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ABSTRACT

TOWARDS A TAXONOMY OF CODE REVIEW
SMELLS

Emre Doğan

M.S. in Computer Engineering

Advisor: Eray Tüzün

Co-Advisor: Halil Altay Güvenir

September 2020

Code review is a crucial step of the software development life cycle in order to

detect possible problems in source code before merging the changeset to the code-

base. Although there is no consensus on a formally defined life cycle of the code

review process, many companies and open source software (OSS) communities

converge on common rules and best practices. In spite of minor differences in

different platforms, the primary purpose of all these rules and practices is to lead

a faster and more effective code review process. Non-conformance of developers

to this process does not only hinder the advantages of the code review but can

also negatively affect the other steps of the software development life cycle.

The aim of this study is to provide an empirical understanding of the bad

practices followed in the code review process, that are code review (CR) smells.

To this end, we first conduct a multivocal literature review in order to gather

code review bad practices discussed in white and gray literature. Then, we con-

duct a survey with 32 experienced software practitioners and perform follow-up

interviews in order to get their expert opinion. Based on the multivocal literature

review and expert opinion of experienced developers, a taxonomy of code review

smells (lack of code review, review buddies, reviewer-author ping pong, looks good

to me (LGTM) reviews, sleeping reviews, missing context in reviews and large

changesets) is introduced. To quantitatively demonstrate the existence of these

smells, we analyze 283,354 code reviews collected from eight OSS projects. We

observe that a considerable number of code review smells exist in all projects

with varying degree of ratios.

Keywords: modern code review, bad practices, conformance checking, code review

smells.
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ÖZET

KOD GÖZDEN GEÇİRME SÜRECİNDEKİ KÖTÜ
UYGULAMALARIN SINIFLANDIRILMASI

Emre Doğan

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Eray Tüzün

İkinci Tez Danışmanı: Halil Altay Güvenir

Eylül 2020

Kod gözden geçirme, yazılım geliştirme yaşam döngüsünün önemli aşamalarından

birisidir. Bu sürecin temel amacı, kod değişikliğindeki olası hataları kod tabanına

göndermeden önce saptamaktır. Kod gözden geçirme süreci konusunda resmi

bir fikir birliği olmasa da, birçok şirket ve açık kaynak toplulukları bu süreçte

izlenmesi gereken aşamalar ve örnek uygulamalar konusunda birleşmişlerdir. Bu

uygulamaların temel amacı, daha hızlı ve etkili kod gözden geçirme süreçlerine

sahip olmaktır. Yazılım geliştiricilerinin bu örnek uygulamalara uymayışı, kod

gözden geçirme sürecinin avantajlarını ortadan kaldırdığı gibi, yazılım geliştirme

yaşam döngüsünün diğer aşamalarını da olumsuz etkileyebilir.

Bu çalışmanın amacı, yazılım geliştiricilerin kod gözden geçirme sürecindeki

kötü alışkanlıklarını ampirik olarak incelemektir. Bu amaçla, akademik ve gri

literatür taraması yaparak kod gözden geçirme sürecindeki kötü alışkanlıklar bir

araya getirildi. Daha sonra, toplanılan veriler 32 tecrübeli yazılım geliştiricisine

sorularak onaylatıldı ve bunun sonucunda, kod gözden geçirme sürecindeki kötü

alışkanlıkların sınıflandırılması tamamlandı (kod gözden geçirme yoksunluğu, aynı

kişilerin kod gözden geçirmesi, kod gözden geçirme döngüsünün uzaması, özensiz

kod gözden geçirme, uzun süren kod gözden geçirme, içeriği belli olmayan kod

gözden geçirme). Bu alışkanlıkları nicel olarak değerlendirmek için, sekiz açık

kaynak projeden topladığımız 283,354 kod gözden geçirme süreci analiz edildi.

Sonuç olarak, bu kötü alışkanlıkların ciddi miktarlarda açık kaynak projelerde

var olduğu gözlenmiştir.

Anahtar sözcükler : kod gözden geçirme, kötü alışkanlıklar, uygunluk kontrolü,

kod gözden geçirme uygunsuzlukları.
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University Software Engineering and Data Analytics Research Group) members

for their countless feedback through out my research studies. I am also grateful

to my office mates at EA-527. We had some great memories until the pandemic

breakdown.

Last by not least, I would like to express my deepest gratitude to my parents,
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Chapter 1

Introduction

Code review has been a widely accepted and applied best practice in software

development for more than 40 years. The initial expectations from the code re-

view process were only to find defects in code as early as possible and to increase

software quality [1]. Over the years, it has been established that when properly

applied, code review has some other benefits such as increasing the knowledge

transferred within the development team, building team assessment and increas-

ing the shared code ownership [2].

The first known systematic code review process was proposed by Michael Fagan

in 1976 [1]. Fagan introduced the term code inspection to denote the meetings that

developers come together and find defects in the source code before it is merged

to the project codebase. Despite the success of these meetings in earlier days, the

immense increase in the size of development teams and the rising popularity of

distributed software development have raised the necessity of a more lightweight

and flexible code review process, also known as modern code review.
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1.1 Research Problem

Prior work investigates the code review process and its impacts on the code

quality. McIntosh et al. [3] analyze the effect of code review coverage and par-

ticipation on the software quality by mining code review histories of three open

source projects. They find that commits with a low review participation are more

likely to have post-release defects. Thompson and Wagner [4] perform a similar

study on a large dataset consisting of review histories of 3,126 GitHub projects.

They aim to observe the effect of code review coverage and participation on the

software quality and security in terms of issues and security bugs related to the

previously reviewed pull-requests. Their results reveal that a high coverage and

participation rate in the code review process reduces the number of future is-

sues and severity bugs related to the commits reviewed. According to a recent

report [5], 55% of developers are not satisfied with their current code review pro-

cess. Deviation from the best practices does not only hinder the advantages of

the code review but can also negatively affect the other steps of the software

development life cycle as well.

In this study, we investigate the bad practices followed in the code review

process. To denote these bad practices, we use the term code review smell. The

intuition for the term smell comes from the code smell definition of Kent Beck for

the surface indications corresponding to a deeper problem in the source code [6].

Although previous work has referred to some of the problems in the code review

process from different aspects such as lack of participation and review coverage

[3,4], none of them have gathered them with a systematic approach. To the best

of our knowledge, this is the first study to systematically categorize bad practices

in the code review process.

Within our research, we define the following research questions:

RQ1- What are the bad practices followed by developers during the

code review process?

In order to answer this research question, the following steps are followed:

2



1. We conduct a multivocal literature review (MLR) [7] to collect an initial

set of bad practices in the code review process (code review smells). After

analyzing white literature (17 studies published in conference proceedings

and journals) and gray literature (18 sources), an initial set of code review

smells is generated.

2. In order to validate the initial set of smells and gather the feedback of prac-

titioners on these code review smells, we conduct a comprehensive survey

among 32 software practitioners having a wide experience in software de-

velopment and code review. We perform follow-up interviews with three of

the respondents to discuss further about the smell definitions.

3. The survey and interview results lead us to define seven bad practices in

the code review process.

After compiling a list of seven code review smells with respect to the MLR,

survey and interview results, we also explore for quantitative evidence for the

defined smells. This leads us to define the following research question:

RQ2- How frequently does each code review smell occur in practice?

To answer this research question, each code review smell is empirically in-

vestigated by mining code review histories of eight OSS projects (QT, Eclipse,

Wireshark, LibreOffice, GitHub Desktop, Visual Studio Code, Tensorflow and

Django) including 283,354 code review processes.

1.2 Contributions of the Thesis

The main contributions of this thesis are:

• We provide the first taxonomy introduced for the bad practices followed in

the code review process, i.e. code review smells. To validate these smells,

3



we conduct a multivocal literature review and a developer survey among 32

experienced software practitioners.

• To quantitatively illustrate each smell, an empirical analysis is conducted

by mining the code review histories of projects using different code review

tools (Gerrit and GitHub).

The rest of this thesis is organized as follows. In the following chapter, we

present the background information. In Chapter 3, the research methodology

followed in this thesis is described. Chapter 4 illustrates each code review smell

within the taxonomy. Chapter 5 gives the details of the experimental setup and

the empirical evaluation on eight OSS projects. In Chapter 6, the empirical

results are discussed. Chapter 7 addresses validity threats of this study and

finally, Chapter 8 presents our conclusion and future work.
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Chapter 2

Background

2.1 Code Review

Code review is the examination of source code by developers other than the author

in order to maintain software quality. It has been a widely approved and applied

best practice in the software development for a long time. However, the mindset

of code review has changed significantly due to the transformation of software

development methodologies.

First known code reviews were based on the formal inspection methodology

defined by Michael Fagan [1]. This formal and strictly structured review method-

ology was based on inspecting the source code in face-to-face meetings. Although

inspection meetings in those days were very helpful to detect possible software

bugs as early as possible, the lack of adaptation of this approach to fast-paced

Agile methodologies [8] and cost ineffectiveness in terms of time and organiza-

tional resources [9] have led practitioners to come up with a more lightweight and

tool-based code review methodology [8], known as modern code review.

Despite some minor changes in different organizations, a generic code review

process consists of the following steps:
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1. A proper developer is assigned as the author for the implementation of a

development task (either fixing a bug or implementing a new feature).

2. When the developer completes the assigned task, they create a changeset/

pull-request from their commits and start to wait for a developer to review

their changeset.

3. At this stage, one or more proper code reviewers should be assigned for the

pull request. This assignment can be done by a bot, a team leader or even

the authors themselves.

4. Every reviewer assignment does not necessarily end up with a completed

code review. Sometimes, the assigned reviewer might reject the review re-

quest due to availability reasons. At this point, the assigner has to reassign

another developer for the pull request until a reviewer accepts the review

request. The same procedure is followed for each reviewer if there exists

a team/company policy on the multiple number of reviewers for each pull

request.

5. As the code review process starts, the reviewer gives feedback to the author

and requests some code changes if necessary. The author updates their

pull request by applying the changes requested by the reviewer. This loop

continues until the reviewer is satisfied with the pull request.

6. When all code reviewers are satisfied, the pull request becomes ready to be

merged to the project codebase. However, the person responsible for the

merging operation might differ in different development teams.

Figure 2.1 and 2.2 illustrates the activity and state diagrams of the generic

code review process respectively.
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Figure 2.1: Activity Diagram for the Code Review Process.

Figure 2.2: State Diagram for the Code Review Process.

2.2 Process Mining in Software Engineering

Process mining, a combination of data science and business process, is a concept

first introduced by Wil van der Aalst [10]. Due to the recent improvements in

big data applications, process mining has become a promising subfield of business

intelligence and been applied in different domains. It investigates the life cycle of

business processes from different aspects by mining event logs [11]. One important

type of process mining is business process conformance, checking whether there

exists a mismatching between a formally defined process model and real-life event

logs progressing this model [11]. In recent years, many different conformance

checking studies have been proposed on various industries such as healthcare [12]
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and manufacturing [13].

Throughout the years, software engineering community has developed and

introduced many software development life cycles, models and processes [14].

The main objective of following such processes is to ensure the development of

software within the limited resources and limitations (time and budget) [14].

Due to the considerable amount of process logs collected from real-life software

projects, it has recently become possible to mine these processes in order to find

cases conflicting with the ideal process definition.

Lemos et al. [15] investigate the conformance of software development pro-

cesses from a Brazilian company with more than 2,000 software projects. The

results illustrate that the formal software development process defined by the

company is violated in different stages. For instance, 25.2% of the investigated

processes skip the whole planning stage and initialize the process with the de-

velopment. Zazworka et al. [14] introduce a tool-based approach to detect pro-

cess non-conformances and their future impacts. Poncin et al. [16] and Rubin et

al. [17] propose their own software process mining frameworks based on ProM [18],

a generic process mining tool used in different domains.

Process mining is also a useful and powerful tool to observe software artifact life

cycles. Sunindyo et al. [19] compare the designed and actual processes to support

OSS project managers in improving the process flows. Gupta [20, 21] proposes

a framework called Nirikshan in order to observe inconsistencies between the

runtime process model (real life model) and the design time model (ideal model)

within the bug life cycle of an OSS project. In another study, the bug life cycle of

the project Chromium is elaborated by mining issue tracking, peer code review

and version control systems. Furthermore, some deviations from the ideal process

and bottlenecks within the life cycle are defined and detected [22].
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Chapter 3

Research Methodology

In this study, we follow a mixed-methods based approach. The main idea behind

this research methodology is to support empirical quantitative results with the

qualitative analysis [23].

The overview of research methodology followed in this study is given Figure

3.1. First, a multivocal literature review is conducted to mine an initial set of

code review bad practices from both academic and industry perspectives. By

combining the outcomes of white and gray literature scanning, an initial set

of bad practices in the code review process is achieved. Then, 32 experienced

developers actively conducting code reviews are surveyed in order to get their

expert opinion on code review smells. Their feedback leads us to calibrate the

final set of code review smells. We also ask for their opinion on how these smells

can be detected. After getting a final list of code review smells, an empirical

investigation on the code review repositories of eight OSS projects is conducted

to support our qualitative results (MLR and semi-structured interviews) with

quantitative analysis.
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Figure 3.1: Research Methodology Followed in This Study.

3.1 White & Gray Literature Search

To establish a foundation on the bad practices followed in the code review process,

a multivocal literature review is conducted.

3.1.1 White Literature

To scan the white literature, the guidelines of Kitchenham [24] is followed. After

developing a review protocol, the relevant studies are searched in Google Scholar

and the most popular digital libraries: IEEE Explore, ACM Digital Library and

Springer. Before starting the search process, a generic query is defined in the

following way:

(“code review” OR “code review process”) AND (“bad practice*” OR “smell*”

OR “challenge*”)

The main inclusion criterion for our case is the relevancy of the study to our

topic, i.e. non-ideal practices followed in the code review process. To ensure this

criterion, each study is investigated and summarized. The references (backward

snowballing) and the citations (forward snowballing) of each study are checked

manually in order not to miss any related study. As a result of this step, a list of

17 primary studies is formed.

After digital libraries are searched, each resulting paper is mapped to the

10



related code review smells. The literature sources with their corresponding smells

are given in Appendix A.

3.1.2 Gray Literature

The decision to whether include gray literature review within our study is made

with respect to the criteria defined in the guidelines of Garousi et al. [7]. The

goal of our study is to verify the scientific outcomes with practical experiences.

Therefore, a combination of evidence for code review smells from both industrial

and academic communities is essential. Given all this, we conduct a gray literature

review by following the steps defined by Garousi et al. [7]: (1) Search process, (2)

Source selection and (3) Quality assessment of sources.

We run a Google search for the term “code review”. Each of resulting 42

pages (411 results) are checked respectively. Then some modified versions of

the generic query used in the white literature review are searched on Google (e.g.

“code review bad practices”). As a selection criterion, we only consider the sources

written by a reputable organization or someone linked to a reputable organization

without a time restriction since the majority of code review related contents have

been published in the last 10 years. Similar to the white literature, a snowballing

technique is performed on the resulting sources.

For the quality assessment of resulting sources, the checklist proposed by

Garousi et al. is followed [7]. Finally, 18 sources indicating at least one bad

practice / smell in the code review process are collected.

As a result of the white & gray literature reviews, a set of seven code review

smells is achieved. Sources from white & gray literature related to each code

review smell are illustrated in Table 3.1.
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Table 3.1: CR Smells Appeared in White & Gray Literature

Smell Name White Literature Gray Literature

Lack of Review [3,25–28] [29–33]
Review Buddies [34–36] [29,33,37]

Ping-pong [2, 38,39] [37, 40,41]
Looks Good to Me
(LGTM) Reviews

[3, 25,34,42] [29,40,43]

Sleeping Review [2,44] [33, 40,43,45,46]
Missing Context [2, 38, 47,48] [29,33,43,46,49–53]
Large Changesets [2, 38,42,54,55] [33,40,43,50,56,57]

3.2 Developer Survey & Follow-up Interviews

After completing the multivocal literature review, an extensive developer sur-

vey is prepared for software practitioners actively conducting code reviews. The

questions of our survey are available online in our replication package1. The main

objectives of this survey are:

1. To observe whether the definition of code review smells resulted in MLR

are agreeable to practitioners.

2. To find any other code review smells that we missed during our literature

reviews.

3. To ask the practitioners’ opinion about the detection mechanism (inquiring

about thresholds for calling an instance as a code review smell).

4. To observe the perception of practitioners on the code review smells.

We contacted 47 experienced developers selected from our personal & profes-

sional network to fill out our survey. 32 developers out of 47 fill out the survey

1https://github.com/emredogan7/code-review-smells
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Table 3.2: Demographic Information of the Survey Respondents

Company Num. of
Employees

Num. of
Survey

Respondents

Avg. CR
Experience
(In years)Type ID

Multinational
software
company

#1 100,000+ 5 14.6
#2 100,000+ 2 6.5
#3 100,000+ 2 21.5
#4 50,000+ 5 15.2
#5 1,000+ 3 6
#6 1,000+ 2 10

Midsize
software
company

#7 1,000+ 6 12.5
#8 1,000+ 1 6
#9 1,000+ 1 4
#10 200+ 2 8.5

Small-sized
software company

#11 10-50 1 14
#12 10-50 1 12

Consultancy #13 N/A 1 15

Total respondents: 32 11.7

and three of them agree to perform a follow-up interview. The majority of re-

spondents (19 out of 32) are working for multinational software companies that

are considered to be top software companies in the world.

The respondents have an average programming experience of 15.7 years and

code review experience of 11.7 years. In the survey, each smell is explained

briefly with a real-life example. Then, various questions related to respondents’

familiarity with each smell are asked. We also ask for their opinion on some

configurable thresholds to be used in our empirical analysis. The demographic

information about the survey respondents is given in Table 3.2.

Then, three respondents are interviewed to learn about their perception on

each bad practice. Each interview took about an hour and was recorded for

further analysis. By using the answers to the open-ended survey questions and

the interview transcriptions, we conduct a thematic analysis in order to find

developers’ opinion on the possible root causes and side effects of each smell.

13



Table 3.3: Survey Results

Do you agree
with the smell

definition?

How critical is
this smell?

(Avg. Rating
Out of 5)

How often do you
encounter this smell?

(Avg. Rating
Out of 5)

Lack of Review 32/32 4.56 1.66
Review Buddies 31/32 3.59 2.69

Ping-pong 25/32 2.91 2.28
LGTM Reviews 32/32 4.31 2.72

Sleeping Reviews 28/32 3.78 3.00
Missing Context 32/32 3.75 2.34
Large Changesets 32/32 3.72 2.25

3.3 Empirical Analysis

After the survey and follow-up interviews, a finalized taxonomy of seven code

review smells is generated. Then, each smell is evaluated on eight OSS projects

using Gerrit or GitHub as their code review tool. The further details of the study

setup are expanded in Chapter 5.
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Chapter 4

Taxonomy of Code Review Smells

The literature review leads us to seven code review smells focusing the bad prac-

tices in the code review process from different aspects. Table 4.1 illustrates the

definition, root causes and side effects of each code review smell.

In the survey and follow-up interviews, we ask practitioners about the impor-

tance of each smell in real life. The survey results show that the practitioners

mostly agree with the proposed smell definitions. The perception of survey re-

spondents on each code review smell resulting from MLR is illustrated in Table

3.3.

In the following section, the process of synthesizing literature review and the

developer survey is extended. Then, the resulting taxonomy of code review smells

is given in Section 4.2.
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Table 4.1: Taxonomy of Code Review Smells

CR Smell Definition Root Causes Side Effects

Lack of CR Unreviewed & self reviewed changesets.
- Availability reasons
- High self-confidence

- Time pressure
- Missing code reviews.

Review Buddies The author assigns the same reviewer(s).
- Tendency to take the

easy way out
- Inefficient code reviews

- Low shared code ownership

Ping-pong
Excessively long loops between

author and the reviewer.

- The reviewer cannot propose
all problems all in once.

- The author cannot apply all
review suggestions at once.

- Increase in the review time
- Blocking other developers

depending on the reviewed file

LGTM Reviews
The reviewer performs a lax code review and

directly approves the changeset.

- Irrelevant reviewer
- Lax reviewer

- Availability reasons
- Missing/inefficient code reviews.

Sleeping Reviews The process takes too long in terms of time.

- The reviewer’s being too busy
with other tasks

- Lack of notifying the reviewer
about the review request

- Forgetting the changeset
- Blocking other developers dependent

on the commit waiting for a review

Missing Context
The changeset is not properly explained and

the related issue(s) are not provided.
- The wish of developers to take

the easy way out.

- The reviewer does not have enough
information about the changeset.

- Decrease in the traceability of artifacts

Large Changesets The changeset is too large to be reviewed.
- Large backlog items

- Everything in a single changeset
- Unwilling developers for review

- Inefficient reviews

4.1 Synthesizing Literature Reviews & Devel-

oper Survey

According to the survey results, majority of the respondents agree with our set of

code review bad practices. Relatively lower agreement related to the Reviewer-

Author Ping-pong and Sleeping Review smells were due to the threshold that we

initially picked (i.e. in our original definition, a review taking more than 24 hours

would be called a sleeping review). We adjusted our thresholds (48 hours for

sleeping review) according to the survey respondents. Related to the criticality

of each smell, except ping-pong smell (2.9/5), the rest of the categories got a score

of at least 3.6/5 indicating the importance of the code review smells. Finally we

asked our survey respondents about how often they encountered these smells.

Since we deliberately picked our set of respondents from reputable companies

with many years of experience, they were less likely to encounter these smells.

(Follow-up interviews and open-ended questions indicated that their company

already have the necessary guidelines & rules and incentive mechanisms to enforce

good practices.)
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In this section, the perception of developers is described by using some quota-

tions taken from the open-ended survey questions and the MLR sources.

Lack of Code Review: Majority of the OSS projects warn the developers

against self/unreviewed commits in their contribution guidelines. In the email

list of the popular Kitware project, VTK (The Visualization Toolkit) [30], it is

stated:

“...We do not allow self reviews, even for trivial commits. At some point in

the future we will be taking measures to remove the ability to perform self reviews

in Gerrit, but until then we ask that all developers with elevated permissions from

reviewing their own commits...”

A similar warning to developers against approving their own code change is

available in the review policy of QT Community [29].

Review Buddies: The issue of selecting the same reviewer(s) without consider-

ing the suitability of them for the code changeset is discussed in both white and

gray literature. QT Community warns the contributors in the following way [29]:

“Do not approve just because it would be convenient for your colleague across

the room/corridor.”

The survey respondents mostly agree with this type of bad reviewer selections

and their common precaution to prevent it is to assign developer groups instead

of individuals. One of the survey respondent states that:

“Assigning a code review to a reviewer group instead of a specific user will

align the team. When a developer gets random comments from a group member,

he or she gets different points for self-improvement.”

Reviewer-Author Ping-pong: The number of iterations within the code re-

view process is discussed in the gray literature. A post from the Microsoft devel-

oper blog [40] explains the situation:
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“If one or two comments back and forth doesn’t resolve a problem, it won’t be

solved in code review. Instead, talk to the reviewer in person, on the phone, or

via chat. Remember, it’s okay to agree to disagree.”

One of the survey respondents claims the same issue:

“In my company, people are encouraged to take the review offline (e.g. have a

short meeting to discuss all issues) and get to a resolution quickly in such cases.”

LGTM Reviews: On this type of reviews, a survey participant shares his opin-

ion in the following way:

“...In my company, developer promotion process considers this fact as an input.

The expectation from a CR is not whether it looks good or not, it is whether they

feel comfortable if they took ownership of the change, and commit the changes

under their name...”

Similarly, this issue is discussed in the Microsoft developer blog [40]:

“LGTM” (a.k.a. “Looks Good To Me”) is the easiest, least time-consuming

reviewer response, but it’s harmful to a codebase. If you know your reviewer only

signed off because you applied heavy pressure (“I’m blocked by your review.”), it

doesn’t help anyone.

Sleeping Reviews: Code review speed is a common discussion in the industry.

In Google’s Engineering Practices documentation, it is stated that [43]:

“If you are not in the middle of a focused task, you should do a code review

shortly after it comes in. One business day is the maximum time it should take

to respond to a code review request (i.e. first thing the next morning).”

One of the survey respondents explains why this practice corresponds to a

smell:

“This bad practice slows down the development life cycle in different ways.

Firstly, the author starts to forget the code. If there is a feedback from the reviewer
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after some time, the author tends to spend more time than usual since they are

less familiar with the code they’ve written. Secondly, the context switch between

their current tasks and the review task is sometimes hard to handle, especially

when the context is different. It also affects the author’s other tasks since the

author will spend more time on the review task.”

Missing Context in Reviews: A survey respondent clearly illustrates the

importance of the changeset description:

“Changesets without description make the job of the reviewer harder. Knowing

upfront what I’m reviewing helps me focus on the changes much better. If missing

sometimes I ask the author for these details over email.”

In a keynote, Linus Torvalds mentions the same issue in the following words

[49]:

“...So commit messages to me are almost as important as the code change it-

self. Sometimes the code change is so obvious that no message is really required,

but that is very very rare. And so one of the things I hope developers are think-

ing about, the people who are actually writing code, is not just the code itself,

but explaining why the code does something, and why some change was needed.

Because that then in turn helps the managerial side of the equation, where if you

can explain your code to me, I will trust the code...”

Large Changesets: In a blog post of Palantir [50], it is given that:

“Changes should have a narrow, well-defined, self-contained scope that they

cover exhaustively. Shorter changes are preferred over longer ones. If a CR

makes substantive changes to more than 5 files, or took longer than 1–2 days to

write, or would take more than 20 minutes to review, consider splitting it into

multiple self-contained CRs.”

Another comment on this smell made by a survey respondent is:

“In my opinion, this is a very important smell that will improve the overall
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code review experience. Reviewing a changeset is really hard when the change size

is large and developers tend to lose focus after a while. The larger the change the

less attention it gets from reviewers, reducing the quality of review and probably

the overall code quality.”

4.2 Final Taxonomy

In the following subsections, each smell is introduced with a detailed explanation,

its possible root causes and side effects.

4.2.1 Lack of Code Review

Code review activity has multiple motivations such as code improvement, finding

bugs and increasing knowledge transfer within the development team [2]. How-

ever, in order to benefit from the code review process for these motivations, this

activity should be completed by a developer other than the changeset author.

If a changeset is not reviewed by a developer other than the author before it

is merged (unreviewed commits), or it is reviewed by only the author themselves

(self-reviewed commits), then it is a potential indicator that the code review

process is not followed properly. We call this type of bad practices as lack of code

review.

Root Causes:

Availability Reasons: The author cannot find an available reviewer at that

moment, so that they push their changeset with a self-review or without a review

at all.

High Self-Confidence: The author might think that the commit does not

strictly need a code review, so that they push it with a self-review or without a
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review at all.

Time Pressure: When the author has a strict deadline for a changeset, they

might merge it with a self-review or without a review at all.

Side Effects:

This smell leads to missing code reviews that might introduce some future

defects in the code.

4.2.2 Review Buddies

Selecting a proper reviewer is an important initial step for effective code reviews

[58]. Although getting a file reviewed by an expert or a senior developer seems

to be an advantage, the code review activity must be balanced within the team

to increase the shared code ownership [2].

In the view of this fact, there exists a problematic code reviewer selection when

a developer has a tendency to get their changesets reviewed by the same reviewer.

We call this type of smell as review buddies.

Root Causes: The main reason behind this smell is the tendency of developers

to take the easy way out. When a developer does not want to deal with finding

a proper reviewer, they request the same reviewer, e.g. a close friend, to review

the changeset.

Side Effects: This type of smell might cause inefficient code reviews and

more importantly, decreases the shared code ownership leading some parts of the

codebase to be known by a very small number of developers.
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4.2.3 Reviewer-Author Ping-pong

According to the defined code review processes in white and gray literature, when

the reviewer requests the author to make some additional changes on the code

changeset, the author is supposed to update their changeset by considering the

requests of the reviewer. The loop between the author and reviewer continues

until the reviewer is satisfied with the changeset and approves that it is ready to

be merged to the codebase.

If this loop gets excessively long, it might slow down or even block the code

review process. We name this type of bad practice as reviewer-author ping-pong.

Root Causes:

Reviewer Related Reasons: The reviewer cannot detect all of the problems in

the changeset at once.

Author Related Reasons: The author cannot apply all the changes requested by

the reviewer or can introduce some new bugs while fixing the previous problems.

Side Effects:

A large number of iterations between the author and reviewer increases the

review time. Also, it may block other developers depending on the reviewed

file(s).

4.2.4 Looks Good to Me Reviews

Even though the code review process has a variety of benefits, its main purpose

is to find defects in the source code as early as possible. When reviewers finds

a defect or have some suggestions to the author, they are supposed to state

their opinion by providing some feedback through comments. Absence of these

comments defeats the purpose of getting feedback through review comments.
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Lack of this feedback might potentially lead to some future uncaught bugs in the

source code.

Our claim is that some developers do code reviews without paying much at-

tention and directly approve the changeset. We call this type of reviews as looks

good to me (LGTM) reviews referring to the popular phrase used in open source

community “looks good to me (LGTM)”.

Root Causes:

Irrelevant Reviewer: The reviewer is unfamiliar to the changeset and has to

respond to the review request due to an organizational regulation.

Availability Reasons: The reviewer might be too busy with other tasks and

cannot reject the review request due to an organizational regulation.

Lax Reviewer: The developer does not pay attention to the review task and

just approves the changeset.

Side Effects:

In such scenarios, the author cannot get feedback from the reviewer. The lack

of a proper review on changesets might lead to some future bugs.

4.2.5 Sleeping Reviews

It has always been a key motivation of software development to find software

defects as early as possible in order to save time, effort and money [59]. Fagan

inspection methodology aimed to put this motivation into practice by inspecting

software artifacts at separated checkpoints, in some cases this might take a long

time such as weeks. With the modern code review tools, it has become possible

to complete a review within days, or sometimes in hours [60]. In Google, code

reviews are completed in a short time, with a median of less than 4 hours [61].

Whereas, in the study of Rigby and Bird [62], the median review completion
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times of Microsoft, AMD, Chrome and Android projects are found to be between

14.7 and 20.8 hours.

By considering all these results from industry and OSS projects, a code review

process is named a sleeping review if it takes an excessively long time to be

completed.

Root Causes:

Availability Reasons: The reviewer might be too busy with other tasks and

forget the review task.

Lack of Reminder: The non-responding reviewers are not notified of the review

task at regular intervals.

Side Effects:

Merge Conflict: When another developer needs to work on the file under

review and their work is dependent on the commit being reviewed, they might

have to wait for a long time.

Forgetting Code: When a review task takes a long time, it becomes harder

for the author to remember their commits and apply the required changes by the

reviewer without introducing new defects.

4.2.6 Missing Context in Reviews

Traceability among different software artifacts is an essential and helpful factor to

improve software development and maintenance life cycles [63]. Code review is the

inspection of a code changeset which might be created due to several reasons: bug,

improvement, feature, documentation, etc. This relation between the artifacts of

code review and issue tracking processes makes it necessary to link them to each

other.
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Figure 4.1: Contribution Guideline of the Project Apache Submarine.1

In order to ensure this linkage between code review and issue tracking reposi-

tories, most of the OSS projects have a strict contribution policy on linking the

related issue with the commit submitted for a review. The contribution guide-

line for submitting a new pull-request to Apache’s Submarine repository is given

in Figure 4.1. One of the required fields in the given template is the Jira issue

related to the commit under review.

Dalipaj et al. [47] also support our claim on the lack of linkage between bug

and review repositories of OpenStack project since the developers do not report

the related artifact information.

From a reviewer’s perspective, inspecting the changeset without a prior knowl-

edge on the related issue might decrease the review quality since the issue simply

introduces the problem that is solved by the submitted commit. Therefore, if a

code review process is not explicitly linked to an issue or explained extensively,

it is affected by the smell: missing context in reviews.

1https://github.com/apache/submarine/blob/master/docs/community/

contributing.md
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Root Causes:

The main reason of this smell is the nonconformance of developers to the formal

software development process. The commit author might be in a hurry and think

that it is a waste of time to provide a proper explanation and the related issue(s).

Side Effects:

Lack of Traceability: Absence of a proper changeset description decreases the

traceability within the software project. When a bug is reopened, the bug assignee

should be able to find proper explanation in the re-visited changeset.

Lack of Information for Reviewers: The reviewer can not get enough infor-

mation about the changeset before they start to review it.

4.2.7 Large Changesets

For a code review process to consist of quick and frequent iterations, the changeset

must include small code changes [62]. Large changesets have negative impacts on

the review process in different aspects: Rigby et al. [60] find that commits should

include small and complete changesets. Bosu et al. [64] and Czerwonka et al. [44]

validate this claim by illustrating that there exists a relation between the useful

comments made by the reviewer and the size of the changeset.

The impact of large changesets is also discussed in the industry projects: Sad-

owski et al. [61] claim that one main reason for fast code reviews at Google is

that 90% of code reviews include less than 10 changed files and the median value

of changed lines of code (LOC) is 24. Similarly at Microsoft, large changesets

are found to be one of the most common challenges in the code review process

among developers [2].

In this context, a changeset is called large if it consists of a large number of

changed LOC to be reviewed.
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Root Causes:

Large Backlog Items: If the task is too complicated to realize in a small

changeset, then the authors has to create large changesets. To fix such problems,

the backlog items should be generated in an atomic manner.

Everything in a Single Changeset: Some developers try to complete a whole

large task in a single pull-request leading to the smell: large changesets.

Side Effects:

Unwilling Developers for Review: Since large changesets are harder to review,

most of the developers avoid reviewing them.

Inefficient Reviews: The results of the gray literature review and developer

survey show that developers cannot focus on the whole of large changesets. This

fact leads inefficient reviews introducing possible future bugs.
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Chapter 5

Empirical Analysis

This chapter includes the details of experimental setup and the quantitative ev-

idence for code review smells. In Section 5.1, the details regarding the datasets

are explored. Section 5.2 illustrates the preprocessing steps followed within this

study. Finally Section 5.3 presents the quantitative evidence for each code review

smell among eight OSS projects.

5.1 Dataset Types and Analysis

In order to explore and quantify code review smells in real-life scenarios, we

investigated eight popular open source projects using Gerrit and GitHub as their

code review tool.

Gerrit is a lightweight, web-based modern code review tool supporting an

integration with Git. In Gerrit, the code changesets are represented in “patch

sets”. If the reviewer is satisfied with the current patch set, then the changeset

is merged to the codebase. If not, the reviewer requests the author to make some

additional changes and create a new patch set.

GitHub is a popular Git repository hosting service. Beyond its main purpose as
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Table 5.1: Summary Statistics for Data Collected from Four Gerrit Repositories

Project Name Total Reviews Filtered Reviews Start Date End Date

QT 96,722 74,755 2017-01-01 2020-04-20
Eclipse 71,993 57,585 2017-01-01 2020-04-20

Wireshark 17,407 16,336 2017-01-01 2020-04-21
LibreOffice 58,781 54,032 2017-01-01 2020-04-20

Total 244,903 202,708

Table 5.2: Summary Statistics for Data Collected from Four GitHub Repositories

Project Name Total PRs Filtered PRs Start Date End Date

GitHub Desktop 3,602 2,993 2016-05-11 2020-06-05
Visual Studio Code 7,343 5,206 2015-11-16 2020-06-06

TensorFlow 14,498 9,807 2015-11-09 2020-06-06
Django 13,008 5,578 2012-04-28 2020-06-06

Total 38,451 23,584

a version control system, it has many other services such as bug tracking, feature

requests, task management and continuous integration/delivery. The code review

tool in GitHub is integrated into the pull-request management service. When a

developer creates commit(s), they create a pull-request and send it to appropriate

developers to accomplish the code review task. When the reviewer requires some

additional changes, the author creates new commit(s) and adds them to the pull-

request.

We fetched the code review data of eight OSS projects by using Perceval [65]

and made it available online1. The summary statistics for Gerrit and GitHub

projects are given in Table 5.1 and Table 5.2 respectively.

The empirical analysis is performed on interactive Python notebooks and

shared online2 with instructions to replicate this study.

1https://figshare.com/s/a7691f88aa67dc4bd828
2https://github.com/emredogan7/code-review-smells
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5.2 Data Cleaning & Preprocessing

After fetching the data, a manual inspection of the raw data is completed for

each project. Data instances suffering at least one of the following conditions are

removed from the dataset on behalf of the correctness of our study:

• The scope of our empirical analysis is limited to the code review processes

ending up with a merge to the codebase since the majority of the smells

defined in our taxonomy analyze the completed code review processes. For

this reason, code review instances other than the merged ones are ignored.

• Some review tasks are performed by review-bots. Since our study inves-

tigates the nonconformance of developers to the code review process, the

reviews performed by bots are removed from our dataset. To this end, all

developer names are checked manually.

• Instances with missing ID information of the author or reviewers (e.g.

deleted GitHub & Gerrit accounts) are removed.

• Some commits seem to have a changeset with no changed lines of code.

When we inspect the webpages of these instances, it is observed that these

commits consist of a cherry pick operation, applying a commit from one

branch into another one. Since the changeset comes from another commit,

Gerrit does not reflect the actual changed lines of code and shows this value

as zero.

The numbers of instances in Gerrit and GitHub projects after the preprocessing

step are given in Table 5.1 and 5.2.

5.3 Quantitative Results

According to the taxonomy detailed in Chapter 4, a detection method for each

smell is proposed except for LGTM Reviews. The reason to exclude this smell
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Table 5.3: Quantitative Results of Code Review Smells in Four Gerrit Projects

QT Eclipse Wireshark LibreOffice Total

Total Instances 74,755 57,585 16,336 54,032 202,708

CR Smells Freq. Perc.(%) Freq. Perc.(%) Freq. Perc.(%) Freq. Perc.(%) Freq. Perc.(%)

Lack of Review 2,987 4.0 28,535 49.6 7,486 45.8 32,621 60.4 71,629 35.3
Ping-pong 21,178 28.3 4,890 8,5 1,966 12.0 2,887 5.3 30,921 15.3

Sleeping Reviews 19,818 26.5 20,004 34.7 2,797 17.1 15,014 27.8 57,633 28.4
Large Changesets 3,564 4.8 6,263 10.9 1,006 6.2 2,508 4.6 13,341 6.6
Missing Context 20,345 27.2 18,883 32.8 4,789 29.3 22,188 41.1 66,205 32.7

Combined 39,709 53.1 47,831 83.1 11,461 70.2 45,124 83.5 144,125 71.1

Table 5.4: Quantitative Results of Code Review Smells in Four GitHub Projects

GitHub Desktop
Visual

Studio Code
TensorFlow Django Total

Total Instances 2,993 5,206 9,807 5,578 23,584

CR Smells Freq. Perc.(%) Freq. Perc.(%) Freq. Perc.(%) Freq. Perc.(%) Freq. Perc.(%)

Lack of Review 440 14.7 2,989 57.6 1,273 13.0 3,334 59.9 8,036 34.1
Ping-pong 209 7.0 92 1.8 449 4.6 7 0.1 757 3.2

Sleeping Reviews 1,240 41.4 2,089 40.1 4,690 47.8 1,887 33.8 9,906 42.0
Large Changesets 160 5.3 415 8.0 975 9.9 162 2.9 1,712 7.3
Missing Context 335 11.2 1,277 24.5 4,330 44.2 2,138 38.3 8,080 34.3

Combined 1,868 62.4 4,316 82.9 8,015 81.7 4,990 89.5 19,189 81.4

is the feedback provided in our developer survey. Although the majority of the

respondents agreed on the smell definition, they shared serious concerns about

how accurately it can be detected. In a follow-up interview one of the respondents

noted that:

“When I read the definition of code review smell, it completely makes sense.

However, I have some serious doubts on whether it can be accurately detected or

not. While conducting reviews, I sometimes cannot find anything wrong (bug,

typo, etc.) about the code and just approve it immediately. According to your

definition, this is a smell which in fact is not.”

The remaining six code review smells are evaluated in terms of the number of

occurrences and percentages in eight OSS projects. The resulting statistics for

Gerrit and GitHub projects are given in Table 5.3 and 5.4.

In the following subsections, we first introduce the detection method of each

smell. Then, the analyzed projects are compared with respect to their smell

characteristics.
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Table 5.5: Size Labels of Changesets Introduced in Gerrit

Changed Lines
of Code

Size Label

[0,10) XS
[10,50) S
[50,200) M

[200,1000) L
1000+ XL

5.3.1 Lack of Code Review

To detect this smell, the following procedure is followed:

Smell Detection Method:

1. If the changeset is merged to the project codebase without a code review,

then it is an unreviewed commit.

2. If the one and only reviewer of a changeset is the author of it, then it is a

self-reviewed commit.

3. If a review consists of unreviewed or self-reviewed changesets, then it suffers

from the smell: lack of code review.

By following these steps, eight projects are examined respectively. The empir-

ical results are given in Table 5.3 and 5.4.

Although Eclipse, Wireshark and LibreOffice projects show similar characteris-

tics (45.8% to 60.4%), QT has a significantly lower smell percentage (4%). Such

a major difference leads us to investigate the contribution guidelines & review

policies of these four projects. [29,46,53,66]

In the QT guidelines, developers are strictly warned against self/unreviewed

changesets with the exact words:

“Do not approve your own changes.” [29]
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(a) Gerrit Projects

(b) GitHub Projects

Figure 5.1: Frequencies of different-sized changesets with the smell: Lack of Code
Review) in four Gerrit and GitHub projects
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While other three projects do not have such a warning; in the guidelines of

LibreOffice, core developers are allowed to give a +2 (approval in Gerrit) to

themselves:

“+2 is used by the author to signal no review is needed (this can only be done

by core developers, and should be used with care).” [46]

A similar investigation is also conducted on GitHub projects. Desktop and

TensorFlow projects have a significantly lower smell ratios than Visual Studio

Code and Django projects. Despite such differences between projects, the per-

centages of the lack of review smell in Gerrit and GitHub projects are close to

each other (35.3% and 34.1%).

Since some of the survey respondents claim that this bad practice is related to

the changeset size, we investigate the relation between the lack of review smell

and the changeset size. Figure 5.1 illustrates the smell frequencies of different

sized changesets in Gerrit and GitHub projects. These size intervals (XS through

XL) are introduced in Gerrit itself and can be seen in Table 5.5.

The results show that QT, Desktop and TensorFlow projects are not affected

by the lack of review smell in a significant manner. In the other projects, the

ratios of smelling reviews drop as the commit size increases meaning that small

changesets are not reviewed properly.

5.3.2 Review Buddies

In order to detect this type of smell, the following steps are performed:

Smell Detection Method:

1. Self-reviewed and unreviewed commits are eliminated.

2. Commits authored by a developer having less than 50 contributions are
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ignored in order to obtain the core developers of each project. This thresh-

old is applied in order to avoid the situation that when a developer has

a small number of contributions, the reviewers assigned for these commits

become the review buddies of this developer artificially. This threshold

value is asked of the survey participants and discussed in the follow-up in-

terviews. Although there is not a strict consensus among the participants,

the majority of them find the value of 50 as reasonable.

3. All (Author, Reviewer) pairs and their corresponding occurrence frequencies

are listed for each core author.

4. If there exists a reviewer who reviewed at least half of the commits sub-

mitted by an author, then this reviewer is called the review buddy of the

author.

Table 5.6: Review Buddies in Four Gerrit Projects

Project

Developers

Having a Review

Buddy

Developers Having

More Than 50

Contributions

Smell

Percentage

(%)

QT 39 202 19.3

Eclipse 49 154 31.8

Wireshark 7 33 21.2

LibreOffice 28 79 35.4

Total 123 468 26.3

Table 5.7: Review Buddies in Four GitHub Projects

Project

Developers

Having a Review

Buddy

Developers Having

More Than 50

Contributions

Smell

Percentage

(%)

GitHub Desktop 0 11 0.0

Visual Studio Code 1 14 7.1

TensorFlow 2 39 5.1

Django 1 12 8.3

Total 4 76 5.3
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Since this smell is related to the developers rather than the code review pro-

cesses, its results are given separately in Table 5.6 and 5.7. It is indicated that

more than one fourth of 468 developers in four Gerrit projects assign a specific

reviewer for more than half of their commits. On the other hand, GitHub projects

show significantly lower smell ratios due to the smaller number of developers with

at least 50 commits.

As a result, this smell is a more common practice in Gerrit projects. The

dominance of review buddies leads to inefficient code reviews and decreases the

shared code ownership in these projects.

5.3.3 Reviewer-Author Ping-pong

The procedure to detect this smell is given in the following steps:

Smell Detection Method:

1. If a review process consists of an excessively large number of iterations

between the author and reviewer, it is affected by the smell: reviewer-author

ping-pong.

2. To decide the threshold value for the excessively large changeset, the survey

participants are asked how many iterations there should be between the

author and the reviewer at most. Majority of the respondents (23 out of

32) agree on that this loop should not exceed three iterations.

3. If a review process consists of more than three iterations between the author

& reviewer, then it suffers from the smell: reviewer-author ping-pong.

The results in Table 5.3 and 5.4 show that the code review instances in Gerrit

projects lead longer author-reviewer iterations than the GitHub projects.

When the smell percentages in different-sized changesets are investigated in

Figure 5.2, it is concluded that the number of reviewer-author ping-pong cases
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increase as the changeset size increases.

(a) Gerrit Projects

(b) GitHub Projects

Figure 5.2: Smell percentages of different-sized changesets with the smell:

Reviewer-Author Ping-pong) in four Gerrit (a) and four GitHub (b) projects

37



5.3.4 Sleeping Reviews

In order to detect this type of smell, the following steps are performed:

Smell Detection Method:

1. The elapsed time between the creation and completion moments of each

code review process is calculated and named review sleeping time (RSTime).

RSTime = treviewCompleted − treviewCreated

2. The decision of selecting the threshold for a sleeping review is made with

respect to the literature review and survey results. In our survey, the ques-

tion of how long a code review process should take at most is asked of the

participants. The majority of the respondents (29 out of 32) claim that a

code review process should not exceed two days (48 hours).

3. Relying on the statistics established in white & gray literature and the

survey results, a code review process is called a sleeping review if it takes

more than two days.

Within the detection method of sleeping reviews, there exists a minor risk

of choosing the threshold value as two days without considering the weekends

and holidays. These days are not considered since majority of the open source

projects are developed on a volunteer basis and it makes hard to distinguish

weekends/holidays from weekdays.
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(a) Gerrit Projects

(b) GitHub Projects

Figure 5.3: Frequencies of different-sized changesets with the smell: Sleeping

Reviews) in four Gerrit (a) and four GitHub (b) projects

The occurrence statistics of this smell are given in Table 5.3 and 5.4. Wireshark

seems to have faster code reviews whereas more than one fourth of the reviews
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in other projects take longer than 48 hours.

We also investigated the relation between the changeset size and sleeping re-

view frequency in each project. The histogram in Figure 5.3 illustrates this

relation in each project. It is expected for the reviews of large changesets to take

a longer time. However, the long review processes of small changesets indicate

some suboptimal review characteristics.

5.3.5 Missing Context in Reviews

In order to detect this type of smell, the following steps are performed:

Smell Detection Method:

1. Since each OSS project has its own contribution guideline, the commit

message format might vary in different projects. The text pattern to link

the related issues of reviews in each project is achieved by analyzing the

related guideline.

2. Heading and changeset description of each review instance are mined in

order to check whether they include a related issue number/ID or a proper

explanation of the changeset.

3. If a review process is not linked to a related issue or a proper description

of the changeset is not provided, then it is affected by the smell: missing

context in reviews.

Gerrit and GitHub allow the developers to provide their commit details in two

different fields: a heading to summarize the changeset and a body section to give

further details. We observe that many developers write a short description as a

heading, then copies the exact same text into the body section. In this study, a

changeset/PR is affected by the smell missing context in reviews if its body field

is the same as the heading field or does not include any further description/linked

issue information.

40



(a) Gerrit Projects

(b) GitHub Projects

Figure 5.4: Frequencies of different-sized changesets with the smell: Misssing

Context in Code Reviews) in four Gerrit (a) and four GitHub (b) projects

The obtained results for this smell are illustrated in Table 5.3 and 5.4. It is

shown that almost one code review process out of three suffers from the lack of
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a proper changeset description.

When the smell occurrence ratios in different-sized changesets are investigated

in Figure 5.4, it is clearly seen that this bad practice is more common in the small

changesets among both Gerrit and GitHub projects.

5.3.6 Large Changesets

In order to detect this type of smell, the following steps are performed:

Smell Detection Method:

1. The number of changed LOC is calculated by summing up the number of

added and deleted LOC.

2. If a changeset consists of more than 500 changed LOC, then the code review

process suffers from large changesets smell.

To define a threshold value for the large changesets, we asked the survey re-

spondents for their opinion on this threshold value. The majority of the respon-

dents (23 out of 32) agreed on that a changeset should not exceed 500 changed

LOC. Therefore, we decided to call a changeset as a large one if it consists of

more than 500 changed LOC.

The quantitative results for the large changesets are given in Table 5.3 and 5.4.

It is illustrated that all of the projects suffer from this smell with a percentage

range betweeen 2.9 and 10.9. Despite minor differences between projects, Gerrit

(6.6%) and GitHub (7.3%) platforms show similar characteristics in terms of large

changesets.

After evaluating six code review smells quantitatively, the occurrence frequen-

cies and percentages of the code review processes having at least one code review

smell are obtained. The bottom lines of Table 5.3 and 5.4 illustrate that 71.1%
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of code reviews in Gerrit and 81.4% of GitHub PRs suffer from at least one smell

defined in our taxonomy.
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Chapter 6

Discussion

6.1 Code Review Smells in Different Platforms

(Gerrit & GitHub)

The results of the empirical analysis show that each code review smell occurs

with different ratios in eight OSS projects. In this section, the similarities and

differences between Gerrit & GitHub projects are discussed.

Lack of Code Review: In GitHub, it is not allowed to apply self-review on a

pull-request. Therefore, the lack of review smell consists of only unreviewed pull-

requests in GitHub projects. Nevertheless, the total ratios of changesets with this

smell are quite close to each other (%35.3 and %34.1 ).

Review Buddies: While Gerrit projects have a significant number of developers

with a review buddy, GitHub projects does not suffer from this smell that much.

The main reason behind this difference is the structural difference between Gerrit

and GitHub projects. Gerrit projects are larger in terms of the number of devel-

opers and code review instances. In GitHub, the code review task is dispersed

among a larger number of contributors resulting a smaller number of developers

with a review buddy.
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Reviewer-Author Ping-pong: In average, code reviews in Gerrit take larger

numbers of iterations compared with the GitHub projects (15.3% and 3.2%).

28.3% of the code reviews in QT project suffers from this smell where Visual

Studio Code and Django projects has the best results among all.

Sleeping Reviews: This smell depends on the project structure rather than

the code review platform. Each project guidelines define the maximum time for

a code review task differently and these restrictions affect the sleeping review

percentages among different projects.

The smells Large Changesets and Missing Context in Reviews show very similar

characteristics among GitHub and Gerrit platforms. Although there are some

project based differences, the total results of platforms are close to each other.

In summary, 71.1% of Gerrit and 81.4% of GitHub code review instances are

affected by at least one smell. The QT project shows the best results with 53.1%

among 8 projects. One possible reason might be the comprehensive guidelines of

QT on the code review [29]. Other seven projects suffer from at least one code

review smell with a range of 62.4% to 89.5%.

6.2 Implications for Industry and Software En-

gineering Practice

The survey results reveal that the code review smells proposed in our taxonomy

are considered as critical actions and should be avoided in order to enhance the

software development process. Also, the experiments indicate that all of the

code review smells introduced in our taxonomy exist in different ratios. The

implications of this thesis for software engineering practice are listed as follows:

• Practitioners can use the proposed taxonomy to potentially avoid the code

review smells. To this end, proper code review guidelines and rules can

be prepared (or they can be updated if already exist). Existence of such
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guidelines does not guarantee to avoid all smells but can decrease the smell

percentages. For example, QT project has the best results for the smell

lack of review within our empirical analysis. This might be due to the

strict warning in the QT Review Policy [29] about the lack of review smell.

• Practitioners can enhance their code review process by introducing appro-

priate tooling for code review. For example, code review tools can be

configured in order to block developers to merge unreviewed/self-reviewed

changesets. Again, reminding developers the review task with periodic e-

mails can reduce the possibility of sleeping reviews. For instance, the tool

Pull Reminders1 notifies the developers with Slack notifications in order to

remind the forgotten pull-requests and avoid the smell: sleeping reviews.

• The initial taxonomy can be used as a starting point to develop (semi) au-

tomated recommendation systems to detect code review smells by mining

software repositories. These tools are not only limited to the code review

smells but can be generalized among the bad practices followed in different

steps of the software development such as bug life cycle, testing and con-

tinuous integration. Detecting bad practices in different steps can enhance

the software process quality in a more significant way.

• Software development life cycle consists of different steps. The previous

work in this area investigated the bad practices followed within some of these

steps. Garcia et al. [67] introduced bad smells in the software architectures.

Rompaey et al. [68] defined the symptoms of poorly designed tests as test

smells. Zampetti et al. [69] categorized the bad practices followed in the

continuous integration process. In the future, other steps/processes within

the software development life cycle can be investigated to detect and avoid

the smells.

1https://pullreminders.com/
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Chapter 7

Threats to Validity

This chapter discusses the threats to internal and external validity of our study.

Internal validity is concerned with the causal relations investigated within the

study [70]. To minimize the risk of any subjective activity during white & gray

literature review, the web searches are conducted in the private mode of browsers.

Regarding the developer survey, there are two potential threats to validity:

(1) The respondents may misunderstand the smell definitions. (2) Some of the

inexperienced respondents may give misleading answers. To mitigate these issues,

a detailed description for each smell with a real-life example is provided and

the survey is conducted only with experienced software practitioners working in

reputable organizations.

Our experiments are designed to observe the occurrence ratio of each smell by

keeping all other parameters fixed. Also, for our results not to be affected by

the distribution of data, the definition and the detection method of each smell

are determined in the planning phase and not changed during the experiments.

To increase the replicability of our study, we shared the datasets1 and the source

code2 online. Some other validity threats regarding our study setup and dataset

1https://figshare.com/s/a7691f88aa67dc4bd828
2https://github.com/emredogan7/code-review-smells
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can be listed in the following way:

• Tool Dependency: In our empirical analysis, code review histories of four

Gerrit and four GitHub projects are analyzed. Although our taxonomy

consists of code review smells defined in a generalized manner, the study

setup for each smell detection process is modified with respect to the Gerrit

and GitHub specific features.

• Configurable Thresholds: Within the smell detection methods, we made

some assumptions on the configurable parameters and definitions. Although

we justified these thresholds by getting expert opinion through the survey,

these thresholds are still subject to discussion and could be configured de-

pending on the project.

For instance, the threshold value of 50 changesets defined in the review

buddies smell is highly dependent on the project size. Since Gerrit projects

in our empirical analysis are larger than GitHub projects in terms of the

number of code review instances, using the same threshold value for all

projects might pose a threat to the validity of our results. As a future

work, some rules can be formulated in order to obtain project dependent

threshold values.

Threats to external validity are concerned with to what extent our results can

be generalized [70]. To mitigate this threat, our study is evaluated empirically on

eight large OSS projects using Gerrit or GitHub as the code review tool. As future

work, we are planning to evaluate code review smells on closed-source projects

and other code review platforms to diminish the generalizability concerns. The

conducted survey with 32 experienced professionals also support the importance

and existence of code reviews smells in practice.
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Chapter 8

Conclusion and Future Work

In this study, we propose a taxonomy of code review smells to demonstrate bad

practices in the code review process. The taxonomy is based on a multivocal lit-

erature review which later further validated by 32 expert software professionals.

Our taxonomy consists of seven code review smells (lack of a code review, review

buddies, reviewer-author ping-pong, looks good to me reviews, sleeping reviews,

missing context in reviews and large changesets). To demonstrate the existence

of these code review smells, we conduct an empirical evaluation by mining code

review histories of eight open source projects: QT, Eclipse, Wireshark, LibreOf-

fice, GitHub Desktop, Visual Studio Code, Tensorflow and Django. Some of our

findings from the investigation of 226,292 code review instances are listed below:

• 35.2% of the changesets are merged to the codebase with a self-review or

no review at all.

• 23.3% of developers in four projects have a review buddy.

• 14.0% of code review instances take more than three review iterations.

• 29.8% of the code review instances take longer than two days.

• 32.8% of code reviews have a missing context.
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• 72.2% of the code reviews among eight projects suffer from at least one code

review smell.

Below is the list of possible extensions to this study and new future directions:

• Impact Analysis of Code Review Smells: In our study, each code

review smell is evaluated by getting domain experts’ opinion and illustrating

the occurrence ratios in eight open source projects. A future direction would

be to measure the impact of each smell on code quality in order to observe

the bad effects of such practices quantitatively.

• Smell Detection Tools: After the term code smell is introduced by Kent

Beck [6], several smell detection tools have been proposed in order to en-

hance software maintainability by automatically detecting code smells [71].

Similarly, a detection tool for code review smells is essential in order to

speed up the process and enhance the review quality. In addition to smell

detection, some tools/extensions can be useful to avoid these smells (e.g.

reminder mails for sleeping reviews, unreviewed/self-reviewed PR blocker

etc.).

• Extension of This Taxonomy: As explained in Chapter 4, LGTM

Reviews smell is excluded within our experiments. Empirical analysis of

this smell remains as a future direction. Although we scanned both white

& gray literature, we may have missed some other bad practices in the code

review process. As a future work, our taxonomy can be extended with these

smells and their corresponding empirical analysis.
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[65] S. Dueñas, V. Cosentino, G. Robles, and J. M. Gonzalez-Barahona, “Perce-

val: Software project data at your will,” in Proceedings of the 40th Interna-

tional Conference on Software Engineering: Companion Proceeedings, pp. 1–

4, 2018.

[66] “Eclipse development process — the eclipse foundation.” https://www.

eclipse.org/projects/dev_process/development_process_2010.php.

(Accessed on 08/26/2020).

[67] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic, “Identifying archi-

tectural bad smells,” in 2009 13th European Conference on Software Main-

tenance and Reengineering, pp. 255–258, IEEE, 2009.

[68] B. Van Rompaey, B. Du Bois, and S. Demeyer, “Characterizing the relative

significance of a test smell,” in 2006 22nd IEEE International Conference on

Software Maintenance, pp. 391–400, IEEE, 2006.

58

https://www.eclipse.org/projects/dev_process/development_process_2010.php
https://www.eclipse.org/projects/dev_process/development_process_2010.php


[69] F. Zampetti, C. Vassallo, S. Panichella, G. Canfora, H. Gall, and

M. Di Penta, “An empirical characterization of bad practices in continuous

integration,” Empirical Software Engineering, vol. 25, no. 2, pp. 1095–1135,

2020.
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Appendix A

Literature Sources

As the result of the multivocal literature review, 17 academic studies and 18 gray

literature sources are shared with the corresponding smells in Table A.1.
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Appendix B

Code and Reproducibility

The data used in the experiments is shared online at Figshare 1.

Questions of the developer survey and the source code of this study are openly

available at the GitHub repository 2.

1https://figshare.com/s/a7691f88aa67dc4bd828
2https://github.com/emredogan7/code-review-smells
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