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Abstract—Estimation theoretic secure transmission of a scalar
random parameter is investigated in the presence of an eavesdrop-
per. The aim is to minimize the estimation error at the receiver
under a secrecy constraint at the eavesdropper; or, alternatively,
to maximize the estimation error at the eavesdropper for a given
estimation accuracy limit at the receiver. In the considered setting,
the encoder at the transmitter is allowed to use a randomized
mapping between two one-to-one and continuous functions and the
eavesdropper is fully aware of the encoding strategy at the transmit-
ter. For small numbers of observations, both the eavesdropper and
the receiver are modeled to employ linear minimum mean-squared
error (LMMSE) estimators, and for large numbers of observations,
the expectation of the conditional Cramér-Rao bound (ECRB)
metric is employed for both the receiver and the eavesdropper.
Optimization problems are formulated and various theoretical
results are provided in order to obtain the optimal solutions and to
analyze the effects of encoder randomization. In addition, numer-
ical examples are presented to corroborate the theoretical results.
It is observed that stochastic encoding can bring significant perfor-
mance gains for estimation theoretic secrecy problems.

Index Terms—Estimation, secrecy, Gaussian wiretap channel,
optimization, Internet of Things (IoT).

I. INTRODUCTION AND MOTIVATION

A. Literature Review

IN A secure communication system, the main goal is to
secretly transmit data to an intended receiver in the presence

of a malicious third party such as an eavesdropper. As the age
of Internet of Things (IoT), smart homes and cities, self-driving
cars, and wireless sensor networks with a vast number of nodes
has already arrived, it is necessary to find ways to ensure secure
communication of data in such systems. Massive deployments
of sensors, the nature of wireless links across a network, and the
sensitivity of data collected by sensors present serious security
challenges. Traditionally, key-based cryptographic approaches
have been employed in many applications for secure commu-
nication [1], [2]. However, the management of key generation
and distribution can be very challenging in heterogenous and
dynamic networks with vast numbers of connections [3], [4].
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Furthermore, as many nodes in sensor networks are low-cost
with limited battery power and bandwidth and have strict latency
requirements, it might not be suitable to consider cryptographic
solutions as the only layer of security in such systems [5].

Based on these motivations, there has been a renewed interest
in physical layer secrecy to develop alternative or complemen-
tary layers of security technologies. Physical layer secrecy is
based on the idea of exploiting the randomness in wireless
channel conditions to ensure secure communication [6]. In this
regard, information theoretic metrics and tools, such as capacity,
have been employed in a multitude of studies for various channel
models such as fading channels [7], [8], Gaussian wiretap,
broadcast and interference channels [9]–[12]. In the literature,
alternative metrics and frameworks have also been utilized to
quantify secrecy levels. For example, in [13] and [14], secure
communication problem is investigated based on the signal-
to-noise ratio (SNR) metric in the quality-of-service (QoS)
framework. In [15], the secrecy constrained distributed detec-
tion problem is studied under Bayesian and Neyman-Pearson
frameworks. Alternatively, secrecy levels can be measured via
estimation theoretic tools and metrics, such as Fisher informa-
tion and mean-squared error (MSE), where the aim is the design
of low-complexity, practical, and secure systems [16]–[29].

Estimation theoretic secrecy has been studied in a wide variety
of settings. In [16], the secret communication problem is consid-
ered for Gaussian interference channels with vector parameters
in the presence of eavesdroppers. The problem is formulated
to minimize the total minimum mean-squared error (MMSE) at
the intended receivers while keeping the MMSE at the eaves-
droppers above a certain threshold, where joint artificial noise
and linear precoding schemes are used to satisfy the secrecy
requirements. In [17], privacy of households using smart meters
is considered in the presence of adversary parties who estimate
energy consumption based on data gathered in smart meters.
The Fisher information is employed as a metric of privacy for
both scalar and multivariable parameter cases, and the optimal
policies for the utilization of batteries are derived to minimize
the Fisher information to achieve privacy. Both [18] and [19]
investigate secrecy in a distributed inference framework, where
the information coming to a fusion center from various sensor
nodes can also be observed by eavesdroppers. In [18], the esti-
mation problem of a single point Gaussian source in the presence
of an eavesdropper is analyzed for the cases of multiple transmit
sensors with a single antenna and a single sensor with multiple
transmit antennas. Optimal transmit power allocation policies
are derived to minimize the average MSE for the parameter of
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interest while guaranteeing a target MSE at the eavesdropper.
In [19], the asymptotic secrecy and estimation problem is studied
when the sensor measurements are quantized and the channel
between sensors and receivers are assumed to be binary symmet-
ric channels. The sensor quantization thresholds are designed
to ensure perfect secrecy when the number of sensors is very
large. In [20], the secure inference problem is investigated for
deterministic parameters in IoT systems under spoofing and
man-in-the-middle-attack (MIMA). For MIMAs, necessary and
sufficient conditions are derived to decide when the attacked
data can or cannot improve the estimation performance in terms
of the Cramér-Rao bound. For spoofing attacks, effective attack
strategies are described with a guaranteed performance in terms
of Cramér-Rao bound (CRB) degradation and it is shown that
quantization imposes a limit on the robustness of the system
against such attacks.

Stochastic encryption has been used as a defense mecha-
nism against eavesdropper attacks in the estimation theoretic
security framework [21]–[24]. In [22], stochastic encryption
is performed based on the 1-bit quantized version of a noisy
sensor measurement of a deterministic parameter to achieve
secret communication, where both symmetric and asymmetric
bit flipping strategies are considered under the assumptions that
the intended receiver is aware of the flipping probabilities and
the eavesdropper is unaware of the encryption. It is shown that
it is possible to create biased estimation and large errors at the
eavesdropper via this simple scheme. In [23], the binary stochas-
tic encryption (BSE) approach proposed in [22] is extended
to non-binary stochastic encryption (NBSE) to facilitate vector
parameter estimation. In [24], secrecy provided by stochastic en-
cryption is studied under the assumptions that the eavesdropper
is aware of the particular technique, e.g., BSE, NBSE, employed
in the transmitter, uses an unbiased estimator, and does not know
the encryption key and quantizer regions. It is shown that such
a scheme is secure in the domain of unbiased estimators.

While the aforementioned studies focus on the stochastic
encryption of a quantized measurement of a deterministic pa-
rameter, [25] and [26] focus on the secrecy problem for a
random parameter in the Bayesian estimation setting. In [25],
the optimal deterministic encoding of a scalar random parameter
is investigated based on the minimization of expectation of the
conditional Cramér-Rao bound (ECRB) in order to guarantee
a certain level of estimation accuracy at the intended receiver
while keeping the estimation error at the eavesdropper above
a certain level. In [26], a robust parameter encoding approach
is developed and the optimization is based on the worst-case
CRB of the parameter in order to guarantee a certain level of
estimation accuracy at the intended receiver. The results in [25]
are extended to vector parameter estimation scenarios in [27].
The common assumption in [25]–[27] is that the encoding
function is not available to the eavesdropper; hence, it acts like
a secret key similarly to the assumption of flipping probabilities
not being available to the eavesdropper in [22] and [24]. On
the other hand, for determining fundamental security limits
of many systems (such as those investigated in the classical
information theoretical framework), it is a common practice
to assume that the eavesdropper has the full knowledge of the

encoding strategy at the transmitter. For example, in a Gaussian
wiretap channel, the positive secrecy capacity is possible even
though the eavesdropper knows the encoding scheme [12]. In
particular, data is kept private as a result of the condition that
the noise present in eavesdropper’s received signal is stronger
than the noise at the intended receiver. In that setting, the key
ingredient is to apply stochastic encoding at the transmitter to
achieve a positive rate with no data leakage to the eavesdropper.
The encoder is used to confuse the eavesdropper with the cost of a
reduced communication rate. Inspired from this classical setting,
in this manuscript, estimation theoretic secure transmission of
a scalar random parameter is investigated in a Gaussian wiretap
channel under the Bayesian framework, which has not been in-
vestigated in the literature. As the encoding strategy is available
to the eavesdropper, the encoder randomization is allowed to
increase ambiguity to possibly enhance security. The work in
this manuscript is distinguished from [25]–[27] as it assumes
that the mapping strategy is available to both the eavesdropper
and the receiver (i.e., not secret), allows stochastic encoding
in the transmitter, considers multiple observations rather than a
single one, and employs different performance metrics leading
to a distinct optimization problem. It is also different from those
studies (such as [22], [23]) that allow stochastic encryption as it
considers direct encoding of a random parameter rather than a
measured deterministic one.

B. Contributions

In this manuscript, estimation theoretic secure transmission
of a scalar random parameter is investigated in the presence
of an eavesdropper in a Gaussian wiretap channel. The aim is
to achieve accurate estimation of the parameter at the intended
receiver while keeping the estimation error at the eavesdropper
above a certain level; or, alternatively, to ensure that the estima-
tion error at the eavesdropper is as large as possible while satisfy-
ing an estimation accuracy constraint at the intended receiver. To
enhance security, stochastic encoding is employed at the trans-
mitter, and the encoder is modeled to perform randomization
between two one-to-one, continuous encoding functions, which
should be designed. It is assumed that the mapping at the encoder
is fully available to the eavesdropper and the receiver. For small
numbers of channel observations, both the eavesdropper and the
receiver are modeled to employ linear MMSE (LMMSE) esti-
mators, and for large numbers of observations, the ECRB metric
is employed both in the receiver and the eavesdropper [30]. This
is because of the fact that even though the optimal estimator in
terms of the MSE metric is the MMSE estimator, the calculations
for its MSE have high computational complexity and do not yield
closed-form expressions in general. LMMSE and ECRB tightly
approximate the optimal metric for small and large numbers of
observations (e.g., see Figs. 2–4), respectively, in our setting, and
they facilitate theoretical analyses with intuitive explanations
based on closed-form expressions. Therefore, based on these
metrics, the optimization problems are formulated to perform
optimal encoding for small and large numbers of observations
separately. Both generic and affine functions are considered in
the proposed encoding scheme, and a number of theoretical
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results on the solutions of the problems are provided. Finally,
numerical examples are presented to illustrate the theoretical re-
sults for both small and large numbers of observations. The main
contributions and novelty in this manuscript can be summarized
as follows:

• The problem of parameter encoding via encoder random-
ization is analyzed to ensure estimation theoretic secure
communication under the assumption that the encoding
scheme is available to the eavesdropper.

• For small numbers of observations, a closed form expres-
sion for the MSE of the LMMSE estimator is derived for
both the receiver and the eavesdropper for the considered
transmission and encoding scheme. The optimization prob-
lems to minimize the MSE at the intended receiver for a
given secrecy target at the eavesdropper and to maximize
the MSE at the eavesdropper for a given estimation accu-
racy limit at the receiver are formulated. The relationship
between the solutions of those problems is characterized.
An optimal solution of the optimization problems is ob-
tained theoretically when the channel of the eavesdropper
is noisier than the channel of the intended receiver. It is
also shown that a simple deterministic affine function can
attain the optimal value. For the case of affine functions,
the monotonicity behavior of the MSE is obtained with
respect to the randomization probability when the encoding
functions are fixed.

• For large numbers of observations, the optimization prob-
lems to minimize the ECRB at the intended receiver for a
given secrecy target at the eavesdropper and to maximize
the ECRB at the eavesdropper for a given estimation accu-
racy limit at the receiver are formulated. The optimizations
problems are theoretically solved when only deterministic
encoding is considered. It is also shown that under symmet-
ric mapping, the ECRB is maximized when the randomiza-
tion probability is 1/2. Also, the monotonicity behavior of
the ECRB is obtained with respect to the randomization
probability when the encoding functions are fixed for this
case, as well.

II. SYSTEM SETUP

Consider the transmission of a scalar parameter θ ∈ Λ to
an intended receiver in the presence of an eavesdropper who
wants to estimate parameter θ. Both the intended receiver and
the eavesdropper obtain n-dimensional observations over their
respective additive noise channels. The aim is to achieve accu-
rate estimation of the parameter at the intended receiver while
keeping the estimation error at the eavesdropper above a certain
level; or, alternatively, to ensure that the estimation error at
the eavesdropper is as large as possible while satisfying an
estimation constraint at the intended receiver. To that aim, the
parameter is encoded by an encoding function f : Λ → Γ. Let
f(θ) denote the encoded version of the parameter. Hence, the
ith observation at the intended receiver can be written as

Yi = f(θ) + Vi, i = 1, 2, . . . , n. (1)

where the noise Vi is modeled as a zero-mean Gaussian random
variable with variance σ2

V , and Vi and θ are assumed to be

Fig. 1. System model for the parameter encoding problem.

independent [12]. On the other hand, the ith observation at the
eavesdropper is

Zi = f(θ) + Wi, i = 1, 2, . . . , n. (2)

where Wi is zero-mean Gaussian noise with variance σ2
W , which

is independent of θ for i = 1, 2, . . . , n. Also, the prior informa-
tion on parameter θ is represented by a probability density func-
tion (PDF) denoted by pθ(θ) for θ ∈ Λ. The signal model in (1)
and (2) can also be employed for flat-fading channels assuming
perfect channel estimation and appropriate equalization [31].
The intended receiver aims to estimate parameter θ based on
observations Y � [Y1, Y2, . . . , Yn]T whereas the eavesdropper
uses observations Z � [Z1, Z2, . . . , Zn]T for estimating θ. The
system model is illustrated in Fig. 1.

The considered system model is also known as the Gaussian
wiretap channel [9], [12], and has been studied extensively
via information theoretical tools, as mentioned in Section I.
In that framework, it is assumed that the eavesdropper knows
the codewords (mapping) in the encoder and has unlimited
resources/time for computation. Therefore, the encoder applies
a stochastic mapping from messages to codewords to ensure
that the message can be kept unknown to the eavesdropper by
exploiting the degradedness of eavesdropper’s channel while
still being able to transmit the message to the intended receiver
at a certain rate.1 Motivated from such a setting, the following
assumptions are made for the rest of this study:

• The encoding function at the transmitter is fully available to
the eavesdropper and the receiver. Therefore, it is possible
that both the eavesdropper and the receiver can utilize
optimal estimators according to a certain metric.

• To enhance security, stochastic encoding is employed and
the encoder is modeled to perform the following mapping:

f(θ) =

{
f1(θ), with probability γ

f2(θ), with probability 1 − γ
(3)

where fk(θ) : Λ → Γ is a continuous and one-to-one func-
tion for k = 1, 2 and γ ∈ [0, 1]. 2

• Each observation is corrupted by independent and identi-
cally distributed noise components. Therefore, based on this

1Unlike the classical Gaussian wiretap channel [9], [12], we consider a
scenario in which the channel of the eavesdropper is not necessarily worse than
that of the intended receiver.

2The stochastic encoder in (3) both facilitates practical implementations and
allows for theoretical investigations. Note that it can also be represented as
f(θ) = f2−X(θ), where X is a Bernoulli random variable with parameter γ
and X is statistically independent of all other variables.
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and the previous assumption, the conditional PDF of the n
observations at the receiver given θ, denoted by p(y|θ), can
be expressed as

p(y|θ) =

n∏
i=1

p(yi|θ) (4)

where y � [y1, y2, . . . , yn]T , p(yi|θ) = γ pV (yi − f1(θ))

+ (1−γ) pV (yi−f2(θ)) and pV (x)= 1√
2πσV

exp{− x2

2σ2
V

}.
Similarly, the conditional PDF of the n observations at the
eavesdropper given θ, p(z|θ), can be stated as

p(z|θ) =
n∏

i=1

p(zi|θ) (5)

where z � [z1, z2, . . . , zn]T , p(zi|θ) = γ pW (zi − f1(θ))
+ (1 − γ) pW (zi − f2(θ)) and pW (x) = 1√

2πσW
exp

{− x2

2σ2
W

}.
In this setting, the encoder should be designed in such a way

that the estimation errors at the eavesdropper or, alternatively,
at the intended receiver satisfy the constraints. It is noted that
the secrecy capacity in information theory is an asymptotic
metric and assumes that n → ∞. In practice, it is also important
to investigate how much secrecy can be achieved in the finite
regime with a small number of observations. For example, [32]
provides new achievability results and converse bounds for the
maximal secret communication rate of wiretap channels for a
given finite blocklength n. Similarly, we focus on the optimal
encoding design in the non-asymptotic region for both small and
large numbers of observations in this work.

It is known that the optimal estimator for Bayesian parameter
estimation in terms of the MSE metric is the MMSE estimator.
However, in most scenarios, the MSE of the optimal MMSE
estimator does not have a closed form expression. Therefore,
even though the encoding operation can be performed with such
an approach by using numerical methods, it does not allow theo-
retical investigations for achieving intuitive understanding of the
parameter encoding problem. It is known that for a large number
of observations, the MSE of the MMSE estimator converges to
the ECRB [30], and for a small number of observations, the MSE
of the LMMSE estimator is a close approximation to the optimal
MMSE (see Figs. 2–4 for an illustration). (Note that the LMMSE
estimator would actually be the optimal MMSE estimator if the
parameter of interest and the observations were jointly Gaussian
random variables.) Therefore, instead of the optimal MMSE, the
ECRB and the LMMSE estimator will be considered in the rest
of the manuscript.

Remark 1: The main reason for employing the MSE metric
in both the receiver and the eavesdropper is that we focus on a
parameter estimation problem in the Bayesian setting in the pres-
ence of an eavesdropper and the MSE metric is widely used in
practice with or without secrecy concerns in such problems. For
example, estimation theoretic secrecy based on the MSE metric
has been considered in various channel scenarios such as Gaus-
sian interference channel [16], multiuser MIMO broadcast chan-
nel [28], sensor network systems with eavesdroppers [18] and
MIMO Gaussian wiretap channel [29]. In addition to parameter

estimation problems, the MSE metric is also utilized to design
practical and implementable methods to degrade performance
of eavesdroppers for enhancing security as an additional layer.

III. SMALL NUMBER OF OBSERVATIONS

In this section, it is assumed that a small number of observa-
tions are available to the intended receiver and the eavesdropper
to estimate θ. As motivated in the previous section, both the
eavesdropper and the intended receiver are modeled to employ
LMMSE estimators for a given number of observations n.

A. Generic Encoding Functions

First, generic encoding functions are considered at the trans-
mitter. To that end, as motivated in [25], the parameter space
and the intrinsic constraints on the functions f1(θ) and f2(θ)
are specified as follows:

• θ ∈ Λ = [a, b].
• fk(θ) ∈ [a, b] for k = 1, 2.
• f1(θ) and f2(θ) are continuous and one-to-one functions.
The LMMSE estimator at the intended receiver can explicitly

be written for given observations y as

θ̂r = E(θ) + Σθ,YΣ−1
Y (y − E(Y)), (6)

and the corresponding MSE can be obtained as

εr = MSE = V ar(θ) − Σθ,YΣ−1
Y ΣT

θ,Y. (7)

where Σθ,Y = [Cov(θ, Y1), Cov(θ, Y2) . . . Cov(θ, Yn)] and
ΣY = E((Y − E(Y))(Y − E(Y))T ). Similarly, the MSE of
the LMMSE estimator at the eavesdropper, εe, can be obtained
for given observations z by using Z instead of Y in (7). Based
on these MSE expressions, the optimization problems can be
proposed as follows:

min
γ,f1(θ),f2(θ)

εr s.t. εe ≥ α1 (8)

and

max
γ,f1(θ),f2(θ)

εe s.t. εr ≤ α2 (9)

where α1 and α2 denote, respectively, the secrecy target for
the first problem and the estimation accuracy (error) limit at
the intended receiver for the second problem. The following
proposition provides a closed form expression for the MSE of
the LMMSE estimator at the intended receiver.

Proposition 1: The MSE (εr) of the LMMSE estimator at the
intended receiver for the encoding model specified in (3) with
given f1(θ), f2(θ) and γ is

εr = V ar(θ) − n (γ c1 + (1 − γ) c2)2

(n − 1)x + τ − nt
(10)

where

x � γ2 r1 + (1 − γ)2r2 + 2 γ (1 − γ)E(f1(θ) f2(θ))

τ � γ r1 + (1 − γ) r2 + σ2
V

t � (γ m1 + (1 − γ) m2)2 (11)
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with mi = E(fi(θ)), ri = E(fi(θ)2) and ci = Cov(fi(θ), θ)
for i = 1, 2.

Proof: Note that ΣY = E(Y YT ) − E(Y)E(Y)T .
Also, E(Yk|θ) = γ f1(θ) + (1 − γ) f2(θ). Then, E(Yk) =
E(E(Yk|θ)) = γ m1 + (1 − γ) m2 for k = 1, 2, . . . , n.
Therefore, E(Y) = (γ m1 + (1 − γ) m2)1, where 1 denotes
the n × 1 column vector of ones. Thus, E(Y)E(Y)T =
(γ m1 + (1 − γ) m2)211T = t11T .

In addition, E(Y 2
k |θ) = γ (f1(θ)2 + σ2

V ) + (1 − γ) (f2(θ)2

+ σ2
V ); hence, E(Y 2

k ) = γ r1 + (1 − γ) r2 + σ2
V = τ for

k = 1, 2, . . . , n. Similarly, E(YjYk|θ) = E(Yj |θ)E(Yk|θ) =
(γ f1(θ) + (1 − γ) f2(θ))2. Then, E(YjYk) = γ2 r1 + (1 −
γ)2 r2 + 2 γ (1 − γ) E(f1(θ) f2(θ)) = x for j, k = 1, 2, . . . , n
and j �= k. Overall, the value of the diagonal elements of ΣY

is τ − t and the rest of the elements are x − t.
Furthermore, Σθ,Y = Cov(θ, Yk)1T and Cov(θ, Yk) =

E(θYk) − E(θ)E(Yk). Note that E(θ Yk) = E(E(θYk|θ)) =
E(θ E(Yk|θ)) = γ E(θf1(θ))+(1 − γ)E(θf2(θ)). Then, Cov
(θ, Yk) = γ (E(θf1(θ))−E(θ)E(f1(θ)))+(1−γ)(E(θf2(θ))
− E(θ)E(f2(θ))) = γ c1 + (1 − γ)c2. Therefore, the MSE
becomes V ar(θ) − Σθ,YΣ−1

Y ΣT
θ,Y = V ar(θ) − (γ c1 +

(1 − γ) c2)21T Σ−1
Y 1. Note that the sum of the elements in

each row of ΣY is the same; therefore, ΣY1 = λ1, where
λ = (n − 1)x + τ − nt. As λ is an eigenvalue of ΣY with
a corresponding eigenvector 1, Σ−1

Y 1 = (1/λ)1 holds. Then,
1T Σ−1

Y 1 = (1/λ) 1T 1 = n/λ. Hence, the MSE becomes
V ar(θ) − (γ c1 + (1 − γ) c2)2n/λ, and inserting the value of
λ = (n − 1)x + τ − nt concludes the proof. �

Proposition 1 provides a tool to calculate the MSE for any
given prior information pθ(θ), encoding scheme (f1(θ), f2(θ),
γ) and number of observations n. Note that Proposition 1 can
similarly be derived for the eavesdropper by using σ2

W instead of
σ2

V whenever necessary. It can be observed that the MSE in (10)
increases when the noise variance increases; therefore, εr < εe

when σ2
V < σ2

W .
It is noted that the optimization problems in (8) and (9) are

related such that the expressions for εr and εe differ only in
the noise variance terms. Therefore, it is possible to find a
relationship between the solutions of (8) and (9), as stated in
the following proposition.

Proposition 2: Suppose that S = {(γ∗, f ∗
1 , f ∗

2)} is the set of
optimal solutions to (8). Let the optimal value of (8) be denoted
as ε∗

r. If α2 is set as α2 = ε∗
r in (9), then the optimal solutions

of (9) satisfy the constraint in (9) with equality, and ε†
e =

max(γ,f1,f2)∈S εe, where ε†
e is the optimal value of (9). Similarly,

let S̄ = {(γ†, f †
1, f †

2)} denote the set of optimal solutions to (9).
If α1 = ε†

e in (8), then the optimal solutions to (8) satisfy the
constraint in (8) with equality, and ε∗

r = min(γ,f1,f2)∈S̄ εr.
Proof: We provide a proof only for the first statement as the

second one can be shown in a similar fashion. Let the MSEs
of the intended receiver and the eavesdropper be denoted, re-
spectively, as εr = T (γ, f1, f2, σ2

V ) and εe = T (γ, f1, f2, σ2
W )

for given γ, f1, and f2. Suppose that (γ†, f †
1, f †

2) is an op-
timal solution to (9) with T (γ†, f †

1, f †
2, σ2

V ) < α2 = ε∗
r. Then,

(γ†, f †
1, f †

2) cannot be in the feasible set of (8) as α2 = min εr

for εe ≥ α1 in (8), implying that T (γ†, f †
1, f †

2, σ2
W ) < α1. Note

that any (γ∗, f ∗
1 , f ∗

2) ∈ S satisfies T (γ∗, f ∗
1 , f ∗

2 , σ2
W ) ≥ α1 >

T (γ†, f †
1, f †

2, σ2
W ), which shows that (γ†, f †

1, f †
2) cannot be an

optimal solution to (9). Therefore, the optimal solution to (9)
should satisfy T (γ†, f †

1, f †
2, σ2

V ) = α2 = T (γ∗, f ∗
1 , f ∗

2 , σ2
V ) =

ε∗
r, and it needs to be in S . Hence, the sufficient space to

search for the optimal solution of (9) reduces to S , and ε†
e =

max(γ,f1,f2)∈S εe. �
The following corollaries immediately follow from

Proposition 2.
Corollary 1: If (γ∗, f ∗

1 , f ∗
2) is a unique solution to (8) with

the optimal value ε∗
r, then it is also a unique solution to (9) for

α2 = ε∗
r.

Corollary 2: If all the optimal solutions to (8) satisfy the
constraint in (8) with equality, then the optimal value of (9), ε†

e,
is equal to α1 for α2 = ε∗

r.
Corollary 3: If (γ†, f †

1, f †
2) is a unique solution to (9) with

the optimal value ε†
e, then it is also a unique solution to (8) for

α1 = ε†
e.

Corollary 4: If all the optimal solutions to (9) satisfy the
constraint in (9) with equality, then the optimal value of (8), ε∗

r,
is equal to α2 for α1 = ε†

e.
As the optimization problems in (8) and (9) require a search

over functions, characterizing the set of optimal solutions in
every case may not be possible. However, Proposition 1 provides
the required expressions to evaluate the objective and constraint
functions for given σ2

W and σ2
V . Based on those expressions,

the following proposition provides a closed form expression
for an optimal solution to (8) and (9) when the channel of
eavesdropper is noisier than that of the intended receiver; that is,
σ2

W > σ2
V .

Proposition 3: If σ2
W > σ2

V , an optimal solution to (8) is
a deterministic affine function, denoted by f ∗(θ) = k∗

1θ + k∗
2,

where

k∗
1 = ±

√
σ2

V

n

(
1

α1
− 1

V ar(θ)

)
(12)

and k∗
2 can be anything as long as f ∗(θ) ∈ [a, b]. Then, the

optimal value of (8) is

ε∗
r =

σ2
V V ar(θ) α1

σ2
W (V ar(θ) − α1) + σ2

V α1
· (13)

Similarly, an optimal solution to (9) is a deterministic affine
function, f †(θ) = k†

1θ + k†
2, where

k†
1 = ±

√
σ2

W

n

(
1

α2
− 1

V ar(θ)

)
(14)

and k†
2 can be anything as long as f †(θ) ∈ [a, b]. Then, the

optimal value of (9) is

ε†
e =

σ2
W V ar(θ) α2

σ2
V (V ar(θ) − α2) + σ2

W α2
· (15)

Proof: First, we focus on the optimization problem in
(9). The denominator of the second term in (10) can be
rewritten as n(x − t) + τ − x, where x − t = V ar(γf1(θ) +
(1 − γ)f2(θ)) and τ − x = γ (1 − γ)E(|f1(θ) − f2(θ)|2) +
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σ2
V . Also, the numerator of the second term in (10) can be

expressed as n Cov(γf1(θ) + (1 − γ)f2(θ), θ)2. Therefore, εe

and εr become

εe = V ar(θ)

− n Cov(f̃ , θ)2

n V ar(f̃) + γ (1 − γ)E (|f1(θ) − f2(θ)|2) + σ2
W

εr = V ar(θ)

− n Cov(f̃ , θ)2

n V ar(f̃) + γ (1 − γ)E (|f1(θ) − f2(θ)|2) + σ2
V

respectively, where f̃ � γf1(θ) + (1 − γ)f2(θ). It is noted that
unless we have the trivial case of f̃ = 0, the following equation
holds:

εr − V

εe − V
=

Δ + σ2
W

Δ + σ2
V

where V = V ar(θ) and Δ � n V ar(f̃) + γ (1 −
γ)E(|f1(θ) − f2(θ)|2). Then, for all feasible γ, f1(θ), f2(θ),

εe = V − (V − εr)
Δ + σ2

V

Δ + σ2
W

≤ V − (V − α2)
Δ + σ2

V

Δ + σ2
W

≤ V − (V − α2)
Δ∗ + σ2

V

Δ∗ + σ2
W

(16)

where Δ∗ = minγ,f1,f2
Δ s.t., εr ≤ α2. Note that the first in-

equality in (16) is due to the fact that εr ≤ α2 in the feasi-
ble region, and the second inequality is due to the fact that
(Δ + σ2

V )/(Δ + σ2
W ) is an increasing function of Δ as σ2

W >
σ2

V with Δ ≥ 0. As (16) provides a global upper bound for
εe, if there exists a feasible (γ, f1, f2) such that εe attains the
global bound, then it is concluded that εe is maximized with it.
A sufficient condition for the existence of such a case is that
the solution of minγ,f1,f2,εr≤α2

Δ satisfies the constraint with
equality, i.e., εr = α2. Therefore, we aim to obtain the solution
of the following problem:

min
γ,f1(θ),f2(θ)

nV ar(f̃) + γ(1 − γ)E
(|f1(θ) − f2(θ)|2) s.t.

n Cov(f̃ , θ)2

n V ar(f̃) + γ (1 − γ)E (|f1(θ) − f2(θ)|2) + σ2
V

≥ V − α2

(17)

Note that for any possible f̃ , which is obtained using a feasible
(γ, f1, f2), there are infinitely many alternative ways of con-
structing it with other feasible (γ, f1, f2)’s. Among all construc-
tions, choosing f̃ = f1 = f2 yields a smaller objective value and
a larger value for the left side of the constraint in (17), implying
that it is the optimal selection. Therefore, the problem reduces
to

min
f̃

V ar(f̃) s.t. V − n Cov(f̃ , θ)2

n V ar(f̃) + σ2
V

≤ α2 (18)

The constraint in (18) can be expressed as

n
(

V ar(θ)V ar(f̃) − Cov(f̃ , θ)2
)

+ σ2
V V ar(θ)

n V ar(f̃) + σ2
V

≤ α2

Note that V ar(θ)V ar(f̃) − Cov(f̃ , θ)2 ≥ 0 for any f̃
due to Cauchy-Schwarz inequality. Therefore, V ar(f̃) ≥
σ2

V (V ar(θ) − α2)/(nα2) for any f̃ . This global lower bound
can be achieved via f̃(θ) = k†

1θ + k†
2 with k†

1 being given by (14)
and k†

2 being selected as any value to guarantee f̃(θ) ∈ [a, b]. It
is noted that when (9) is a feasible problem, |k†

1| ≤ 1. For such
an encoding, Δ∗ = σ2

V (V ar(θ) − α2)/α2 and εr = α2, i.e., the
constraint is satisfied with equality in (17). Therefore, an optimal
solution of (17), which is a deterministic affine function, is also
an optimal solution of (9), which yields the optimal value of

ε†
e =

σ2
W V ar(θ) α2

σ2
V (V ar(θ)−α2)+σ2

W α2
.

Based on the preceding discussion and Corollary 4, it can be
argued that an optimal solution to (8) is a deterministic affine
function when σ2

W > σ2
V . First, notice that any optimal solution

to (9) should satisfy the constraint with equality, i.e., εr = α2.
This is due to the fact for any other solution which does not
satisfy the constraint with equality, the inequality in (16) would
strictly be implying a gap between εe and the global bound,
and it is already shown that this bound can actually be achieved.
Therefore, the result of Corollary 4 can be applied to connect the
solutions of (8) and (9) and to imply that the deterministic affine
functions solve (8) as well under the conditions of Proposition 3.
Via Corollary 4 and (15), the expression in (13) can be obtained
after a rearrangement. �

There are some interesting observations regarding the result
in Proposition 3. First, randomization between two functions
does not bring any benefits over deterministic encoding when
the intended receiver has already a less noisy channel than
the eavesdropper, and the encoding function can be selected
as a simple affine function. Second, for a given α1 (or, α2)
value, ε∗

r (and ε†
e) does not depend on n; however, the slope

of the deterministic affine optimal function decays with 1/
√

n.
This means that the transmit power per channel use should be
decreased as n increases such that the total transmitted signal
power to send θ with n channel uses stays constant. Also, the
constant term in the deterministic affine optimal function does
not have any effects; hence, it can be chosen freely as long as
the function remains in the feasible set.

Even though Proposition 3 provides a closed-form expression
for an optimal solution when σ2

W > σ2
V , it does not bring any

conclusions into the case of σ2
W < σ2

V . In order to obtain the
solutions of the optimization problems in (8) and (9) in this case,
the solution methods provided in [25] can be adopted, and εe and
εr can directly be calculated using (10). In this study, the piece-
wise linear approximation method described in [25] is utilized
to obtain the optimal solutions when σ2

W < σ2
V . In particular,

for fi(θ), the increment in the kth interval in [a, b] is defined as
Δx

(i)
k � fi(a + kΔθ) − fi(a + (k − 1)Δθ) for k = 1, . . . M ,

and the optimization is performed over 2M + 1 variables, that
is, [Δx

(1)
1 , Δx

(1)
2 , . . . , Δx

(1)
M , Δx

(2)
1 , Δx

(2)
2 , . . . , Δx

(2)
M , γ], by

using the Global Optimization Toolbox of MATLAB. In the
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numerical examples, M is taken to be 25, which seems to provide
a good trade-off between accuracy and complexity.

Next, we investigate a special case in which the encoding
function is restricted to be affine.

B. Affine Encoding Functions

In this section, it is assumed that encoding is performed
via affine encoding functions such that f1(θ) = k1θ + k2 and
f2(θ) = s1θ + s2.3 For this case, the MSE of the intended
receiver (and the eavesdropper by using σ2

W ) can be expressed
in terms of k1, k2, s1 and s2 as a corollary to Proposition 1.

Corollary 5: The MSE (εr) of the LMMSE estimator at the
intended receiver for the encoding model specified in (3) when
f1(θ) = k1θ + k2 and f2(θ) = s1θ + s2 is

εr = V ar(θ)
γ (1 − γ) κ + σ2

V

n V ar(θ)(γ k1 + (1−γ)s1)2 + γ (1−γ) κ + σ2
V

(19)

where

κ � E
(
((k1 − s1)θ + (k2 − s2))2

)
. (20)

Proof: For the given f1 and f2, c1 and c2 defined in Propo-
sition 1 become k1 V ar(θ) and s1 V ar(θ), respectively. Hence,
the numerator of the second term in (10) becomes n(γ k1 +
(1 − γ) s1)2 V ar(θ)2. Also, the denominator of (10) can be
rewritten as n(x − t) + τ − x, where x, τ and t are as defined in
(11). Note that (x − t) = γ2k2

1V ar(θ) + (1 − γ)2s2
1V ar(θ) +

2γ(1 − γ)k1s1V ar(θ) = (γk1 + (1 − γ)s1)2 V ar(θ), and τ −
x = γ (1 − γ)κ + σ2

V , where κ is as defined in (20). Af-
ter arranging the terms, the final expression in (19) is
obtained. �

When the encoding functions are restricted to affine functions,
the optimization problems in (8) and (9) involve a search over
only 5 variables instead of functions. Let xa � [γ, k1, k2, s1, s2]
and Ta(xa, σ2

V ) � εr, where εr is as defined in (19). Then, the
optimization problems can be written as

min
xa

Ta(xa, σ2
V ) s.t. Ta(xa, σ2

W ) ≥ α1 (21)

max
xa

Ta(xa, σ2
W ) s.t. Ta(xa, σ2

V ) ≤ α2 (22)

where Ta(xa, σ2
W ) � εe. It is noted that the optimization prob-

lems in (21) and (22) are much easier to solve than those in the
case of encoding with generic functions.

Finally, as the closed form expression for the MSE with
affine encoding can be calculated based on given encoding
coefficients, it is also possible to investigate its behavior as γ
changes. Namely, the aim is to provide regions of γ ∈ [0, 1] in
which the MSE increases or decreases with respect to γ. Such
a characterization is helpful for both theoretical analysis and
gaining intuition on the benefits of randomization. In addition,
it facilitates the specification of the exact optimal solution of γ
for the given encoding functions, i.e., k1, k2, s1, s2, and secrecy

3k1 and k2 should be such that k1θ + k2 ∈ [a, b] for all θ ∈ [a, b]. Similarly,
s1θ + s2 needs to be in [a, b] for all θ ∈ [a, b]. Note that this requires |k1| ≤ 1
and |s1| ≤ 1.

target. The following proposition characterizes the behavior of
the MSE with respect to γ, where γ is taken as a real number
(the case of γ ∈ [0, 1] immediately follows as a corollary).

Proposition 4: Define ν(γ) � ν2γ2 + ν1γ + ν0 with

ν2 � −κ(k2
1 − s2

1)

ν1 � −2 κ s2
1 − 2σ2

V (k1 − s1)2

ν0 � κs2
1 − 2σ2

V (k1 − s1)s1 (23)

where κ is as defined in (20). Then,
• if ν2 = 0 and ν1 > 0, then εr is an increasing (a decreasing)

function of γ for γ > −ν0/ν1 (γ < −ν0/ν1);
• if ν2 = 0 and ν1 < 0, then εr is a decreasing (an increasing)

function of γ for γ > −ν0/ν1 (γ < −ν0/ν1);
• if ν2 > 0, then εr is a decreasing function of γ when γ is in

between the roots of v(γ) = 0, which are κs1−2σ2
V (k1−s1)

κ(k1+s1)

and −s1

k1−s1
, and an increasing function elsewhere;

• if ν2 < 0, then εr is an increasing function of γ when γ is
in between the roots of v(γ) = 0, and a decreasing function
elsewhere;

• if ν1 = ν2 = 0, then εr is constant with respect to γ.
Proof: From (19), the MSE can be expressed as εr =

V ar(θ)h(γ)/(ξg(γ)2 + h(γ)), where h(γ) = γ(1 − γ)κ +
σ2

V , g(γ) = (k1 − s1)γ + s1, and ξ = nV ar(θ) > 0. Consider
the derivative of the MSE with respect to γ, i.e., dεr/dγ. As
the denominator of dεr/dγ is always positive, it is enough to
characterize the sign of its numerator with respect to γ. Let v̂(γ)
denote the numerator of dεr/dγ.4 Then,

ν̂(γ) = h′(γ)
(
ξg(γ)2 + h(γ)

) − h(γ) (2ξg(γ)g′(γ) + h′(γ))

= ξg(γ) (h′(γ)g(γ) − 2h(γ)g′(γ)) � ξ v(γ) (24)

where h′(γ) = (1 − 2γ)κ and g′(γ) = k1 − s1. After inserting
these into (24), ν(γ) becomes

ν(γ) = ((k1 − s1)γ + s1)

× (−κ(k1 + s1)γ + κs1 − 2σ2
V (k1 − s1)

)
= ν2γ2 + ν1γ + ν0 (25)

where ν2, ν1, and ν0 are as given in (23). As the roots of v(γ)

are κs1−2σ2
V (k1−s1)

κ(k1+s1) and −s1

k1−s1
, the conclusions in the proposition

can be obtained by applying the sign test to v(γ). �
The result in Proposition 4 can be used to find the optimal

γ directly when k1, k2, s1 and s2 are fixed. For example, con-
sider a scenario with a single observation (n = 1), σV = 0.01,
σW = 0.5, and a secrecy target of α1 = 0.08. If f1(θ) = θ and
f2(θ) = 1 − θ, where θ is uniformly distributed in [0,1], then
ν2 = 0 and ν1 < 0 with −ν0/ν1 = 1/2 for both εr and εe.
Therefore, when γ > 1/2, the MSE is a decreasing function of
γ and when γ < 1/2 it is an increasing function of γ according
to Proposition 4. Due to the symmetry in this specific problem,
it is possible to restrict γ to γ ∈ [0, 1/2]. Therefore, when γ
increases, the MSEs (both εr and εe) increase monotonically
until γ = 1/2, as well. As the goal is to minimize εr, it is

4The V ar(θ) term is omitted in the expression as it is always positive.
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obvious that γ should be increased until it yields εe = α1 = 0.08
but no more. Finally, γ = 0.3 can be obtained as the optimal
probability, and the corresponding MSE at the intended receiver
becomes εr = 0.07.

IV. LARGE NUMBER OF OBSERVATIONS

In this section, it is assumed that a large number of observa-
tions are available to the intended receiver and the eavesdropper
to estimate θ.5 As motivated in Section II, the ECRB metric is
employed for both the intended receiver and the eavesdropper
in this scenario. The constraints on the parameter space and the
encoding functions are the same as in the previous section.

The ECRB is defined as the expectation of the conditional
CRB with respect to the unknown parameter [30], which is
expressed as

Eθ((I(n)(θ))−1) =

∫ b

a

pθ(θ)
1

I(n)(θ)
dθ � ECRB (26)

where pθ(θ) is the prior PDF of θ, I(n)(θ)−1 corresponds to
the conditional CRB for estimating θ and I(n)(θ) denotes the
Fisher information based on n observations. Therefore, for the
intended receiver, I

(n)
r (θ) can be expressed as

I(n)
r (θ) =

∫ (
∂ log p(y|θ)

∂θ

)2

p(y|θ) dy (27)

with p(y|θ) representing the conditional PDF of the n obser-
vations for a given value of θ [33]. Also, due to (4), I

(n)
r (θ) =

nIr(θ), where Ir(θ) is the Fisher information based on p(y|θ) =
γ pV (y − f1(θ)) + (1 − γ) pV (y − f2(θ)). Therefore,

Ir(θ) =

∫ ∞

−∞

u(θ)2

p(y|θ)
dy (28)

where

u(θ) = γ
1√

2πσV

e
−(y−f1(θ))2

2σ2
V

(y − f1(θ))

σ2
V

f
′
1(θ)

+ (1 − γ)
1√

2πσV

e
−(y−f2(θ))2

2σ2
V

(y − f2(θ))

σ2
f

′
2(θ) (29)

and

p(y|θ) =
γ√

2πσV

e
−(y−f1(θ))2

2σ2
V +

1 − γ√
2πσV

e
−(y−f2(θ))2

2σ2
V (30)

In addition, when (28) is employed in (26), the ECRB at the
intended receiver, Er, is obtained as

Er =
1

n

∫ b

a

pθ(θ)
1

Ir(θ)
dθ . (31)

Similarly, the ECRB at the eavesdropper can be obtained by
defining Fisher information Ie(θ) based on p(z|θ) = γ pW (z −

5It should be emphasized that the ECRB approaches the MSE of the MMSE
estimator in the asymptotic region, which refers to either a large number of
observations or high SNR/SINR scenarios [30]. When stochastic encoding is
employed, there exists a certain interference term in the received signal limiting
the effective SINR. Therefore, the ECRB metric is not reliable for a small number
of observations even for a small noise variance.

f1(θ)) + (1 − γ) pW (z − f2(θ)), which can be calculated as in
(28)–(30). Then, the ECRB at the eavesdropper, Ee, is

Ee =
1

n

∫ b

a

pθ(θ)
1

Ie(θ)
dθ . (32)

Therefore, similarly to (8) and (9), the optimization problems
can be proposed as follows:

min
γ,f1(θ),f2(θ)

Er s.t. Ee ≥ η1 (33)

max
γ,f1(θ),f2(θ)

Ee s.t. Er ≤ η2 (34)

where η1 and η2 denote the secrecy target for the first problem
and the estimation accuracy limit at the intended receiver for the
second problem. Even though the simplification to (28) may not
be possible for the generic case, calculating the ECRB is still
easier and more practical for a large number of observations
than calculating the MSEs of estimators such as the MAP or
MMSE estimators.

Remark 2: Similarly to the results in Proposition 2 and
Corollary 1–4, the exact relationship between the solutions of
(33) and (34) can be obtained based on a similar approach, which
is not repeated here for brevity.

It is noted that if the encoding function is deterministic, then
simplification is possible for both Er and Ee. The following
proposition provides the solutions to the optimization problems
in (33) and (34) in the absence of randomization.

Proposition 5: Suppose that a deterministic encoding func-
tion f(θ) is employed at the transmitter. For a given feasi-
ble secrecy target η1, the optimal value of the optimization
problem in (33) is η1 σ2

V /σ2
W . Furthermore, any f(θ) with

(σ2
W /n)

∫ b

a pθ(θ)/f ′(θ)2dθ = η1 is an optimal deterministic
encoding function for (33). Similarly, for a given estima-
tion accuracy limit η2, the optimal value of the optimization
problem in (34) is η2 σ2

W /σ2
V . Furthermore, any f(θ) with

(σ2
V /n)

∫ b

a pθ(θ)/f ′(θ)2dθ = η2 is an optimal deterministic en-
coding function for (34).

Proof: When a deterministic encoding function f(θ) is em-
ployed at the transmitter, Ir(θ) in (28) simplifies to Ir(θ) =
f ′(θ)2/σ2

V [25]. Similarly, Ie(θ) = f ′(θ)2/σ2
W . Then, the opti-

mization problem in (33) becomes

min
f(θ)

σ2
V

n

∫ b

a

pθ(θ)
1

f ′(θ)2
dθ

s.t.
σ2

W

n

∫ b

a

pθ(θ)
1

f ′(θ)2
dθ ≥ η1 . (35)

As the integral term is identical in both the objective and the
constraint functions, the argument in Proposition 5 follows by
choosing an encoding function that satisfies the constraint with
equality. The result for (34) can be justified similarly. �

Proposition 5 shows that if there is no randomization in the
encoding function, then the ratio of Er/Ee depends only on
the noise variances in the channels of the eavesdropper and
the intended receiver. Therefore, any deterministic encoding
function can be used at the transmitter as long as it satisfies
the constraints. Also, it is noted that the only difference between
using a generic deterministic encoding function and an affine
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deterministic encoding function is that the former may support
a larger set of feasible η1 (or, η2) values.

Finally, it is possible to obtain some theoretical and in-
tuitive results for the generic stochastic encoding scheme in
(3) by using the convexity of the Fisher information with re-
spect to the conditional distribution [34]. Specifically, let the
Fisher information based on p1(y|θ) and p2(y|θ) be denoted
by I1(θ) and I2(θ), respectively. If p3(y|θ) = γp1(y|θ) + (1 −
γ)p2(y|θ), then the Fisher information I3(θ) based on p3(y|θ)
satisfies I3(θ) < γI1(θ) + (1 − γ)I2(θ) given that γ ∈ (0, 1)
and p1(y|θ) �= p2(y|θ). This implies that I3(θ) is also a convex
function of γ for any given θ ∈ [a, b], and it always remains
below the linear line connecting I1(θ) and I2(θ).

This convexity property is helpful for providing a few in-
tuitive and analytical results. For example, a lower bound for
the ECRB can be obtained when f1(θ) and f2(θ) correspond
to affine encoding. To that end, consider the affine encoding
scheme described in Section III-B. Then, I1(θ) = k2

1/σ2 and
I2(θ) = k2

2/σ2. Then, I3(θ) < (γk2
1 + (1 − γ) k2

2)/σ2 ∀θ ∈
[a, b]. Therefore, for the ECRB of the intended receiver, it

is obtained that Er >
σ2

V

n(γk2
1+(1−γ) k2

2)
and for the ECRB of

the eavesdropper, it is obtained that Ee >
σ2

W

n(γk2
1+(1−γ)k2

2)
. The

following proposition provides a result for symmetric encoding:
Proposition 6: Consider the symmetric mapping with

f1(θ) = g(θ) and f2(θ) = g0 − g(θ) such that g(θ) ∈ [a, b] and
g0 − g(θ) ∈ [a, b] for all θ ∈ [a, b]. Then, the ECRB is maxi-
mized at γ = 1/2.

Proof: Let γ = γ0 ∈ [0, 1]. For the given model, I(θ) =
g′(θ)2

∫ ∞
−∞ û(θ)2/p(y|θ) dy, where

û(θ) = γ0
1√
2πσ

e
−(y−g(θ))2

2σ2
(y − g(θ))

σ2

− (1 − γ0)
1√
2πσ

e
−(y+g(θ)−g0)2

2σ2
(y + g(θ) − g0)

σ2

� m(y, θ, γ0) (36)

and

p(y|θ) = γ0
1√

2πσV

e
−(y−g(θ))2

2σ2
V

+ (1 − γ0)
1√

2πσV

e
−(y+g(θ)−g0)2

2σ2
V � d(y, θ, γ0).

(37)

If the change of variables with g0 − y = ŷ is applied
in the integration for I(θ), it is obtained that I(θ) =

g′(θ)2
∫ ∞

−∞
m(ŷ,θ,1−γ0)2

d(ŷ,θ,1−γ0) dŷ. Therefore, I(θ) attains the same
value for γ = γ0 and γ = 1 − γ0; hence, it is a symmetric
function of γ around γ = 1/2 for any θ ∈ [a, b]. Due to this
fact and the convexity of I(θ) with respect to γ, its minimum
occurs at γ = 1/2 for all θ ∈ [a, b], implying that the ECRB is
maximized at γ = 1/2. �

Finally, the behavior of the ECRB with respect to γ can be
investigated for the general encoding scheme in (3) based on
the convexity property, as stated in the following proposition.
(Similar results can also be derived for Ie(θ).)

Proposition 7: Let dIr(θ)
dγ |γ=0 + � d0 and dIr(θ)

dγ |γ=1 − �
d1. Then,

• if d1 < 0 for all θ ∈ [a, b], Ir(θ) is monotone decreasing
with γ, implying that the ECRB is monotone increasing
with γ ∈ (0, 1);

• if d0 > 0 for all θ ∈ [a, b], Ir(θ) is monotone increasing
with γ, implying that the ECRB is monotone decreasing
with γ ∈ (0, 1);

• if d0 < 0 and d1 > 0 for a given θ ∈ [a, b], Ir(θ) has a
minimum γ∗ ∈ (0, 1). Furthermore, if γ∗ minimizes Ir(θ)
for all θ ∈ [a, b], then Er is maximized at γ = γ∗

Proof: Due to the strict convexity of Ir(θ) with respect to γ,
d2Ir(θ)

dγ2 > 0 holds for γ ∈ (0, 1). If d1 < 0 for all θ ∈ [a, b], then
dIr(θ)

dγ < 0 for all γ ∈ (0, 1) as the value of the derivative only
increases as γ increases. Hence, Ir(θ) is a monotone decreasing
function of γ for all θ ∈ [a, b], which implies that Er is monotone
increasing. Similarly, if d0 > 0 for all θ ∈ [a, b], dIr(θ)

dγ > 0 for
all γ ∈ (0, 1); hence, Ir(θ) is a monotone increasing function
of γ for all θ ∈ [a, b], which implies that Er is monotone
decreasing. Finally, if d0 < 0 and d1 > 0, then via a similar
argument, there exists a γ = γ∗ such that dIr(θ)

dγ |γ=γ∗ = 0, and
it is the minimum for Ir(θ), and the rest of the arguments in the
proposition follow from (31). �

The following point should be noted related to γ∗ in Propo-
sition 7. Even though there may not exist such a γ∗ which is
the minimum for all θ ∈ [a, b] in general, Er can still have a
maximizer in γ ∈ (0, 1). Hence, it is only a sufficient condition,
and the symmetric mapping given in Proposition 6 is an example
in which this condition is satisfied.

Remark 3: The monotonicity results are important to gain
intuition about the benefits of randomization and provide a
practical tool and guide to obtain the optimal value of γ for
given functions f1(θ) and f2(θ). For example, if the designer
fixes the encoding functions to decrease system complexity,
then the problem reduces to finding the optimal γ to satisfy
the secrecy targets. (In some other scenarios, it may help reduce
the search space.) However, in order to obtain the solutions of the
optimization problems in (33) and (34) in general, similarly to
the previous section, the piecewise linear approximation method
described in [25] can be utilized, and Ee and Er are calculated
based on (26)–(32).

Remark 4: Even though the ECRB metric is also utilized
in [25], the current problem setup is significantly different
as it considers encoder randomization, multiple observations
(n > 1), and the availability of encoding information at the
eavesdropper. ECRB is only an optimization metric for the per-
formance of the estimator at the receiver in [25], i.e., optimizing
it implies improved overall performance. However, in this study,
ECRB is used only when n is sufficiently large; hence, it is rather
directly a tight approximation of the optimal MSE value in the
asymptotic region. Also, in [25], different metrics are utilized
in the receiver (ECRB) and the eavesdropper (MSE of LMMSE
estimator) whereas in this section, ECRB is utilized both in the
intended receiver and the eavesdropper. Due to these reasons,
most of the theoretical discussions in [25] cannot be applied to
the current study.
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Fig. 2. ECRB, LMMSE and MMSE versus n for two simple encoding
scenarios.

V. NUMERICAL RESULTS

In this section, numerical examples are provided to investi-
gate the theoretical results and the solution of the optimization
problems proposed in Sections III and IV.

A. Justification for LMMSE Estimator and ECRB Metric

In this section, we provide numerical examples to illustrate
the motivation behind using different approaches for the cases
of small and large numbers of observations. In all examples, the
corresponding ECRB and the MSEs for the MMSE and LMMSE
estimators are plotted versus the number of observations n. The
SNR is defined as 10 log10(1/σ2), where σ2 is the variance of
the zero-mean Gaussian noise. In the first example, we consider
a simple scenario in which the parameter is not encoded, i.e.,
f(θ) = θ. In the second example, the parameter is encoded
by a simple piecewise linear deterministic encoding function
such that f(θ) = 2θ/3 for θ ∈ [0, 0.5] and f(θ) = (4θ − 1)/3
for θ ∈ [0.5, 1]. In both examples, it is assumed that θ has
uniform distribution in θ ∈ [0, 1] and the SNR is set to 5 dB.
The results are shown in Fig. 2 (top and bottom figures), and
the corresponding encoding functions are provided in the upper
right corner of each figure. It is observed that the MSEs of the
LMMSE and MMSE estimators are close to each other when n
is small whereas the ECRB converges to the MSE of the MMSE
estimator for large n values in both figures. In the absence of
encoding, the MSE performance of the MMSE and LMMSE
estimators is almost the same for large numbers of observations,
as well. However, the performance of the LMMSE estimator
deviates from that of the MMSE estimator and the ECRB for
large numbers of observations in the second example (with
nonlinear encoding function), which motivates the use of ECRB
in this regime in the general case. It is also noted that the ECRB
is not a lower bound, and it rather identifies the optimal estimator
behavior in asymptotic scenarios.

Fig. 3. ECRB, LMMSE and MMSE versus n, where θ has uniform distribution
in [0,1].

Fig. 4. ECRB, LMMSE and MMSE versus n, where θ has beta distribution
with parameters (2,3) in [0,1].

Next, we provide two numerical examples in Figs. 3 and 4
under stochastic encoding as modeled in (3). In both of the exam-
ples, it is assumed that γ = 0.8, f1(θ) = θ, and f2(θ) = 1 − θ
and θ ∈ [0, 1]. Also, θ has uniform distribution in Fig. 3, and beta
distribution with parameters (2,3), i.e., pθ(θ) = 12 θ (1 − θ)2,
in Fig. 4. It is observed that for both SNR values in the figures,
the MSE of the LMMSE estimator and the ECRB are close to
the MSE of the MMSE estimator when n is small and large,
respectively.6 Another important observation is that as the noise
variance decreases, the ECRB also reduces rapidly. For small

6At high SNRs, the MSE of the MMSE estimator may be in between the
ECRB and the MSE of the LMMSE estimator for medium values of n; hence,
a more conservative approach can be taken and the ECRB can be used for the
eavesdropper and the LMMSE metric can be used for the intended receiver in
such a case.
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values of n, the ECRB cannot capture the interference effect on
the error due to the randomization employed in the encoder, and
it can yield optimistic values for the MSE, which motivates the
use of the LMMSE estimator in such scenarios. On the other
hand, there is a performance gap between the LMMSE and
MMSE estimators for large values of n. This is due to the fact
that practical estimators start correctly deciding which mode
of encoding (f1 or f2) is employed with larger observations.
However, the LMMSE is unable to achieve such a decision, mo-
tivating the use of the ECRB in such scenarios as it is very tight
in that region. Therefore, the LMMSE estimator and the ECRB
can be utilized for small and large numbers of observations,
respectively, at both the receiver and the eavesdropper.

Note that the MMSE solutions in these examples are obtained
based on the following approach: For a given θ, n–dimensional
realizations y are obtained empirically at each run of Monte-
Carlo simulations, and the conditional MSE is obtained. Then,
the MMSE estimator θ̂(y) = E(θ|Y = y) is analytically cal-
culated for a given y at each run. Finally, the MSE is obtained
by taking the expectation of the conditional MSE over pθ(θ)
analytically. The total number of Monte-Carlo runs is set to 105.

B. Small Number of Observations

In this section, numerical results are provided for the case of
small number of observations. In all of the examples in this
section, it is assumed that the number of observations is 5,
i.e., n = 5, and θ is uniformly distributed in [0,2]. The SNRs
of the intended receiver and the eavesdropper are defined as
10 log10(1/σ2

V ) and 10 log10(1/σ2
W ), where σ2

V and σ2
W are the

variances of the zero-mean Gaussian noise at each observation
of the intended receiver and the eavesdropper, respectively. The
following strategies are evaluated in the examples:

Stochastic generic: This strategy corresponds to the solution
of (8) (and alternatively (9)), which provides optimal generic
encoding functions f1(θ) and f2(θ), and the probability γ.

Stochastic affine: This strategy corresponds to the solution of
(21) (and alternatively (22)), which provides the optimal affine
encoding functions f1(θ) = k1θ + k2 and f2(θ) = s1θ + s2,
and the probability γ.

Deterministic generic: This strategy corresponds to the so-
lution of (8) (and alternatively (9)) when a deterministic generic
encoding function f(θ) is employed at the transmitter.

Deterministic affine: This strategy corresponds to the solu-
tion of (21) (and alternatively (22)) when a deterministic encod-
ing function f(θ) = k1θ + k2 is employed at the transmitter.

First, we consider the minimization of the MSE at the intended
receiver for a given secrecy level at the eavesdropper, i.e., the
optimization problems in (8) and (21).

In the first example, two different scenarios are considered,
and the MSE of the intended receiver is plotted versus the
SNR of the intended receiver. In Scenario 1, the SNR of the
eavesdropper is 20 dB, and the secrecy target α1 = 0.26 and
in Scenario 2, the SNR of the eavesdropper is 15 dB, and the
secrecy target α1 = 0.04. In Fig. 5, it is observed that when
the SNR of the intended receiver is higher than the SNR of
the eavesdropper, all strategies yield the same performance

Fig. 5. MSE of intended receiver (εr) versus SNR of intended receiver for two
different scenarios.

in both scenarios. This result is actually proved formally in
Proposition 3, and the optimal value for the MSE of the intended
receiver can be achieved by using a simple deterministic affine
function. For example, when the SNR of the intended receiver
is 30 dB, f(θ) = 0.013 θ is an optimal encoder for Scenario
1, yielding ε∗

r = 0.0872, and f(θ) = 0.0663 θ is an optimal
encoder for Scenario 2, yielding ε∗

r = 0.0014 according to (12)
and (13). It is also observed in Fig. 5 that when the SNR of
the intended receiver is lower than that of the eavesdropper,
there is a performance gap between different strategies. In that
region, the deterministic affine functions perform worse than the
other strategies, and applying randomization to affine functions
brings significant performance gains. Also, the generic functions
yield lower MSE values than affine functions. In Scenario 1,
stochastic generic functions bring a small performance gain
over deterministic generic functions. However, stochastic and
deterministic generic functions yield the same performance in
Scenario 2, implying that randomization is not necessary if a
generic function is employed in that scenario. Also, the MSE
of the intended receiver is equal to α1 for all strategies when
the SNRs of the intended receiver and the eavesdropper are the
same.

In Fig. 6, the MSE of the intended receiver is plotted ver-
sus the secrecy target at the eavesdropper when the SNRs of
the eavesdropper and the intended receiver are 15 and 5 dB,
respectively. Obviously, as the secrecy target becomes larger,
the MSE of the intended receiver increases, as well. When the
secrecy target is very small (≈0) or very ambitious (≈V ar(θ)),
all the strategies have similar performance. For medium val-
ues of α1, it is observed that the deterministic affine function
strategy performs significantly worse than the other strategies.
However, the stochastic affine strategy has significantly closer
performance to that of generic functions. When α1 is less than
0.24, randomization does not bring any improvements over the
deterministic generic strategy. However, as α1 gets larger (that



6116 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 23, DECEMBER 1, 2019

Fig. 6. MSE of intended receiver (εr) versus secrecy target (α1) when SNRs
of eavesdropper and intended receiver are 15 and 5 dB, respectively.

Fig. 7. Optimal encoding functions for different strategies when SNRs of
eavesdropper and intended receiver are 10 and 0 dB, respectively, and secrecy
target α1 is 0.28.

is, a relatively large MSE is required at the eavesdropper),
stochastic generic functions have slightly better performance
than deterministic ones. This implies that it is not possible to
claim that deterministic generic functions are an optimal class
of functions in all settings even though their performance is not
far from that of stochastic generic functions.

In Fig. 7, the optimal encoding functions for different strate-
gies are plotted when the SNRs of the eavesdropper and the
intended receiver are 10 and 0 dB, respectively, and the secrecy
target α1 is 0.28. Some important observations can be made
from the figure related to the optimal functions. First, it is
noticed that the deterministic affine function maps θ ∈ [0, 2] to
a smaller interval ([0, 0.213]) to solve the optimization problem
and has a low degrees of freedom in the mapping operation.
On the other hand, the stochastic affine strategy sends an affine
function f1(θ) = 0.4625 θ + 1.075 with probability 0.604 and
nothing (i.e., f2(θ) ≈0) with probability 0.396. Furthermore, the

Fig. 8. Optimal encoding functions for different strategies when SNRs of
eavesdropper and intended receiver are 15 and 5 dB, respectively, and secrecy
target α1 is 0.04.

characteristics of the generic functions are quite different from
those of the affine functions. The optimal deterministic generic
function is f(θ) ≈2 if θ < 0.1232, and f(θ) ≈0 otherwise.7

This implies that the optimal deterministic function actually con-
verges to a non-uniform quantizer such that θ values are mapped
to 0 and 2. Furthermore, the stochastic generic function strategy
randomizes between two quantizer-like generic functions to
outperform the optimal deterministic encoding function strategy.
The intuition behind such a scheme is that a quantizer-like
encoder already assigns ≈2 and ≈0 for a set of θ values and
provides one layer of ambiguity. Then, randomization over these
two quantizer-like functions provides an extra layer of ambiguity
about the parameter to achieve required secrecy targets for the
eavesdropper.

In Fig. 8, the optimal encoding functions for different strate-
gies are plotted when the SNRs of the eavesdropper and the
intended receiver are 15 and 5 dB, respectively, and the secrecy
target α1 is 0.04. In this case, the secrecy constraint is not as
ambitious as the previous one. Similarly to the previous case,
the deterministic affine function maps θ ∈ [0, 2] to a smaller
interval ([0, 0.746]). The stochastic affine approach sends the
original value of the parameter with probability 0.8775 but it
maps θ to ≈2 with probability 0.1225. According to Fig. 5, the
deterministic and stochastic affine approaches yield the MSE
values of 0.1923 and 0.088, respectively, illustrating the benefits
of randomization. In addition, the optimal deterministic generic
function (and also the optimal stochastic generic function) has
different characteristics than the one in Fig. 7. In particular,
it has three different regions; namely, f(θ) ≈2 for θ < 0.57,
f(θ) ≈0 for θ > 1.43, and f(θ) decreases monotonically for

7Note that the encoding functions are required to be one-to-one functions in
this study; therefore, even though they are not allowed to stay constant over an
interval, it is easy to make sure that they are arbitrarily close to being constant
and still do not violate the one-to-one assumption. Also note that if f(θ) is
an optimal deterministic solution, then f̄(θ) = f̄0 ± f(θ) is also an optimal
solution as long as f̄(θ) ∈ [a, b], where f̄0 is a constant.
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Fig. 9. MSE of eavesdropper (εe) versus SNR of eavesdropper when SNR of
intended receiver is 5 dB, and estimation accuracy limit α2 is 0.24.

0.57 ≤ θ ≤ 1.43, yielding an MSE value 0.0597. This implies
that when the secrecy target is not very high, the determinis-
tic generic encoding function does not actually behave like a
non-uniform quantizer.

Proposition 4 can be utilized to derive the probability values
for the stochastic affine strategy theoretically for given affine
functions f1 and f2. For example, if the parameters of Fig. 8 are
used in Proposition 4, it is obtained that ν2 < 0 for the MSEs of
both the eavesdropper and the intended receiver, and according
to the root test given in the proposition, the MSE decreases as
γ increases when γ ∈ [0, 1]. For γ = 0, εe is found as 1/3 >
α1 = 0.04; hence, γ has to be increased until εe = α1 = 0.04 to
minimize εr. After some algebra, γ can be obtained as 0.8775.

We also provide an example for the problem of maximizing
the MSE at the eavesdropper for a given estimation accuracy
limit at the intended receiver (i.e., the optimization problems
in (9) and (22)). In Fig 9, the MSE of the eavesdropper is
plotted versus the SNR of the eavesdropper when the SNR
of the intended receiver is 5 dB and the estimation accuracy
limit α2 is 0.24. It is observed that when the SNR of the
eavesdropper is lower than the SNR of the intended receiver,
all the solutions have the same performance; that is, using an
optimal deterministic affine function is sufficient as claimed in
Proposition 3. However, when the SNR of the eavesdropper
increases, the MSE of the eavesdropper keeps decreasing for
the deterministic affine strategy. Performing randomization over
affine functions stops such a decline in the MSE and creates an
MSE floor at the eavesdropper. Using generic functions yields
even a higher MSE floor, where the stochastic approach performs
slightly better than the deterministic one.

Finally, in Fig. 10, the MSE of the intended receiver (εr)
is plotted versus the secrecy target α1, and the MSE of the
eavesdropper (εe) is plotted versus the estimation accuracy limit
α2 when the SNRs of the eavesdropper and the intended receiver
are 5 and 15 dB, respectively. In this scenario, it is already
established that all the methods have the same performance.
Note that εr can be kept at relatively low levels for α1 < 0.2;

Fig. 10. εr versus α1 and εe versus α2 when SNRs of eavesdropper and
intended receiver are 5 and 15 dB, respectively.

then, it increases rapidly as the secrecy demand becomes more
ambitious. Also, εe increases at a high rate when α2 is lower
than 0.15, but further relaxing the estimation accuracy limit at
the intended receiver does not bring significant benefits in terms
of the MSE level at the eavesdropper.

It is noted that Proposition 2 and Corollary 1-4 establish the
direct relationship between the optimization problems in (8) and
(9). Also, based on Proposition 3, it has already been established
that the conditions of Corollary 2 and 4 are satisfied when the
SNR of the intended receiver is higher than the SNR of the
eavesdropper; hence, their results can be applied. This can also
be verified in Fig. 10. For example, given a secrecy level of
α1 = 0.2, the minimum MSE value at the intended receiver
is obtained as εr = 0.043 after solving (8). Furthermore, for
a given estimation accuracy limit of α2 = 0.043, the maximum
MSE value at the eavesdropper becomes εe = 0.2 after solving
(9). A similar relationship is also observed when the SNR of
the intended receiver is lower than the SNR of the eavesdropper
according to Figs. 6 and 9.

C. Large Number of Observations

In this section, the numerical examples are provided for a
large number of observations. In all the examples in this section,
it is assumed that the number of observations is 1000, i.e.,
n = 1000. Similarly to the previous section, it is assumed that
θ is uniformly distributed in [0,2] and the SNRs are defined
in the same way. Also, the stochastic generic, stochastic affine
and deterministic function strategies are evaluated in a similar
fashion. The stochastic generic strategy corresponds to the solu-
tion of (33) and alternatively (34). The stochastic affine strategy
also solves (33) or (34) with the additional assumption that the
encoding functions are affine; that is, f1(θ) = k1θ + k2 and
f2(θ) = s1θ + s2. Based on Proposition 5, there will be no de-
terministic affine and deterministic generic strategies separately
in this section, and the solution of the deterministic strategy is
directly evaluated via Proposition 5.
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Fig. 11. ECRB of intended receiver (Er) versus SNR of intended
receiver when SNR of eavesdropper is 10 dB, and target secrecy level η1 is
0.001.

Fig. 12. ECRB of eavesdropper (Ee) versus SNR of eavesdropper when
SNR of intended receiver is 10 dB, and estimation accuracy limit η2 is 0.001.

In this part, we consider the minimization (maximization) of
the ECRB at the intended receiver (eavesdropper) for a given
secrecy level (estimation accuracy limit) at the eavesdropper
(intended receiver) in Figs. 11 and 13 (Figs. 12 and 14). First,
the ECRB of the intended receiver (eavesdropper) is plotted
versus the SNR of the intended receiver (eavesdropper) when
the SNR of the eavesdropper (intended receiver) is 10 dB, and
the secrecy target η1 = 0.001 (and the estimation accuracy limit
η2 = 0.001). In Fig. 11 (Fig. 12), it is observed that the determin-
istic functions yield the worst performance and randomization
is beneficial at all SNR values of the intended receiver (eaves-
dropper) for a large number of observations, which was not the
case for a small number of observations. Note that the stochastic
generic and affine functions have the same performance when
the SNR of the intended receiver is lower than that of the eaves-
dropper. However, the stochastic generic functions outperform

Fig. 13. ECRB of intended receiver (Er) versus secrecy target (η1) for two
different scenarios.

Fig. 14. ECRB of eavesdropper (Ee) versus estimation accuracy limit (η2)
for two different scenarios.

the stochastic affine functions when the SNR of intended receiver
is higher than the SNR of the eavesdropper. Note that the ECRB
versus SNR curve for the deterministic functions is a linear line
as explained in Proposition 5. Also, the ECRB of the intended
receiver (eavesdropper) is equal to η1 (η2) for all the strategies
when the SNRs of the intended receiver and the eavesdropper
are same.

Next, in Fig. 13 (Fig. 14), the ECRB of the intended receiver
(eavesdropper) is plotted versus the secrecy target (estimation
accuracy limit) for two different scenarios. In both scenarios, the
SNR of the eavesdropper (receiver) is 10 dB and the SNR of the
intended receiver (eavesdropper) is 5 and 20 dB in the first and
second scenarios, respectively. In the first (second) scenario in
Fig. 13 (Fig. 14), the performances of the stochastic strategies
are almost the same and they are better than the deterministic
solution. Furthermore, in the second (first) scenario in Fig. 13
(Fig. 14), the stochastic generic solution has better performance
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than the stochastic affine solution; hence it has the overall best
performance. In that case, it is interesting to note that as η1 (η2)
increases, the performance gap between the stochastic solutions
and the simple deterministic solution increases, as well. This
shows that randomization can bring significant performance
improvements over the deterministic solution in the case of a
large number of observations.

Finally, Proposition 6 and 7 can be utilized in the numerical
examples to further analyze the results. For example, in Fig. 11,
when the SNR of the eavesdropper is 10 dB, and the SNR of
the intended receiver is 15 dB, with η1 = 0.001, the solution
of the optimal stochastic affine encoding strategy is found
as f1(θ) = 0.4824θ + 1.0352, f2(θ) = 0.9648 − 0.4824θ, and
γ = 0.5. Note that according to Proposition 6, this is a sym-
metrical mapping; therefore, the ECRB of the eavesdropper is
maximized at γ = 0.5. Also, as this encoding function satisfies
the secrecy constraint with equality, Proposition 6 implies that
other γ values would be infeasible for this particular f1 and f2.
Also, again in Fig. 11, when the SNR of the intended receiver
is 5 dB, the solution of the optimal stochastic affine encod-
ing strategy is found as f1(θ) = 0.4274 θ + 0.2597, f2(θ) =
0.4274 θ + 0.8989, and γ = 0.5. In order to employ Proposition
7, it can be shown that d0 < 0 and d1 > 0 for all θ ∈ [0, 2].
Actually, I(θ) is constant for a given γ for this given f1 and
f2, and γ = 0.5 minimizes I(θ) (as it is constant, basically
for all θ ∈ [a, b]). Therefore, the ECRB of the eavesdropper is
maximized at γ = 0.5.

It is important to mention that the closed-form expressions
(e.g., Proposition 1, Corollary 5, and eqns. (26)–(30)) obtained in
the theoretical parts (Sections III and IV) are used to calculate the
LMMSE and ECRB values in the numerical examples. The per-
formance of the theoretically optimal solutions (e.g., Proposition
3 and 5) is compared with the simulations for verification and the
same performance results are obtained. However, the curves are
not duplicated in the figures for brevity/clarity of presentation.

D. Computational Complexity

The dimension of the search space and the number of mul-
tiplications required to calculate the constraint and objective
functions are both important factors about the complexity of the
proposed methods. In the case of the stochastic generic function
approach, the optimization is performed over 2M + 1 variables,
where M is the number of piecewise regions. For the determin-
istic generic solutions, the optimization is over M variables. The
affine solutions require optimization over five and two variables
for the stochastic and deterministic cases, respectively. When
Proposition 3 and 5 are utilized, no search is required and the
solutions can be obtained directly. Also, the intuition provided by
Proposition 4 can reduce the search space to four variables for the
stochastic affine solutions in the small number of observations
case. For large numbers of observations, the search space for
the stochastic generic solution can be reduced to 2M based on
Proposition 6 when the conditions of the proposition hold.

For small numbers of observations, we use the expressions
in Proposition 1 to calculate the MSE. In the calculations, the
most costly terms are the expectation terms such as E(f1(θ) θ)

and E(f2(θ) θ). To calculate these terms, which include one-
dimensional integrals, one of the possible ways is to employ
Riemann sums, each of which includes S terms for a given
step size. Then, when the stochastic and deterministic generic
functions are used, calculating the objective function requires
O(14S) and O(5S) multiplications, respectively. For the affine
solutions, we do not have any of these terms, which implies a
complexity of O(1). As the only difference between the objec-
tive and constraint is the noise variance term, the complexity
does not double for calculating both functions. It is important to
note that the computational complexity does not depend on n.

For large numbers of observations, the overall expression re-
quires double integration and complexity of O(14S1S2), where
the Riemann sums have S1 and S2 terms. Even though the ECRB
calculation is more complex than calculating the MSE of the
LMMSE estimator, it also does not depend on n. Note that
the optimal MMSE expression would require n + 1 integrals
instead of two; hence, it is possible to tightly approximate the
optimal MSE performance by using the ECRB with a much
lower complexity. Finally, when the conditions of Corollaries
1–4 are satisfied, it is possible to connect the optimization
problems in (8) and (9) (or, (33) and (34)) so that it is sufficient
to solve one of the problems to obtain the solutions of both.

VI. CONCLUDING REMARKS

Estimation theoretic secure transmission of a random scalar
parameter has been investigated in a Gaussian wiretap channel
model, and various constrained optimization problems have
been proposed in terms of estimation accuracy performance of
the intended receiver and the eavesdropper. The results have
shown that for small numbers of observations, when the SNR of
the intended receiver is higher than that of the eavesdropper, the
deterministic affine solution forms a class of optimal functions,
which verifies the theoretical results. When the SNR of the in-
tended receiver is lower than that of the eavesdropper, stochastic
generic functions have the best performance in general; however,
depending on the target secrecy/accuracy value, deterministic
generic functions can provide an optimal solution, as well.
Stochastic affine functions can provide significant performance
gains over deterministic affine functions, and they can be an
attractive alternative solution to generic functions. For large
numbers of observations, deterministic generic/affine functions
have worse performance than stochastic solutions at all SNRs
and in all the considered scenarios. Therefore, stochastic en-
coding is also attractive in this region of operation. Similarly
to the previous case, stochastic generic functions have the best
performance in general; however, stochastic affine functions can
also provide an optimal solution in certain scenarios. Intuitively,
the main factor that determines whether the stochastic methods
bring performance gains or not is the quality and quantity of the
measurements available to the eavesdropper given the secrecy
target. If the eavesdropper has a large number of observations
or a small number of observations with a better SNR than the
intended receiver, then it is encoder’s task to make estimation
more challenging for the eavesdropper; hence, stochastic encod-
ing provides performance gains especially in such scenarios. As
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a relevant future work, it would be interesting to investigate the
MSE-based and information theoretically optimal solutions in a
common and fair framework to provide theoretical comparisons
and connections.
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