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ABSTRACT

GENERAL REUSE-CENTRIC CNN ACCELERATOR

Nihat Mert ÇİÇEK
M.S. in Computer Engineering
Advisor: Özcan ÖZTÜRK

February 2021

Reuse-centric CNN acceleration speeds up CNN inference by reusing computa-
tions for similar neuron vectors in CNN’s input layer or activation maps. This new
paradigm of optimizations is however largely limited by the overheads in neuron
vector similarity detection, an important step in reuse-centric CNN. This thesis
presents the first in-depth exploration of architectural support for reuse-centric
CNN. It proposes a hardware accelerator, which improves neuron vector similar-
ity detection and reduces the energy consumption of reuse-centric CNN inference.
The accelerator is implemented to support a wide variety of network settings with
a banked memory subsystem. Design exploration is performed through RTL sim-
ulation and synthesis on an FPGA platform. When integrated into Eyeriss, the
accelerator can potentially provide improvements up to 7.75X in performance.
Furthermore, it can make the similarity detection up to 95.46% more energy-
efficient, and it can accelerate the convolutional layer up to 3.63X compared to
the software-based implementation running on the CPU.

Keywords: CNN, reuse-centric, accelerator, inference.
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ÖZET

GENEL YENİDEN KULLANIM MERKEZLİ CNN
HIZLANDIRICI

Nihat Mert ÇİÇEK
Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Özcan ÖZTÜRK
Şubat 2021

Yeniden kullanım merkezli CNN hızlandırma yöntemi, CNN’nin giriş katmanında
veya aktivasyon haritalarında benzer nöron vektörleri için hesaplamaları yeniden
kullanarak CNN çıkarımını hızlandırır. Ancak bu yeni optimizasyon paradigması,
yeniden kullanım merkezli CNN’de önemli bir adım olan nöron vektör benzerliği
tespitindeki genel giderlerle büyük ölçüde sınırlıdır. Bu tez, yeniden kullanım
merkezli CNN için mimari destek üzerine ilk derinlemesine araştırmayı sunmak-
tadır. Nöron vektör benzerlik tespitini geliştiren ve yeniden kullanım merkezli
CNN çıkarımının enerji tüketimini azaltan bir donanım hızlandırıcı önerir. Hız-
landırıcı, bankalı bellek alt sistemi ile birlikte çok çeşitli ağ ayarlarını destekleye-
cek şekilde gerçeklenir. Tasarım keşfi, RTL simülasyonu ve bir FPGA platfor-
munda sentez yoluyla gerçekleştirilir. Eyeriss’e entegre edildiğinde, hızlandırıcı
potansiyel olarak performansta 7.75 kata kadar iyileştirmeler sağlayabilir. Ayrıca
işlemci üzerinde koşan yazılım tabanlı gerçekleme ile karşılaştırıldığında, benzer-
lik tespitini %95.46’ya kadar daha enerji verimli ve evrişim katmanını 3.63 kata
kadar daha hızlı yapabilir.

Anahtar sözcükler : CNN, donanım ivmelendirici/hızlandırıcı, veriyi yeniden kul-
lanım, çıkarım.
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Chapter 1

Introduction

Convolutional Neural Networks (CNN) have been widely used in many data min-
ing and machine learning domains in recent years. They are the pillars supporting
many important tasks, from object recognition to autonomous driving, gesture
recognition, and so on. The inference speed and energy efficiency of CNN are
essential for it to work effectively on embedded devices.

Prior efforts on optimizing CNN inference efficiency largely fall into three cat-
egories. Some explore different convolution algorithms [3, 4], some compress
networks [5], and most of all optimize matrix multiplications, the core operation
in CNN, which mainly resorts to the leverage of network sparsity [6, 7], memory
layout [8], and special hardware units [9, 10, 11, 12].

As a complementary aspect to these efforts, reusing similar neuron vectors
(sequence of consecutive neurons in a convolutional layer) have been explored in
the literature [13, 14]. There exists a wide set of neuron vector similarities in
popular image datasets as shown in Table 1.1. As can be seen from this table,
the three networks can maintain the default inference accuracy if similar neuron
vectors (lengths vary across layers) are grouped together and only the cluster
centers are used in the CNN computations. The average cluster sizes are as large
as 6–100 neuron vectors.
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Despite the potential of this method, discovering similar neurons takes longer
than the original matrix multiplication and their software implementation suffers
from increased execution time and energy consumption, as reported in [13, 14].
This is due to the fact that software implementation running on a general-purpose
CPU with a specific instruction set executes on vectors in a serial fashion, which is
compute-intensive. Moreover, inefficient use of caches cause increased energy con-
sumption. A dedicated hardware solution can drastically reduce both execution
time and energy consumption by optimizing memory accesses and parallelizing
the required operations.

Table 1.1: The average cluster sizes of the convolutional layers in CifarNet, Ima-
geNet, and VGG-19 that keep the original prediction accuracy.

Network DataSet AVG Cluster Size

CifarNet Cifar10 100
AlexNet ImageNet 6
VGG ImageNet 8

In this work, we propose general reuse-centric CNN accelerator, which is a
special hardware engine designed to accelerate convolution layers in CNNs. Our
key contributions are the following:

(1) In order to leverage general reuse opportunities, we design a similarity
detection engine implementing locality sensitive hashing (LSH) [15, 16] algorithm.

(2) Uninterrupted data flow, parallel data processing, and storage as well as
resource efficiency are critical to achieving high performance and energy efficiency
for inference. Therefore, we propose a superscalar nonblocking hardware pipeline,
assisted with customized static random access memories (SRAMs) and content-
addressable memories (CAMs).

(3) CNNs consist of many convolutional layers with different sizes and shapes.
Thus, during inference, fast online adaptation to different layer configurations
such as neuron vector lengths or image/activation map size is crucial. Towards
this goal, we support the online reconfiguration of all units in our accelerator
through a register mapped interface.
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(4) Our accelerator supports integration into existing accelerators. Acting as
a pre-processing unit, it reduces the total number of computations during the
execution of convolutional layers of the target accelerator.

In the rest of this thesis, we first briefly introduce the background and outline
the overall design considerations in Chapter 2 and Chapter 3, respectively. Next,
we describe the basic design of the general reuse discovery engine in Chapter 4.
The advanced features of the accelerator in addition to how it can be integrated
into existing software and hardware CNN implementations are given in Chapter 5.
We discuss our experimental evaluation in Chapter 6, and finally we conclude.
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Chapter 2

Background

In this chapter, we give the basics of convolutional neural networks, an example
of general reuse, and a brief explanation for hardware acceleration.

Convolutional Neural Networks (CNNs)

Neural networks, a subfield of artificial intelligence, perform a combination of
linear and nonlinear functions. These functions are implemented through mul-
tiple layers, each fulfilling a special algorithm. When a convolution operation is
included in a layer, it is called a convolutional neural network (CNN). Besides,
they get the prefix "deep" when consisting of many layers.

For a specific task, the parameters of the functions in each layer of a CNN
are optimized through a process called training. After the training step, running
the network for accomplishing the task is called inference. A CNN is generally
trained once on a powerful compute node such as GPU or TPU. On the other
hand, the inference is performed many times on the edge device. Therefore, it
is critical to perform inference with high performance and energy efficiency since
the target device usually has limited resources.

A typical CNN as a deep neural network consists of many layers, including the
convolutional layer, the nonlinear layer, the pooling layer, the normalization layer,

4



Figure 2.1: An example matrix multiplication based convolution operation lever-
aging general reuse. Color coding shows the available reuse.

and the fully connected layer [17]. Among them, the most time consuming one
is the convolutional layer [18]. Therefore, many researchers focus on accelerating
the convolutional layer during inference [6, 7, 9, 12, 2].

A widely used method to implement convolution, the matrix multiplication-
based method, unfolds the inputs into matrices and applies general matrix mul-
tiplication for computation. An example of a one-dimensional convolution using
this method is illustrated in Figure 2.1. In this figure, an input image is unfolded
into a large input matrix X for zero strides and padding. Then, it is multiplied
with an unfolded weight matrix W, producing an output matrix y such that
y = X · W. It is important to note that a major inefficiency of the matrix
multiplication-based implementation is additional memory requirement due to
unfolding the input (input image or activation maps) into a large input matrix.

General Reuse

As can be seen in Figure 2.1, general reuse saves computations in CNN. More
specifically, in this figure, X is an unfolded input matrix where each element

5

I P<i• (Xj 2( 
xi, :Xh 

+ 

(Xj3( 

:Xk 0 
W11 

W21 

X 

w,2 

W22 
X11 • W11 + X12 • W12 + X21 • W21 + X22 •W22 

l 
X12 • W11 + X 13 • W12 + X22• W21 + X23 • W22 

<, ... + X22 • W12 + X31 • W21 + X32 • W22 

'-22. ~ + X23 .. W12 + X32 • W21 + X33 • W22 

W11 

w,2 

X31 • W11 + X32 - W12 + ~1 • W21 + "42· W22 

X32 • W11 + X33 • W12 • X...2•W21 + "43• W22 

W21 

W22 



corresponds to the value of one neuron. Every four elements in the example cor-
respond to the value of a neuron vector. Based on neuron vector similarities, the
twenty-four neuron vectors are divided to twelve groups, represented in different
colors. The dot product with a weight vector (e.g., x11 · w11) can be reused for
the neuron vectors in the same group (e.g., x12 ·w11, x31 ·w11, and x32 ·w11).

Hardware Acceleration

In DNN processing, most of the clock cycles and energy is spent during mem-
ory (DRAM) read or write operations. High performance and energy efficiency
can be provided by designing a multiple level memory hierarchy, similar to multi-
level cache structure in modern processors, or using buffers with different sizes.
To minimize the cost, it is necessary to decrease the number of accesses to higher
levels and to increase the reuse of data in lower levels. For this purpose, there ex-
ist special architectures called hardware accelerators [19] that optimize dataflow
between memory and processing engines (PE). In these architectures, each pro-
cessing engine can have its local memory and control logic to increase the reuse of
data inside/across PEs so that computation and energy saving can be obtained.
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Chapter 3

Overall Design Considerations

In this chapter, we will first describe general reuse-centric convolution operation.
Then, we will present key requirements for strong acceleration and associate them
with our design.

General Reuse-Centric CNN Acceleration and Performance Bottleneck

Matrix multiplication based general reuse-centric convolution operation con-
sists of several stages as shown in Figure 3.1 [1]. First, the input image or activa-
tion map is converted to matrix form according to the shape of the weight matrix,
stride, and padding settings of the convolutional layer. Using this matrix, similar
neuron vectors are identified and cluster groups are formed. Then, matrix multi-
plication is performed between cluster centroids and the weight matrix. Finally,
convolution output is derived by replicating partial results corresponding to the
original neuron vectors.

The fraction of execution times of each component for a software-based general
reuse-centric implementation running on a general-purpose CPU is given in Ta-
ble 3.1. The similarity detection module takes 44% - 52% of the total execution
time for CifarNet and 18% - 41% of total runtime for AlexNet and thus is the
bottleneck of this acceleration method [1].
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Figure 3.1: Matrix multiplication based general reuse-centric convolution opera-
tion (similar to the one implemented in [1]).
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Table 3.1: The time breakdown of the general reuse-centric convolution operation.
S.D. is similarity detection. C.MM is centroid matrix-multiplication. F.D. is full-
result derivation [1].

Network Layer Unfold S.D. C.MM F.D.

CifarNet conv1 16.65% 52.56% 3.63% 3.84%
conv2 4.61% 44.33% 17.30% 33.76%

AlexNet

conv1 10.80% 41.85% 24.18% 23.17%
conv2 1.33% 27.08% 54.72% 23.17%
conv3 0.70% 15.68% 47.52% 36.11%
conv4 0.67% 18.97% 65.18% 15.18%
conv5 1.01% 22.91% 47.48% 28.60%

Key Requirements

The following principles are taken into consideration throughout the design for
high performance and low energy consumption.

• Scalability: The accelerator needs to scale well in terms of area and cost for
being able to be integrated into various hardware accelerators. This also
requires using computational and memory resources efficiently.

• Flexibility: The accelerator should be able to support different image sizes
or activation maps.

• Efficiency: The accelerator should focus on utilizing all resources effectively.

Hardware Accelerator Design

Based on the percentages given in Table 3.1, the most time-consuming blocks
are similarity detection and matrix multiplication. Since many existing accel-
erators already have efficient matrix multiplication stages, we focus on leverage
similarity detection. This way, we aim to increase performance and decrease the
energy consumption of existing accelerators by integrating this engine.

Our design has several parameters in order to configure it for different kinds of
accelerators, ranging from CPUs to GPUs and TPUs, aligning well with the first

9



principle, scalability. In addition, our accelerator adapts fast to differences in
layers and network parameters meeting the second principle, flexibility. Further-
more, it utilizes all available resources efficiently by executing different neuron
vectors in parallel. Besides, it has customized SRAMs to keep generated cluster
centroids and keys efficiently, thereby, achieving efficiency.
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Chapter 4

Basic Design of General Reuse

Discovery Engine

This work tries to reduce the performance bottleneck in neuron vector similarity
identification with a hardware-software co-design approach. More specifically, we
focus on accelerating the convolution layers through a hardware accelerator and
a similarity detection method. This chapter starts with an explanation of the
details of the operations involved in similarity detection and then describes the
base architecture of the accelerator.

4.1 Similarity Detection Process

This section describes the design details of the similarity detection process re-
quired to perform convolution operation.

Similarity discovery can be applied to the entire input matrix or to smaller
input submatrices. As specified in [13], the clustering scope determines which of
the two options is more effective. When clustering is performed within a single

11



Figure 4.1: Illustration of our accelerator in a similarity detection module.

input matrix, namely for a small scope, whole-vector clustering is better than sub-
vector clustering. However, when clustering is performed across batches, namely
for a large scope, sub-vector clustering generally beats the other. In addition,
when we look at it from the hardware perspective, using sub-vector clustering
enables us to operate in parallel via a multi-accelerator architecture. There-
fore, in this work, we choose sub-vector clustering as the granularity. Besides,
it is important to note that one more step is required to get overall convolution
output in sub-vector clustering: partial sum accumulation after centroid matrix
multiplication.

For similarity detection, it is necessary to choose a clustering method that
is hardware-friendly and does not degrade the original accuracy of the network.
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In literature, there are different types of clustering methods to find similar neu-
ron vectors. Three clustering algorithms including K-means, Hyper-Cube, and
Locality-Sensitive Hashing (LSH) are explored in [13] for similarity detection.
According to this study, although the Hyper-Cube algorithm is fast and efficient,
it fails for large neuron vectors. Another clustering algorithm K-means gives good
clustering results; however, its clustering overhead is larger than the original ma-
trix multiplication, thus making it impractical. An alternative to these methods,
LSH based similarity detection, offers both high accuracy and low computation
overhead. Therefore, we choose LSH as the clustering method for discovering
similarities among neuron vectors.

LSH algorithm mainly performs the dot product between each neuron vector
and randomly filled hashing vectors in order to extract similarities [20, 16, 21, 22,
15]. For a given H hashing vector, each neuron vector goes into H dot products,
resulting in H vectors. When sign bits of all H vectors are concatenated, a cluster
key is obtained. After this operation, generated cluster keys with original neuron
vectors are used to calculate cluster centroids. More specifically, the arithmetic
mean of all neuron vectors in the same cluster represents the centroid for that
cluster.

The whole similarity detection process is illustrated in Figure 4.1. For an input
matrix of size NxM and for sub-vector size L, we have S = M/L subvectors.
Each sub-vector goes into the LSH unit and centroid calculation unit, generating
cluster centroids and keys.

In this section, we represented a generic framework for similarity detection.
We will explain how we implement LSH based similarity detection in hardware
in the following section.
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4.2 Base Architecture

In this section, we propose a base architecture whose main objective is to find the
similarities among neuron vectors. This architecture includes three modules as
reduction unit (RU), load-store-execute unit (LSEU), and controller. The overall
architectural block diagram is given in Figure 4.2.

Figure 4.2: Base reuse-centric accelerator architecture.

The host starts the execution by interacting with the controller inside the ac-
celerator. Then, the controller issues signal required to control overall data flow
between host, execution units (RU and LSEU), and memory interface (SRAM).
After the accelerator is configured by the host for the convolutional layer’s spe-
cific parameters, vectors start streaming into the reduction unit for dot product
calculation of the LSH algorithm. At the end of this stage, cluster keys are gen-
erated and fed to LSEU for updating the cluster centroid. The details of each
block are described in the following subsections.

14



4.2.1 Reduction Unit (RU)

This module mainly computes the dot product of neuron vectors with hash tables
and generates the cluster key. Dot product operation involves a series of multi-
plication and addition. Therefore, adders and multipliers are placed and routed
based on a tree-shaped architecture in a nonblocking pipelined fashion. First,
fetched neuron vectors from SRAM goes into multiplication with hash tables.
Then, the results of multiplications are fed to the reduction tree, generating dot
product results. At the end of this stage, cluster keys are generated using the
sign of the dot product result as described in Section 4.1.

Furthermore, it can be reconfigured online by the controller to support the
execution of different kinds of layers and networks. Simply, idle adders and
multipliers are disabled during the execution.

4.2.2 Load-Store-Execute Unit (LSEU)

This unit calculates and updates the cluster centroid for newly generated neuron
vectors. Generated cluster keys from the reduction unit are used to load the
latest centroid value from memory. Using the latest centroid information and
new neuron vector, it performs operations required to get the arithmetic average
of all neuron vectors inside the cluster. Then, generated new cluster centroid
is written back to the memory. In addition, each neuron vector’s cluster key is
stored in memory to be used later by the centroid matrix multiplication module.

In this implementation, we use SRAM as the storage element. There are three
different sized SRAMs in this unit. First, Cluster Centroid SRAM keeps the up-
to-date centroid information for each valid cluster. Second, ID SRAM keeps the
cluster key of each neuron vector. Third, valid clusters are kept in Valid SRAM.
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4.2.3 Controller

The controller unit serves as the communication interface of the accelerator with
the outside world. The host can access and configure the accelerator through
this interface. In addition, the functional accuracy of the operation performed is
guaranteed by this module. For example, when there are multiple neuron vectors
with the same cluster key along the pipeline, the controller can stall the pipeline
or forward the up-to-date centroid to ensure correctness.

In our design, the controller has a register space for the host to read and write.
This way, the host can start the execution, set the network and layer-related
parameters, read the cluster centroids and key information for each neuron vector
processed and send them to the centroid matrix multiplication module in order
to complete the convolution operation. Due to its simple read-write interface, it
can be integrated into any host interface easily.

4.3 Limitations

Limitations in the base architecture are twofold, namely computation and mem-
ory.

Different convolutional layers have different properties in terms of neuron vec-
tor size and hash size. Therefore, our accelerator must support the online reconfig-
uration of the network-related parameters. Current base architecture implemen-
tation suffers from efficient use of hardware resources during this reconfiguration.
For example, the reduction unit can process only one neuron vector at a time.
Depending on the neuron vector size setting, some computational units may stay
idle during the execution. On the other hand, for small-sized neuron vectors, it is
possible to calculate the dot product of more than one neuron vector in one cy-
cle. This way, resources are utilized more efficiently and performance is increased
greatly by parallel processing of neuron vectors, following the second and third
key requirement described in Chapter 3, flexibility and efficiency, respectively.
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For this purpose, a fetch unit can be added to the design, as will be described in
Chapter 5. Besides, the reduction unit will be improved by adding the parallel
processing capability of different neuron vectors.

Memory is also a critical component in terms of performance and energy. As
memory size gets larger, access time becomes longer, and energy consumption in-
creases. Therefore, performance and energy requirements put a limit on the max-
imum memory size supported. Furthermore, even implementing a large memory
may not be possible because of technological limitations. Since we are limited in
terms of memory size, we need to use it efficiently. However, in this base archi-
tecture implementation, the memory may not be utilized due to different neuron
vector sizes and layer configurations. For example, a layer with a large hash size
and a small neuron vector size requires a memory that has big address width and
small data width. On the other hand, another layer may just have the opposite.
Thus, it is necessary to use available memory effectively for any kind of network,
meeting the second and third principles described in Chapter 3, flexibility and
efficiency, respectively. As a result, we focus on efficient use of memory in the
advanced architecture by designing a special dispatch unit and load-store-execute
unit.
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Chapter 5

Advanced Accelerator Design
As discussed earlier, base architecture does not have the dynamic reconfiguration
feature and is not able to process and store different neuron vectors in parallel;
thus limiting the performance and energy. By designing a special fetch unit, re-
duction unit, dispatch unit, custom static random access memories (SRAM), and
content-addressable memories (CAM) with banked memory support, we aim to
overcome those limitations. High-level block diagram of our advanced architec-
ture is given in Figure 5.1. In the rest of this chapter, we will explain each unit
in detail.

As can be seen from this figure, the overall design consists of several stages.
In the first stage, the fetch unit brings in data from SRAM and processes it to
create neuron vectors for the given layer. Then, it checks sparsity for each neuron
vector and removes the ones with a zero value, which saves energy and resources
greatly. Besides, the neuron vector is saved into a CAM to prevent unnecessary
data flow along the pipeline. Afterward, neuron vectors are fed into a reduction
tree, performing dot product operation and generating cluster keys. In the next
step, the bank number is determined for ready keys and they are dispatched to
the load-store-execute unit (LSEU). This unit fetches a previously-stored neuron
vector from CAM and updates the centroid for the generated cluster key. Finally,
it stores cluster key information for each identity and it serves the host for centroid
matrix multiplication and full result derivation stage mentioned in Chapter 3.
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Figure 5.1: Advanced accelerator design with fetch unit, reduction unit, dispatch
unit, load-store-execute unit, and neuron vector table.

5.1 Fetch Unit (FU)

The fetch module consists of four submodules, namely, identity generator, sparsity
controller, cam allocator, and fetch target queue, connected in a pipelined fashion.

The first submodule, identity generator, processes the raw data for various
vector sizes and SRAM row width settings. This flexibility brings us two oppor-
tunities: 1) compatibility with any image size or layer size 2) ease of integration
into any existing accelerator. In addition, it is also capable of processing more
than one neuron vector in a single cycle. This way, it is possible to achieve parallel
processing and storage, thereby, increasing performance greatly.

The output of the identity pattern generator is fed into the sparsity controller.
This sub-module detects and removes zeros from each neuron vector since there
is no need to perform a reduction operation. This way, energy is greatly saved
for large sparse image and activation matrices.
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After sparsity check, a new entry is allocated at the neuron vector table for each
newly generated identity by the CAM allocator sub-module. Neuron vectors are
stored in CAM for later use by the load-store-execute unit. Here, it is important
to note that only one entry should be allocated for each identity. In our design,
it satisfies this condition for any vector size.

Figure 5.2: An example fetch unit execution.

An example fetch unit execution is given in Figure 5.2. First, identity assign-
ment for a neuron vector size of five is performed by an identity generator. Then,
the sparsity controller eliminates zero values from the vector. The resulting CAM
key information together with identity and neuron vector is written to the fetch
target queue. When fetch target queue is full, fetch is stalled until stall condition
is resolved.
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5.2 Neuron Vector Table (NVT)

This module is composed of a content addressable memory (CAM) and two aux-
iliary components for allocation and deallocation, as shown in Figure 5.3. Each
row in CAM represents a neuron vector.

Figure 5.3: Banked content addressable memory and neuron vector allocation.

When a new identity is generated by the fetch module, a key is allocated and
the neuron vector is stored at that location. In order to process different neuron
vectors in the same cycle, allocation logic has the ability to allocate multiple
keys. In addition, depending on the vector dimension for a given network and
fetch size, all neuron vectors might not be available in a single cycle. In such
cases, this logic is able to append the remaining data of a neuron vector to the
previously allocated key.

When the load-store-execute unit requests a neuron vector from the table, data
corresponding to the key is sent and the whole entry is deleted by deallocation
logic. The banked memory system in the load-store-execute unit imposes mul-
tiple key release requirements on deallocation logic in order to perform parallel
processing and storage. For M banks, our deallocation logic is capable of freeing
M keys during the same cycle.
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5.3 Reduction Unit (RU)

The reduction unit performs dot product between neuron vectors and previously-
stored hash tables. It is composed of four modules, namely, dispatch, execute,
collector, and index, as shown in Figure 5.4.

In the first step, the dispatch unit sends neuron vectors retrieved from the
fetch target queue to execution units according to the given hash size setting.
When there is no available execute unit, fetch dequeue is put on hold.

The execution unit is at the heart of this accelerator design as it significantly
determines performance and runtime. For high performance, it is most critical to
perform multiple dot product operations in the same cycle with using resources
efficiently. Among many reduction trees, SIGMA’s forwarding adder network
(FAN) [23] is used because of its ability to process different identities in the same
cycle with the highest throughput possible. In this micro-architecture, shown
in Figure 5.5, there exists a tree-based reduction network. It provides parallel
processing by means of forwarding adders. At each stage, inputs of an adder are
determined by two multiplexers. Control bits of these multiplexers are selected
by identities of neuron vectors. The algorithm used to determine control bits of
multiplexers is given in [23].

Because of the irregular data fetch and various vector size settings, a neuron
vector may need to be split and processed in different cycles. Collector, next sub-
module, checks if the dot product is completely finished for each identity. When
the operation is in progress, results from the previous cycle are cumulatively
stored in registers inside this module.

After the collector completes its task, the dot product result is sent to the
index module. This unit implements hashing function described in Section 4.1.
In other words, the cluster key is computed by this module. Then, the cluster
key along with the identity and CAM key information is stored in a queue.
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Figure 5.4: Details of the reduction unit with four modules, namely dispatch,
execute, collector, and index.
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Internal architecture for a forwarding adder network with sixteen multipliers
and fifteen adders and an example execution scenario for the whole stage is given
in Figure 5.5. First, fetched neuron vectors with identity and destination in-
formation are dispatched into forwarding adder networks according to the hash
size setting. Then, multiplication operation is performed between hash tables
and neuron networks. After multiplication, depending on the identity, data is
forwarded to adders across stages to fulfill correct dot product operation. When
a neuron vector is reached to its predetermined destination, results are accumu-
lated for a neuron vector by the collector sub-module. Finally, the index module
generates the cluster key using dot product results and stores it in a queue.

Figure 5.5: Forwarding adder network topology with collector and index modules.
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5.4 Dispatch Unit (DU)

The dispatch unit includes two auxiliary sub-modules as bank assignment unit
and compactor, which will be explained in the following paragraphs.

As shown in Figure 5.6, at the end of the reduction unit, cluster keys are
generated and written to the collector queues. This module gets all generated
keys from the queues and assigns a bank for each valid key according to a specific
algorithm. For example, the algorithm can select an available bank according
to the most significant bits of the keys. Here, it is important to note that the
algorithm should produce a uniform distribution of bank numbers to maximize
parallel memory access and minimize stalls along the pipeline. In our design, for
M banks, the bank assignment sub-module performs selection according to the
least significant log2M bits of the cluster keys. This way we could get a uniform
distribution of banks.

Figure 5.6: Example execution scenario for the dispatch unit with N collectors
and M banks.
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In some cases, it is possible to have more keys fetched from the reduction unit
than available banks in the load-store-execute unit. Besides, it is also possible that
more than one key could be assigned to the same bank. Therefore, it is necessary
to perform selection among such conflicts. In our design, the compactor sub-
module connects the first k of n valid cluster keys to k available banks, thereby,
avoiding possible conflicts.

5.5 Load-Store-Execute Unit (LSEU)

This unit is designed to perform centroid calculation and storage. It contains
four submodules, namely, bank request buffer, memory units, centroid execution
unit, and controller, as shown in Figure 5.7.

Figure 5.7: The load-store-execute unit (LSEU) is composed of cluster memories,
ID-Key memory, and centroid execution unit
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During the first stage of this module, dispatched keys along with identity
information are enqueued to their predetermined bank request buffers. At the
same time, the neuron vector is read from the table using the associated key.

In the next step, previous centroid information and cluster size are read from
the cluster centroid memory and the cluster size memory, respectively. In addi-
tion, metadata is read to check if cluster has been formed before. These three
memories are necessary to update the cluster centroid correctly. Besides, cluster
key information is written into identity memory for later use by the full result
derivation stage mentioned in Chapter 3.

In the third stage, the centroid execution unit updates cluster centroid using
data from previous cycles and metadata. This operation has to be performed
atomically. Specifically, read, modify, and write operations must be in the same
cycle. However, due to limitations in memory technology, each read operation
takes at least one cycle. As such, we guarantee atomicity by forwarding updated
centroids across pipeline stages, thereby, maintaining functional correctness.

In order to use memory efficiently, we use customized SRAMs for cluster cen-
troid, cluster size, and identity-key memories. Specifically, they have the ability
to mask data to be written in byte granularity. In addition, special mask gen-
eration circuitry for read and write operations in front of the SRAMs helps to
provide compatibility with any kind of convolutional neural networks through
reconfiguration. Furthermore, banked access to all SRAMs allows parallel exe-
cution. All these features are critical in order to get high performance, energy
efficiency, and resource utilization.
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5.6 Controller

The controller unit enables the host to modify the network-related parameters
such as hash size, vector dimension, and start address of SRAM for each layer of
a network. All modules must work in coordination with the controller to achieve
dynamic reconfiguration. For example, fetch unit, reduction unit, load-store-
execute unit, and CAM have the capability of handling the neuron vectors for
different vector and hash sizes. For compatibility with any kind of convolutional
neural network, it is critical to achieve this online reconfiguration. Besides com-
patibility, online reconfiguration also provides resource efficiency and speedup by
parallel processing of neuron vectors.

5.7 Discussion

In this section, we give a discussion of ways to further improving the architecture
to get additional performance and energy efficiency. For this purpose, we propose
and explain two methods: 1) folding support in the fetch unit and 2) unfolding
engine.

5.7.1 Folding Support in Fetch Unit

After zero removal inside the fetch unit by the sparsity controller, non-zero data
may leave more than half of the rows empty. By means of a new submodule to be
added, it can be first checked whether the processed non-zero vector received from
the sparsity controller is foldable. If possible, it is folded and stored in a queue.
Folding provides efficient use of resources, thereby increasing performance.
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Figure 5.8: Fetch unit supporting fold operation.

As can be seen in the example given in Figure 5.8, the fetched row has seven
non-zero and nine zero values. Thus, it can be duplicated and written to the
fetch target queue together with the folding information. This information is
used by the reduction unit and enables the reduction unit to generate cluster
keys with half the number of execution sub-modules. However, it is important to
note that the current reduction tree [23] is not able to handle duplicate identities.
Therefore, it has to be modified respectively.
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5.7.2 Unfolding Engine

As described in Chapter 3, the host performs an unfolding operation to implement
convolution as a matrix multiplication. Since this operation requires negligible
memory and computation, it can be easily integrated into the pipeline. This way
it is possible to access the input more efficiently, saving energy and increasing
performance.

Figure 5.9: Advanced architecture supporting on the fly unfolding operation.

The architectural block diagram and an example unfolding operation are given
in Figure 5.9. As can be seen from this figure, the unfolding module sits in between
the SRAM and fetch unit. In this figure, the highlighted region on the matrix
represents a convolution with the unfolded vector on the right. The reused data
on the right-hand side shows the potential in terms of efficiency.
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5.8 Synergy with Other CNN Accelerators

This section explains how the general reuse discovery engine can be integrated
into an existing hardware accelerator. An example integration into Eyeriss [2] is
given in Figure 5.10.

Figure 5.10: Top level architecture for the integration of the reuse-centric accel-
erator into Eyeriss [2].

Hardware accelerators generally contain a global buffer to keep input activa-
tions, and results [2, 24, 17, 23]. Our accelerator can be placed in front of this
global buffer to act as a preprocessor. This way, the size of the input layer can
be reduced by extracting similarities. Then, a reduced centroid matrix is fed into
processing engines to calculate the layer output. Finally, the full result is derived
by reading local ID-Key memory inside our accelerator, and it is stored in the
global buffer for processing in the next layer.
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Eyeriss architecture [2] has a 2D mesh network consisting of global clusters,
PE clusters, and router clusters. In this Eyeriss integration, our accelerator is
connected to router cluster in order to fetch raw layer inputs from global cluster
and send centroid matrix to PE cluster as shown in Figure 5.10. It is important
to note that the scalability of the design enables us to fit the accelerator into any
existing framework.
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Chapter 6

Evaluation

To evaluate the proposed accelerator’s efficiency, we test the benefits that it may
bring to it with both software-based CNN accelerations and other CNN hardware
accelerators. Energy efficiency and the speedup are used as a metric to represent
an improvement.

6.1 Experimental Setup

This section describes the tools, benchmarks, data sets, default parameters, and
execution environments used to evaluate our accelerator.

6.1.1 Tools

We design the accelerator described in Chapter 5 using Chisel[25] hardware con-
struction language. Then, we measure performance by running generated RTL
from Chisel on a cycle-accurate simulator called Verilator [26]. After that, we
synthesize and implement our accelerator using Xilinx’s Vivado [27] tool for
VCU118 [28] evaluation board to obtain the average energy consumption and
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resource utilization. Furthermore, to show potential benefits from integration,
we use Scale-Sim [29, 30] tool. We measure the speedup when our accelerator is
integrated into Eyeriss [24].

6.1.2 Benchmarks

We use four convolutional neural networks to evaluate our accelerator, namely,
CifarNet [31], AlexNet [32], VGG-19 [33], and MobileNet [34]. Table 6.1 lists
datasets running on described networks.

Table 6.1: Convolutional network and dataset pairs used in evaluation.
Network Dataset

CifarNet Cifar10
AlexNet Imagenet
VGG-19 Imagenet
MobileNet Imagenet

6.1.3 Data Sets

We use Cifar10 [31] and Imagenet [35] as our datasets for collecting the exper-
imental results. Cifar10 has 60000 images with a size of 32x32, whereas the
Imagenet dataset has more than 14 million images with a size of 224x224.

6.1.4 Default Parameters

The default architecture related parameters for our advanced accelerator are given
in Table 6.2. These optimal architectural parameters are selected for the default
setup considering performance, energy, and area.

The default CNN layer related parameters for each benchmark is given in
Table 6.3. Note that, it is necessary to adjust the hash size and vector size online
for each layer without compromising accuracy.
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Table 6.2: Default parameters used for the advanced architecture.
Parameter Value

Data precision 8-bits
SRAM row width 128-bits
Fetch target queue depth 8
FAN size 16
Number of FANs 16
FAN/Bank request queue depth 8
Cluster memory size 24 MB
ID memory size 2.5 MB
Count memory size 2.5 MB
Valid memory size 1 MB
Maximum hash size 20
Maximum vector dimension 24
Number of Banks 4
CAM lines 64

6.1.5 Execution Environments

We tested the reuse-based implementation in four different execution environ-
ments as listed below.

1. CPU: Software-based implementation running on a mobile CPU. This is
used as a baseline for our experimental evaluations.

2. Basic Accelerator: Our basic reuse-centric architecture as explained in
Chapter 4.

3. Advanced Accelerator: Our advanced accelerator architecture as ex-
plained in Chapter 5.

4. Eyeriss + Advanced Accelerator: This is the setup where our accelera-
tor is integrated into an existing state-of-the-art accelerator, Eyeriss [24], in
order to observe potential benefits in runtime. We use SCALE-sim [29, 30],
a CNN accelerator simulator, to measure the performance.
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Table 6.3: Algorithm specific parameters used for the benchmarks.
Network Layer

Number
Batch
Size

Input
Vectors

Vector
Size

Hash
Size

Sub-
vector

CIFARNET conv1 100 1024 5 15 15
CIFARNET conv2 100 256 10 10 160
ALEXNET conv1 100 2916 11 16 33
ALEXNET conv2 100 676 20 15 80
ALEXNET conv3 100 144 12 15 144
ALEXNET conv4 100 144 12 15 288
ALEXNET conv5 100 144 24 15 144
VGG-19 conv1 16 50176 9 20 3
VGG-19 conv2 16 50176 16 20 36
VGG-19 conv3 16 12544 16 18 36
VGG-19 conv4 16 12544 16 18 72
VGG-19 conv5 16 3136 16 16 72
VGG-19 conv6 16 3136 16 16 144
VGG-19 conv7 16 3136 16 16 144
VGG-19 conv8 16 3136 16 16 144
VGG-19 conv9 16 784 16 15 144
VGG-19 conv10 16 784 18 15 256
VGG-19 conv11 16 784 18 15 256
VGG-19 conv12 16 784 18 15 256
VGG-19 conv13 16 196 18 12 256
VGG-19 conv14 16 196 18 12 256
VGG-19 conv15 16 196 18 12 256
VGG-19 conv16 16 196 18 12 256
MOBILENET conv1 4 12544 18 3 9
MOBILENET conv3 4 12544 18 4 8
MOBILENET conv5 4 3136 18 4 16
MOBILENET conv7 4 3136 18 8 16
MOBILENET conv9 4 784 10 8 16
MOBILENET conv11 4 784 10 8 32
MOBILENET conv13 4 196 10 8 32
MOBILENET conv15 4 196 10 8 64
MOBILENET conv17 4 196 10 8 64
MOBILENET conv19 4 196 10 8 64
MOBILENET conv21 4 196 8 8 64
MOBILENET conv23 4 196 8 8 64
MOBILENET conv25 4 49 8 8 64
MOBILENET conv27 4 49 8 16 64
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6.2 Performance and Synergy with Existing

Accelerators

Previous studies [13] have shown that the effect of reuse-centric CNN acceleration
on the original accuracy of the network is minimal, generally much less than 1%.
Therefore, this section will focus on performance evaluation for all execution
environments.

Figure 6.1: Average performance improvement over mobile CPU obtained through
basic and advanced design for the similarity discovery module.

The first set of results highlight that our proposed basic and advanced acceler-
ator implementations offer great speedups, as shown in Figure 6.1. For CifarNet,
advanced design performs almost two times better than basic design while they
are close to one another for AlexNet and VGG-19. The reason behind this is
related to the setting for the number of FANs parameter described in Table 6.2.
As shown in Table 6.3, VGG-19 has hash sizes greater than 16 for the first four
layers. Thus, it can process a single neuron vector in two cycles for the current
setting, resulting in similar performance results for the advanced and basic de-
signs. Similar to VGG-19, AlexNet has vector sizes between 10 and 24 as given in
Table 6.3, which means that fetching a single neuron vector requires at least one
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cycle. On the other hand, for CifarNet and MobileNet, our advanced accelerator
can process more than one neuron vector in the same cycle, resulting in much
larger speedups than basic design.

Second, we analyzed speedups of convolutional layers for the CPU+accelerator
platform as reported in Figure 6.2. In this setup, similarity detection is performed
on our advanced accelerator, while centroid multiplication and full result deriva-
tion are performed on the CPU. As can be observed from the figure, the per-
formance improvement is ranging between 1.46X and 3.63X. However, full result
derivation and centroid multiplication still create a bottleneck.

Figure 6.2: Performance improvement of reuse-centric implementations on CPU
and with the proposed accelerator. The baseline is the default convolution per-
formed on a mobile CPU.

We further integrate our accelerator into Eyeriss to illustrate the benefits
brought by our accelerator to the existing state-of-the-art hardware accelerator.
We use SCALE-sim to simulate the performance of Eyeriss, and the execution
cycles of running the entire convolutional layer on Eyeriss is used as the baseline.
As an integrated unit, we implement the reuse centric CNN acceleration with
a combination of Eyeriss and our accelerator. The similarity discovery module
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is implemented on our accelerator while Eyeriss processes the centroid matrix-
multiplication and full-result derivation. Figure 6.3 illustrates the performance
comparison between the baseline and the integrated unit. The results show that
our proposed accelerator provides up to 7.69X speedups and very promising av-
erage speedups for all of the benchmarks, largely boosting the performance.

Figure 6.3: The performance improvement brought to Eyeriss by our reuse-centric
accelerator.
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6.3 Energy Reduction

We perform synthesis using Xilinx’s Vivado tool [27] to measure the power con-
sumption of the advanced design on VCU118 [28] FPGA development board. We
compare our accelerator’s energy consumption with the software-based implemen-
tation running on CPU as shown in Figure 6.4. Specifically, this figure presents
the energy efficiency over mobile CPU for the similarity discovery module. As
can be seen from these results, our accelerator reduces the energy consumption
up to 95.46%.

Figure 6.4: Energy reduction over mobile CPU through advanced design.

6.4 Area Breakdown and Resource Utilization

Cluster memory size is too large to be implemented in an FPGA synthesis for the
given parameters in Table 6.2. Therefore, we choose smaller sizes for SRAMs and
perform technological mapping of our design to FPGA’s logic resources through
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synthesis. After synthesis, the area breakdown of the modules in advanced archi-
tecture based on the lookup tables (LUTs) and registers is given in Figure 6.5. As
can be seen from this figure, the resources are largely occupied by the reduction
unit’s execution module, which consists of a set of forwarding adder networks
(FANs). We give specific details about the resources used by each module in
Table 6.4.

Figure 6.5: Area breakdown of the modules in the advanced architecture based
on the lookup tables (LUTs) and registers.

Table 6.4: Resources used by each module of the advanced design implemented
on VCU118 board.

Module CLB LUTs CLB Registers Carry8 F7 MUXs Block RAM Tile

LSEU 15,064 1,752 1,352 0 68
FU 31,277 446 1,807 20 0
RU 84,038 86,255 2,080 1 0
DU 1,425 0 0 0 0
NVT 14,976 1,551 0 1,536 0
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6.5 Discussion

In the load-store-execute unit, updated centroids are written to the cluster cen-
troid memory based on the generated key information. The number of unique
keys determines the number of centroids, namely the centroid memory’s actual
size. On the other hand, we set a theoretical size for centroid memory to include
all possible keys. When the number of centroids for the aforementioned bench-
marks given in Table 6.5 are considered, one can observe that there is a huge
difference between the theoretical size and the actual size of the cluster centroid
memory. With this observation, we opt to use a much smaller memory together
with a special hashing function to minimize collisions.
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Table 6.5: Comparison of theoretical size with actual size for cluster memory.
Network Layer Theoretical

Size (MB)
Actual Size
(KB)

Difference

CIFARNET conv1 0.16384 6.144 27.31
CIFARNET conv2 0.01024 0.3072 34.13
ALEXNET conv1 0.720896 96.228 7.67
ALEXNET conv2 0.65536 47.32 14.18
ALEXNET conv3 0.393216 12.2688 32.82
ALEXNET conv4 0.393216 12.096 33.29
ALEXNET conv5 0.786432 59.0976 13.63
VGG-19 conv1 9.437184 187.858944 51.44
VGG-19 conv2 16.777216 206.8054016 83.07
VGG-19 conv3 4.194304 79.9604736 53.71
VGG-19 conv4 4.194304 104.6872064 41.03
VGG-19 conv5 1.048576 59.9703552 17.90
VGG-19 conv6 1.048576 51.2999424 20.93
VGG-19 conv7 1.048576 47.2055808 22.75
VGG-19 conv8 1.048576 33.4774272 32.07
VGG-19 conv9 0.524288 20.672512 25.97
VGG-19 conv10 0.589824 27.320832 22.11
VGG-19 conv11 0.589824 28.449792 21.23
VGG-19 conv12 0.589824 30.256128 19.96
VGG-19 conv13 0.073728 10.44288 7.23
VGG-19 conv14 0.073728 9.03168 8.36
VGG-19 conv15 0.073728 7.733376 9.76
VGG-19 conv16 0.073728 7.056 10.70
MOBILENET conv1 0.786432 0.75264 1069.98
MOBILENET conv3 1.048576 0.0802816 13374.69
MOBILENET conv5 1.048576 0.2709504 3962.87
MOBILENET conv7 2.097152 4.6362624 463.19
MOBILENET conv9 0.008192 0.4164608 20.14
MOBILENET conv11 0.008192 0.777728 10.79
MOBILENET conv13 0.008192 0.392 21.40
MOBILENET conv15 0.008192 0.5375104 15.61
MOBILENET conv17 0.008192 0.4785536 17.53
MOBILENET conv19 0.008192 0.410816 20.42
MOBILENET conv21 0.002048 0.2546432 8.24
MOBILENET conv23 0.002048 0.254016 8.26
MOBILENET conv25 0.002048 0.105056 19.96
MOBILENET conv27 0.004096 0.404544 10.37
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Chapter 7

Related Work

Studies seeking opportunities to maximize performance and to minimize energy
consumption can be grouped into two main categories as improvements in hard-
ware architectures and joint hardware/software designs.

From the architectural perspective, there are four kinds of architecture exploit-
ing different data reuse characteristics: no local reuse, weight stationary, output
stationary, and row stationary [19]. First, no local reuse (NLR) type architec-
tures do not store input, output, and filter data locally inside a processing engine;
instead, they use large global buffers to handle dataflow. An example architec-
ture in this approach is DaDianNao in [36], which uses a large on-chip memory
(eDRAM) to buffer input, output, and weights instead of off-chip memory access
which is highly costly. In weight stationary dataflow, filter weights are generally
stored near processing engines to decrease their access cost. Input feature maps
are mapped to all PEs such that stored weights’ utilization is maximized. An
example of this architecture is nn-X [37], which caches the incoming weights to
use during the convolution operation. Similarly, filter weights of CNN accelera-
tors in [38] and [39] are kept in registers of their PEs to perform the convolution.
Partial sums can also be stored inside local register files, resulting in another ar-
chitecture type called output stationary. According to the mapping to PEs, there
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can be different types of dataflows targeting a different number of output chan-
nels and activations. For instance, in ShiDianNao [40], computation is brought
near to the sensor to eliminate the large bandwidth requirement due to DRAM
and each PE provides an output activation by storing partial sums in a register,
targeting calculations of all output activations for a single channel. The latest
approach, proposed in [19] called row stationary (RS), suggests maximum reuse
of all types of data, namely input feature maps, filter weights, and partial sums
inside a processing engine. Eyeriss [24] is a DNN accelerator that is implemented
in ASIC and exploits this approach. In this architecture, an input row, a filter
row, and partial sum stay stationary inside local register files so that 1D convolu-
tion can be performed in a single PE. Our accelerator provides additional benefits
for different kind of data reuse characteristics when integrated into an existing
accelerator.

From the hardware/software co-design perspective, one can take advantage of
algorithmic properties to design simpler hardware besides improving performance
and energy efficiency. This can be primarily done by reducing precision or reduc-
ing computation size without sacrificing accuracy [41]. Methods for reducing pre-
cision can be implemented by quantizing data either uniformly or non-uniformly,
i.e., it is possible to use equal or different intervals between the quantization lev-
els. Firstly, uniform quantization can be used to convert 32-bit floating-point
data to an 8-bit dynamically fixed point [42] while maintaining accuracy. An
example accelerator using 8-bit integer arithmetic is Google’s Tensor Processing
Unit [43]. Precision can be reduced to only one or two bits as implemented in
YodaNN [44] and in XNOR-Net [45]. These hardware accelerators, also called
binary networks, offer extremely low-cost hardware along with some accuracy
degradation. As for the reduced computation size, the sparsity, resulting from
ReLU result in output feature map, can be used for saving energy and reducing
implementation cost of a DNN hardware. Using compression on the sparse ma-
trix and skipping zero-valued features in calculations can provide great energy
efficiency [24]. Besides our accelerator working with 8-bit data and supporting
sparsity check, determining clustering parameters with no loss in accuracy and
for efficient inference sets a good example of hardware/software co-design.
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There are also recent works on hardware accelerators leveraging computation
reuse. For example, Riera et al. [10] investigate similarities between consecutive
frames. Specifically, they miss the similarities across frames at different layers or
batches. The study by Buckler et. al. [46] proposes an algorithm for efficient pro-
cessing of real time vision. This algorithm estimates motion in the input frame
to predict the next frame. Another work by Hedge et al. [11] improves perfor-
mance and saves energy by reusing weights in and across filters. They propose a
computation reuse scheme based on weight repetition and reducing CNN model
size. As a result, [10] and [46] only makes use of temporal reuse opportunities
while [11] suggests spatial reuse to reduce computation and memory reads. On
the other hand, our general reuse-centric CNN accelerator take advantage of both
temporal and spatial reuse for better performance and energy.
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Chapter 8

Conclusion

In this thesis, we propose an architecture that reuses similar neuron vectors in
order to boost the performance of CNN executions. Our accelerator design is
flexible, scalable, and resource-efficient to enable integration into any existing
accelerator and to speedup CNN inference. We measured its performance through
four CNNs and integrated it into Eyeriss [24]. Specifically, it provides speedups
up to 7.75X for a convolutional layer. Furthermore, we also integrated into a
software-based implementation of general reuse-centric CNN acceleration. We
observe up to 3.63X faster execution in a convolutional layer and we save energy
up to 95.46% in similarity detection for the same CNN.
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