is not the case; although familiar object

first frame ratings predicted expected motion ratings
extremely well (Figure 8A; R2 = 0.9), novel object
first frame ratings predict motion ratings very poorly
(Figure 8B; R2 = 0.07). These results are also supported
by the average interobserver correlations in Figure 8C.
Interobserver correlation is much lower for novel
objects in the first frame experiment than for familiar
objects suggesting that static images of novel objects
do not elicit consistent (typical) expectations about
kinematic material properties across observers. Thus,
for the most part, familiar object first frame ratings are
a good measure of observers’ prior expectations about
the material qualities of these objects. In contrast, novel
object motion ratings are an ideal measure of sensory
input because the motion from the material behavior
includes information about both the mechanical
deformations, as well as any additional effect of image
motion from optics (Doerschner et al., 2011a, b).

Linear regression models

Given that there are a few cases where novel objects
do seem to generate correct predictions about the
material outcome (those at the bottom left and top right
of Figure 8B), and because some of the magnitude of
the prior pull may be explained by shape recognizability
at the end of the movie, we tested a linear regression
model that predicted the direction and magnitude of the
difference between ratings of moving familiar and novel
objects from optics and shape prior pull, and shape
recognizability at the end of the animation (Figure 9).
From our data we modelled 3 different association
routes that could potentially influence the rating: optics
associations (H1), shape associations at the beginning
of the movie (H2), and shape associations at the end of
the movie (H3).

Each predictor in the high-level model was multiplied
by a weight G that took into account the predictability
of the “behavior” of a given stimulus (computed as the
difference between first frame and motion ratings in the
expected condition) and the extremeness of the rating
(computed as the twice the difference between first
frame ratings in the expected condition and 0.5). Thus,
predictors in the high-level model were: H1 = H1 × G,
where G = predictability × extremeness: The optics
and bounded shape prior (computed as the difference
between first frame ratings of novel objects in the
expected condition and moving stimuli ratings of novel
objects in the expected condition). The rationale is that
this predictor captures to what extent the reflectance
properties and the fact that observers see a bounded
shape will lead to prior expectations about the material
kinematics. H2 = H2 × (1 − G): The shape familiarity
(computed as the overall differences between first
frame ratings of familiar objects and corresponding
ratings of moving novel objects (across both expected
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Figure 7. Material quality ratings and prior attraction. Results of the first frame and motion conditions from Figure 5 are replotted,
keeping the same symbols and notation. (A) Average observer ratings from three conditions (i.e., first frame familiar objects [filled
circles], typically behaving familiar objects [unfilled circles] and corresponding [moving] novel objects [unfilled stars]) tended to
overlap. The difference between first frame ratings for familiar objects and ratings of moving novel objects is indicated by a dark grey
line. The organization of objects follows that in (B). (B) Same as (A), but here, ratings of atypically behaving familiar objects are plotted
as unfilled circles (organized by type of motion), and ratings of corresponding novel objects—that is, unfamiliar shapes—which inherit
their optical and kinematic qualities from a familiar object—as unfilled stars. The motions are arranged according to how much the
object remains intact and recognizable after impact on the floor (also see Supplementary Fig. 4). Yellow highlighted symbols show a
statistically significant prior pull. See main text for more detail. The yellow highlighted cases show that prior pull occurred more in
conditions where the object was still intact and recognizable at the end of the movie (objects that behaved rigidly or wobbled).
Supplementary Table 1 lists corresponding statistics and P values. (C, i) How we measure how much the rating of an atypically moving
familiar object (middle) overlaps with the rating of a material-matched moving novel object (right), or conversely, how much it is
pulled toward ratings of a static view of the familiar object (left). (C, ii) Possible results. For example, seeing an image of red Jell-O in
its classical shape, observers tend to expect that it is quite gelatinous. When they see an object with the same optical properties that
falls and does not wobble when it hits the floor, they rate it as very nongelatinous, that is, we have a large rating difference (gray line).
When a classically shaped red Jell-O falls on the floor and does not wobble, observers could either rate it similar to the novel
object—after all it does not wobble at all (no prior pull)—or it could be rated as somewhat more gelatinous, despite the sensory
input, possibly because prior experience influences the appearance, making observers perceive wobble when there is not (prior pull,
red line). (C, iii) When the familiar object moves exactly as expected, and when there is no strong influence of shape familiarity on
material judgements, all three ratings will overlap.
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Figure 8. Prediction strength response time differences and
interobserver correlations. (A) Correlation between mean first
frame ratings and mean expected motion ratings for familiar
and novel objects. (B) A high correlation indicates that the first
frames (still images) of objects are highly predictive of the
objects’ kinematic properties, and thus are in good agreement
with ratings in the expected motion condition, where objects
fall and deform according to their typical material kinematics.
This is clearly not the case for novel objects, suggesting that
these objects do not elicit strong prior expectations about how
an object will deform. (C) Average interobserver correlation for
expected and surprising motion trials, as well as the first frame
experiment. Note that only for novel objects, this latter
correlation was quite low, suggesting that still images of
unfamiliar objects do not elicit a strong prior in observers about
the material qualities measured in this experiment. (D)
Response time data averaged across all observers for expected
(black) and surprising trials (medium gray). Stars indicate
significant differences, P < .001. Error bars are 1 standard error
and show variability between subjects.

and surprising conditions). The rationale is that
this predictor captures to what extent expectations
generated by the familiar shape of the object can
explain the rating differences, not controlling for the
effects of optics and bounded shape (which are captured
by H1). H3 = H3 × (1 − G): The last frame shape
recognizability (computed as the overall differences
between last frame ratings of familiar and novel objects
(across both, expected and surprising conditions). The
reason for including this predictor is our hypothesis
that the conflict between prior and surprising motion
should be larger if the object would be still recognizable

after falling to the ground (as in the wobbling or rigid
motion conditions; see Table 1).

We can model the data moderately well with this
high-level model (see analysis, R2 between 0.266 and
0.59, depending on the question), but not perfectly,
potentially owing to specific motion–shape–optics
interactions (Schmid & Doerschner, 2018).

Although retinal size was approximately equated
between novel and familiar objects, their area and 3D
volume were not. Moreover, shape and volumes within
familiar object stimuli varied quite a bit. A voluminous
sphere-like object will behave quite differently than
a spoon (imagine how much each of them would
splash or wobble upon impact if made from liquid
or jelly). Therefore, such stimulus variations might to
some degree account for rating differences between
the familiar and corresponding novel objects and
might thus provide alternative explanations to our
effect of expectation hypothesis. To test the degree
to which such low-level effects account for the rating
data we developed a low-level regression model, which
contained three predictors that aimed to capture the
most salient low-level differences between stimuli.

L1: Motion energy difference (this was computed
in two steps): (1) Take the sum of the absolute value
of all consecutive image differences, starting with
the impact frame, for example, sum(abs(f11–f12),
abs(f12–f13), …, abs(f39–f40)) (Tschacher et al., 2014),
for all experimental conditions/stimuli (60 in total) and
normalize these values by object size (number of pixels
corresponding to the object on frame 11 MEn), (2) For
each object in the expected and surprising conditions,
compute the differences of MEFamiliar and MENovel
conditions. Familiar and novel objects were often
different in 3D volume and shape; thus, differences in
ratings might be attributable to resulting differences
in motion energy when these two classes of objects
deform.

L2: First frame object size (computed as number of
pixels in the first frame corresponding to the object).
Differences in the area taken up by familiar and novel
objects in the first frame might account for rating
differences, for example, if the familiar object was
smaller, it might have generated predictions to be less
heavy than the corresponding novel object (irrespective
of the familiar shape of the object).

L3: Last frame object size (computed as numbers of
pixels in the last frame corresponding to the object).
This predictor is related to H3 in the high-level model
(discussed elsewhere in this article). Differences in the
area taken up by familiar and novel objects in the last
frame might account for rating differences, for example,
if the novel object ‘splashed’ more (thus took up more
area in the last frame) it might have been rated more
liquid simply owing to this fact.

Such a model performs extremely poorly, R2 = 0.025,
P > 0.05 (Figure 9). This finding suggests that rating
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Figure 9. Low and high level linear regression models predicting the difference between ratings of moving familiar and control objects
Dfamiliar-novel. We developed two models with the aim to account for the differences we observed in ratings of familiar and novel
moving objects. The computation of the individual predictors is described in the main text (Analyses section). In the lower right inset
of each plot we show the weights (w) of each predictor (H1: bounded shape and optics prior; H2, shape familiarity; H3, last frame
shape recognizability; L1, motion energy difference [also see Supplementary Figure 6]; L2, object size differences first frame; L3,
object size differences last frame). Overall, the high-level model was more successful in predicting this difference than the low-level
model (top two panels: combined). However, this pattern varied as a function of rating questions: the high-level model performed
best for ratings of gelatinousness and hardness, whereas the low-level model performed as good as the high-level model for ratings of
liquidness. The latter is likely due to the fact that ratings of liquidness might be strongly modulated by how much a substance
physically spreads in the image.

differences are not due to differences in object size or
image motion.

Response times

We find a small but significant increase in response
time in the familiar object surprising condition—which
is the condition that most strongly juxtaposes prior

expectation with sensory evidence (Figure 8D). There
was no significant response time difference between
expected and surprising novel objects conditions.
This was assessed with a two-way repeated measures
analysis of variance, which revealed a main effect of
object familiarity (participants took longer to respond
to familiar versus novel objects), F(1, 24) = 14.72,
P = 0.0008, and a main effect of surprise (participants
took longer to respond to surprising versus expected
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events), F(1, 24) = 13.24, P = 0.013. However,
these main effects must be interpreted in light of
the significant interaction between object type and
surprisingness, F(1, 24) = 6.395, P = 0.0184. Follow-up
t-tests (Bonferroni corrected) show that participants
took longer to respond to surprising versus expected
stimuli when objects were familiar, t(24) = 4.911,
P < 0.0001. However, this difference was not significant
for novel objects, t(24) = 1.334, P= 0 .1946.

Discussion

Visual perception is not a one-way (bottom-up)
road; how we process visual input is influenced by
expectations about the sensory environment, which
develop from our previous experience and learning
about existing regularities in the world, that is,
associating things or events that co-occur. Expectations
have been shown to facilitate visual processing in
the case of priming, to modulate the frequency of a
particular percept in b-stable stimuli, and to change
our interpretation of ambiguous stimuli (see Kveraga
et al. [2007] or Panichello et al. [2013], for a review).
However, the stimuli used in these experiments have
been fairly simple (static images of objects), and it has
been shown that learning associations can also include
fairly complex phenomena. For example, recently, Bates
et al. (2015; also see Battaglia et al., 2013; Kubricht et
al., 2016) showed that humans can learn to predict how
different liquids flow around solid obstacles (also see
other examples for predicting of motion trajectories
of rigid objects; e.g., Flombaum et al., 2009; Gao &
Scholl, 2010; Soechting et al., 2009). Although the
authors attributed human performance to an ability to
“reason” about fluid dynamics, here we explicitly test
whether existing perceptual expectations about material
properties can set up rather complex predictions about
future states, and whether—and to what extent—these
expectations influence material appearance. We show
that the qualities of surprising materials (Itti & Baldi,
2009) are perceived different to expected ones that
behave the same (Figure 7), and that surprise leads to
increases in processing time of the stimuli (Figure 8D,
in line with Baldi & Itti, 2010; Itti & Baldi, 2009; or
recently Urgen & Boyaci, 2019). Our method provides
a general technique to differentiate the extent to
which material qualities are directly estimated from
material kinematics versus being modulated by prior
associations from familiar shape and optical properties,
and contributes thus an essential piece to the puzzle of
how the human visual system accomplishes material
perception (Adelson, 2001; Anderson, 2011; Fleming,
2014; Fleming et al., 2015; Komatsu & Goda, 2018;
Maloney & Brainard, 2010).

Knowledge affects (material) perception

There are countless demonstrations showing that
knowledge affects how we perceive the world: from
detecting the dalmatian amidst black and white
blotches, identifying an animal in the scene (Thorpe
et al., 1996), deciding on the identity of a blob
(Oliva & Torralba, 2007), or being a greeble or bird
expert (Gauthier et al., 2003), knowledge directly
influences our ability to perform in these instances.
Object knowledge does not just facilitate categorical
judgments, it also affects the estimation of visual
properties such as color or motion (Hansen et al., 2006;
Olkkonen & Allred, 2014; Scocchia et al., 2013). How
exactly knowledge alters and facilitates neural processes
in visual perception is a topic of ongoing research (e.g.,
Gauthier et al., 2000; Kveraga et al., 2007; Rahman &
Sommer, 2008).

In contrast, the role of predictions or associative
mechanisms in material perception is not well
understood (Paulun et al., 2017; Schmidt et al., 2017;
van Assen et al., 2018). Knowledge about materials
entails several dimensions and can include taxonomic
relations: gold is a metal, metals are elements with
physical properties, metals are usually malleable and
ductile. These classes of metal also have their own
perceptual regularities: gold looks yellowish, often has
a very shiny, polished and smooth appearance, feels
cool to the touch, and so on. Our experimental results
suggest that identifying a material (i.e., knowing what
it is) not only coactivates its typical optical qualities,
but also elicits strong predictions about the typical
kinematic properties and resulting material behaviors.
For example, liquids are not only translucent or
transparent, they also tend to run down, splash, or
ooze. Importantly, we seem to have quite specific ideas
of what running down, splashing, or oozing should
look like (e.g., Dövencioglu et al., 2018 probed such
ideas explicitly), supposedly because we have ample
visual (but also haptic) experiences with liquids, and
thus opportunities to learn the regularities (statistical
or other) associated with a specific material category.
Our results show that these specific ideas, or priors,
about material behaviors interfere with the bottom-up
processing of visual information, leading to predictable
differences in ratings of material properties between
expected and surprising conditions.

Interestingly, Sharan et al. (2014) measured reaction
times in amaterial categorization task while participants
judged objects made from real (e.g., a cupcake made
from dough) and fake materials (e.g., a knitted cupcake
figure). They found a substantial decrease in reaction
times at very short presentation times in the real
condition. Given our results that show that the response
time increases in the surprise condition for familiar
objects, it would be interesting to know if their decrease
is primarily driven by an increase in reaction time
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for the surprising stimuli in their experiment, that
is, fake ones—because for those objects, the object
shape/identity (a natural/edible thing) was in conflict
with the material of the object (plastic/inedible).

Prior pull

The yellow highlighted cases in Figure 7 show that
prior pull occurred twice as much in the surprising
than the expected condition, and more in conditions
where the object was still intact and recognizable at
the end of the movie (objects that behaved rigidly
or wobbled). Prior pull in the expected condition
also occurred where estimation (sensory input) and
associative (prior knowledge) accounts made different
predictions (gelatinousness of the honey, heaviness of
the wine glass, Figure 7A). In these cases, the expected
events were not so expected—and this phenomenon
may be related to shape properties or the size of the
splashing of the liquids. Although we controlled for
the effects of image motion from optics (e.g., specular
highlights), perhaps other low-level image differences
exist between familiar and novel objects that could be
driving differences in ratings. However, we were able
to rule this out, because a linear regression model
that incorporates these low-level effects as predictors
performs extremely poorly. This result suggests that
rating differences were not due to differences in object
size or image motion.

We did not aim to test an exhaustive list of material
attributes, but to determine whether effects of prior
associations on visual input might depend on the
type of material attribute judged, and on how the
object behaves under external forces. We found that
mechanical qualities like hardness and liquidity
seem to be more directly estimated from material
kinematics in “shape-destroying” conditions (splashing,
shattering, wrinkling), but prior associations play
a modulatory role—to the extent where material
kinematics can even be ignored (e.g., red and green
Jell-O)—when shape remains somewhat intact. These
latter conditions seem to create more of a cue conflict
and are more ambiguous. On the other hand, qualities
like gelatinousness and heaviness (which are much
more difficult to estimate directly from mechanical
deformations) were more affected by familiar shape and
optics associations.

Alternative explanations for rating differences

One might argue that the prior pull we demonstrated
here is not perceptual, but in fact is due to a particular
cognitive strategy of some observers (i.e., explicitly
ignoring the motion information and thus rating
material qualities of atypically moving familiar objects

as they rated objects on the first frame, while other
observers’ ratings were 100% identical to novel object
ratings). This would have resulted in bimodal rating
distributions and/or low interobserver correlation
in the object motion condition, neither of which
we found (Supplementary Figure 5 and Figure 8C,
respectively).

Another argument against the cognitive strategy
approach is supported by response time patterns in our
experiments. A small but significant increase in response
time in the familiar object surprising condition—which
is the condition that most strongly juxtaposes prior
expectation with sensory evidence—would be consistent
with the idea of recurrent prediction error correction
(Urgen & Boyaci, 2019; Figure 8D). Importantly, we
do not find evidence for a response time advantage
in expected familiar objects condition compared
with novel, also consistent with Urgen and Boyaci
(2019), which suggests that this increase in response
time cannot simply be due to the fact that observers
positioned the slider in advance to the wrong position,
that is, to a position that would be more consistent
with a rating based on the first frame information only.
If observers adopted such a strategy, we should have
also seen faster response times for expectedly moving
familiar objects.

Although we do not believe that cognitive strategies
were driving our results per se, we do acknowledge that
it is unlikely that ratings tasks directly measure the
appearance of materials, because it is not known what
the relevant perceptual dimensions of visual experience
are. Finding the relevant perceptual dimensions of
materials is an active area of research (e.g., Schmid &
Doerschner, 2018; Toscani et al., 2019). Many studies
have investigated the visual perception of properties
like softness or gloss (see Fleming, 2017, for a review),
and we believe our participants’ ratings in our study
results reflect perception to the same degree as these
other studies.

It is quite striking that the same material
deformations were rated differently in the expected
and surprising conditions. Toscani et al. (2013) showed
that depending on the task, observers pointed their
gaze at specific points on the stimulus, for example,
near the brightest regions on an object for lightness
judgements. One possibility could thus be that the
task, object knowledge, and expectations about the
material behavior guided eye movements of observers
in our experiment to specific locations on the stimulus.
Although in the expected conditions fixation patterns
might have been optimal with respect to the task,
for example, observers correctly anticipated how the
object would deform (or shatter, splash, wobble, etc.),
it is possible that in the surprising conditions the
wrong expectation guided eye movements to the wrong
locations on the object, which in turn lead to a different
sampling of information and ultimately influenced
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their judgements of material qualities. We are currently
investigating this possibility directly.

A Bayesian account of rating and reaction time
differences

We believe that the results of this study fit well within
the Bayesian framework, which offers an account of
how prior knowledge is integrated with sensory input.
Our experiment constitutes a situation not unlike
classical cue-conflict experiments (e.g., Ernst & Banks,
2002; Knill, 2007b), where the sensory cues may conflict
with one another and/or the prior belief. Although
we do not aim to model our results formally, we still
believe that this analogy is useful in interpreting our
findings. We first focus on the rating differences that we
found in the expected and surprising conditions. In the
latter, in many instances ratings were pulled toward the
expected material property, not the signaled one. For
example, a wrinkling spoon was rated harder than any
of the wrinkling control objects. In this latter example,
we have two cues to object hardness: object shape (a
spoon) and the object behavior (it is wrinkling). Here,
the cues to hardness are in conflict: the (familiar) shape
of the object (in the first frame, which observers saw
for three seconds) suggest a very hard object, whereas
the subsequent motion information when the spoon
impacts suggests a very soft material. In this situation
the visual system has two possibilities. The first is
that, in light of the strong sensory (i.e., image motion)
information, it could simply completely reject the idea
that this object has any degree of hardness and veto
the familiar shape cue completely, which classic cue
combination would suggest (e.g., outlier rejection;
Landy et al., 1995). As a result, we would see no
difference between wrinkling spoon, wrinkling curtains
or wrinkling novel objects. The second possibility is
that the visual system entertains multiple priors (strong
and weaker ones) about the state of the world, and that,
depending on the sensory input, it adjusts the weights
of these priors (Knill, 2007b). In our concrete example,
this would mean that the visual system may entertain
multiple priors on spoon hardness—say from softish to
very hard, and that instead of vetoing the idea that the
spoon was ever hard, the hardness cue from a familiar
shape is only weighed down and integrated with other
available cues (e.g., image motion information). This
would yield a hardness rating different from that of the
wrinkling control objects, or curtains, and this is what
we see in our data.

Thus, the robust cue integration model seems to
offer a good explanation for the differences in rating
data between novel and familiar objects in the Surprise
condition. This model was originally developed by Knill
(2007b) to account for observer behavior in situations

with large cue conflicts, in which our experiment clearly
is. However, it seems to only account well for the data
when the shape of the object is still recognizable toward
the end of the animation (Figure 7; e.g., nondeforming,
or wobbling in the surprise condition). When instead
the shape is unrecognizable upon impact (e.g., when
splashing), we see more of a situation analogous to
cue-vetoing, that is, there is no difference in perceived
material quality between familiar and novel object
ratings. However, a destruction of the shape has
made the (familiar) shape cue completely unavailable
which might have changed the integration situation
entirely, which makes an interpretation in these cases
difficult.

When faced with violated expectations, as in our
surprising condition, the visual system needs to update
the generative model to minimize the prediction error
(i.e., the error between the expected state and measured
state of the world) to perform future tasks (Urgen &
Boyaci, 2019). Because this updating is a reiterative
process, we reasoned that it would take observers
longer to perform perceptual tasks when judging
material attributes of surprisingly deforming objects.
This is exactly what we found. One might criticize that
response times for ratings were much longer than times
measured in classic reaction times studies (e.g., see a
review by Eckstein, 2011, on visual search). However, it
is not all that uncommon to consider response times of
2 seconds and longer, as in categorical color perception
(Boynton & Olson, 1990; Okazawa et al., 2011). Note
that we treated response time data as conservatively as
classic reaction time studies, for example, by removing
data points that were two standard deviations above the
mean.

Our study bears resemblance to the work by Fujisaki
et al. (2014), who investigated how different kinds
of information sources, namely visual and auditory,
are combined in material categorization and material
property rating tasks. Some of their stimulus conditions
were not unlike our cue conflict scenarios (e.g.,
combining a visual glass stimulus with a bell pepper
sound). They found that for the material rating task, the
integration of the two types of information follows a
weighted average rule, where the weights depend on the
reliability of the respective signals. This reliability was in
part related to the task: for example, participants gave
higher weights to visual cues for judgements of color
and gave higher weights to auditory cues for judgments
of pitch or hardness. Also, in our results in Figure 9
we see systematic changes in the regression weights of
both, high- and low-level models as a function of rating
task: for example, in the low-level model, the visual cue
motion energy (wL1) receives more weight explaining
rating differences between familiar and novel objects
than for ratings of, for example, heaviness, or similarly
in the high-level model: the predictor shape familiarity
(wH2) played a much larger role for explaining rating
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differences between familiar and novel objects for
ratings of gelatinousness that for ratings of liquidness.
To determine whether this shift in weights is indeed
associated with the reliability of the respective cues
requires further experimentation, where cue reliability
would be manipulated directly.

Estimation versus association

Our work shows that previously acquired object–
material associations play a central role in material
perception and are much more sophisticated than
previously appreciated. Previously there have been
conflicting findings in the literature about the relative
influence of optics, shape, and motion cues to the
perception of material properties (e.g., Aliaga et
al., 2015; Schmid & Doerschner, 2018; van Assen &
Fleming, 2016). For example, although some work
proposes that perceived material qualities like softness
are strongly influenced by motion and shape cues,
which completely dominate optical cues (Paulun et
al., 2017), other work showed that both optical and
mechanical cues affect estimates of softness (Schmidt
et al., 2017). Schmidt et al. (2017) suggested that shape
recognizability after deformation (e.g., recognizing
that an object used to be a cube in Paulun et al.’s
study) affects how reliable shape cues versus surface
optical cues are when judging material properties, thus
leading to shape cues dominating over optical cues in
Paulun et al.’s (2017) study. Our results back up the
idea that familiar shape affects observers’ ratings of
material properties. The interactions between familiar
shape, optical and motion properties is something that
future material perception studies should consider and
investigate further.

This study not only shows that existing perceptual
expectations about material properties can set up rather
complex predictions about future states of materials,
it also extends a growing theme in the material
perception literature that studying the perception of
kinematic material qualities can serve as a tool to guide
investigations of the neural mechanisms about material
properties, because it provides insight into components
(high and low level) that make up material perception
as a whole (Schmid & Doerschner, 2019).

Conclusions

This work shows that the visual system can predict
the future states of rigid and nonrigid materials. Such
predictions can be activated by the shape of an object
and—to a lesser extent—also by the optical qualities of
a surface. Understanding how high-level expectations
are integrated with incoming sensory evidence is an

essential step toward understanding how the human
visual system accomplishes material perception.

Keywords: material perception, kinematics, prediction,
expectation violation, cue conflict
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