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Abstract—We investigate the equilibrium behavior for the
decentralized quadratic cheap talk problem in which an encoder
and a decoder, viewed as two decision makers, have misaligned
objective functions. In prior work, we have shown that the
number of bins under any equilibrium has to be at most
countable, generalizing a classical result due to Crawford and
Sobel who considered sources with density supported on [0, 1].
In this paper, we refine this result in the context of exponential
and Gaussian sources. For exponential sources, a relation between
the upper bound on the number of bins and the misalignment
in the objective functions is derived, the equilibrium costs are
compared, and it is shown that there also exist equilibria with
infinitely many bins under certain parametric assumptions. For
Gaussian sources, it is shown that there exist equilibria with
infinitely many bins.

I. INTRODUCTION

Signaling games and cheap talk are concerned with a class
of Bayesian games where a privately informed player (encoder
or sender) transmits information (signal) to another player
(decoder or receiver), who knows the probability distribution
of the possible realizations of the private information of the
encoder. In these games/problems, the objective functions of
the players are not aligned, unlike in classical communication
problems. The cheap talk problem was introduced in the
economics literature by Crawford and Sobel [1], who obtained
the striking result that under some technical conditions on the
cost functions, the cheap talk problem only admits equilibria
that involve quantized encoding policies. This is in significant
contrast to the usual communication/information theoretic
case where the objective functions are aligned. Therefore, as
indicated in [1], the similarity of players’ interests (objec-
tive functions) indicates how much and to which extent the
information should be revealed by the encoder; namely, the
message about the private information should be strategically
designed and transmitted by the encoder. In this paper, we
discuss extensions and generalizations of strategic information
transmission and cheap talk by focusing on exponential and
Gaussian distributions (rather than sources with a density
supported on [0, 1] as studied in [1]), and characterize the
equilibrium solutions and properties for these kind of sources.

A. Problem Definition

The focus of this paper is to address the following problems:
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1) Number of Bins: In our previous work [2], we showed
that, since the distances between the optimal decoder actions
are lower bounded by [2, Theorem 3.2], the quantized nature
of an equilibrium holds for arbitrary scalar sources, rather than
only for sources with a density supported on [0, 1] as studied
in the seminal paper by Crawford and Sobel [1]. Hence, for
bounded sources, it can easily be deduced that the number
of bins at the equilibrium must be bounded. For example, for
a uniform source on [0, 1] and quadratic objective functions,
[1] provides an upper bound on the number of quantization
bins as a function of the bias b. Accordingly, for unbounded
sources, the following problems are of interest:

e For unbounded sources, either one-sided or two-sided,
is there an upper bound on the number of bins at the
equilibrium as a function of bias b? As a special case,
is it possible to have only a non-informative equilibrium;
i.e., the upper bound on the number of bins is one?

o Does there exist an equilibrium with infinitely many bins?

At this point, one can ask why bounding the number of bins
is important. Finding such bound is useful since if one can
show that there only exists a finite number of bins, and if for
every bin there is a finite number of distinct equilibria, then
the total number of equilibria would be finite; this will allow
for a feasible setting where the decision makers can coordinate
their policies.

Furthermore, in a recent work, where we generalized sig-
naling games and cheap talk problems to dynamic (multi-
stage) setups, a crucial property that allowed the generalization
was the assumption that the number of bins for each stage
equilibrium, conditioned on the past actions, is uniformly
bounded [3, Theorem 2.4]. In view of this, showing that the
number of bins is finite would be a useful technical result.

2) Equilibrium Selection: Attaining the upper bound N
on the number of bins at the equilibrium implies that there
exists at least one equilibrium with 1,2, ... N bins due to [I,
Theorem 1], and thus, a new question arises: among these
multiple equilibria, which one is preferred by the players?
Results in [1] show that an equilibrium with more bins is
preferable for both the encoder and the decoder for any
source with a density bounded on [0, 1]. Accordingly, for more
general sources, one can ask that
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o if there exists more than one equilibrium, which one of
these should be selected by the encoder and the decoder?

« to what extent can one argue that more bins lead to better
performance?

Indeed, it is important to know whether in general a higher
number of bins implies more desirable equilibria. If such a
monotonic behavior holds for a class of sources, then both
players will prefer to have an equilibrium with the highest
number of bins.

B. Preliminaries

In cheap talk, there are two players with misaligned ob-
jective functions. An informed player (encoder) knows the
value of an M-valued random variable M and transmits an X-
valued random variable X to another player (decoder), who
generates his M-valued decision U upon receiving X. The
policies of the encoder and the decoder are assumed to be
deterministic; i.e., # = v¢(m) and u = v¥(x) = y¢(v¢(m)).
Let ¢*(m,u) and c?(m,u) denote the cost functions of the
encoder and the decoder, respectively, when the action w is
taken for the corresponding message m. Then, given the en-
coding and decoding policies, the encoder’s induced expected
cost is J¢ (7%,7%) = E[c?(M,U)], whereas the decoder’s
induced expected cost is J? (v¢,7%) = E [¢?(M,U)]. Here,
we assume real valued random variables and quadratic cost
functions; i.e, M = X = R, ¢¢ (m,u) = (m —u —b)° and
¢ (m,u) = (m —u)®, where b denotes a bias term which
is common knowledge between the players. We assume the
simultaneous-move game; i.e., the encoder and the decoder
announce their policies at the same time. Then a pair of
policies (7*¢,v*?) is said to be a Nash equilibrium [4] if

Ty e,y ) < Ty, ) for all 9¢ € T°

1
Jd(’y*’e,v*’d) < Jd(v*’e,vd) for all v% € T¢, M

where T'° and I'? are the sets of all deterministic (and Borel
measurable) functions from M to X and from X to M,
respectively. As observed from the definition in (1), under the
Nash equilibrium, each individual player chooses an optimal
strategy given the strategy chosen by the other player.

Due to results obtained in [1] and [2], we know that the
encoder policy consists of convex cells (bins) at a Nash
equilibrium'. Now consider an equilibrium with N bins, and
let the k-th bin be the interval [my_1, my) with mg < mq <
... < my and let [}, denote the length of the k-th bin; i.e.,
lp =mgp —myg_1 for k=1,2,..., N (Note that mg = 0 and
mpy = +oo for an exponential source, whereas my = —oo
and my = o0 for a Gaussian source). By [2, Theorem 3.2],

I'We note that, unlike Crawford and Sobel’s simultaneous Nash equilibrium
formulation, if one considers a Stackelberg formulation (see [4, p.133] for
a definition), then the problem would reduce to a classical communication
problem since the encoder would be committed a priori and the equilibrium
would not be quantized; i.e., there exist affine equilibria [2], [3], [5]-[7].
Recently, the problem of strategical coordination has been considered in
[8]; specifically, the information design and a point-to-point strategic source-
channel coding problems (originated from the Bayesian persuasion game [9])
between an encoder and a decoder with non-aligned utility functions have
been investigated under the Stackelberg equilibrium.

at the equilibrium, decoder’s best response to encoder’s action
is characterized by

Up = E[M|mk_1 <M< mk] )

for the k-th bin; i.e., the optimal decoder action is the centroid
for the corresponding bin. From encoder’s point of view, the
best response of the encoder to decoder’s action is determined
by the nearest neighbor condition [2, Theorem 3.2] as follows:

uk+1fmk:(mkfuk)beémk:W#er. 3)

Due to the definition of Nash equilibirum [4], these best
responses in (2) and (3) must match each other, and only
then the equilibrium can be characterized; i.e., for a given
number of bins, the positions of the bin edges are chosen by
the encoder, and the centroids are determined by the decoder.
Alternatively, the problem can be considered as a quantization
game in which the boundaries are determined by the encoder
and the reconstruction values are determined by the decoder.

Note that at the equilibrium of this quantization game, the
relation between the encoder cost and the decoder cost can be
expressed as J¢(y*¢, ") = JI(y*¢ %) + b2, Since the
difference between the encoder cost and the decoder cost is
always b? regardless of the number of bins, the equilibrium
preferences (i.e., which equilibrium to select) for the players
are aligned under the quadratic cost assumption.

Based on the above, the problems we consider in this paper
can be formulated more formally as follows:

1) Number of Bins: For a given finite (or infinite) N, does
there exist an equilibrium; i.e., is it possible to find the optimal
encoder actions (the boundaries of the bins) mg, mq,...,my
and decoder actions (the centroids of the bins) w1, uo, ..., uy
which satisfy (2) and (3) simultaneously? Here two possible
different methods are:

(1) Lloyd’s Method I: After the
mo, m1,...,my, determine u, us, ..., uyx by (2), and
after updating uq,usg,...,uy, find the corresponding
mg, m1,...,my by (3). Then, continue this iteration.
For this approach, the convergence of this Lloyd-Max
iteration is the key issue.

(ii) Fixed-point approach: By combining (2) and (3),

initial selection of

my, = E[M‘mkfl§M<mkH2‘E[M|mk§M<mk+1} +b
is obtained for £ = 1,2,...,N. Then, the problem
reduces to determining whether there exists a fixed
vector mg,mq, ..., my satisfying these equations.

2) Equilibrium Selection: Let J»V denote the decoder
cost at the equilibrium with N bins. Then, is it true that
JEN > JhNFL for any finite N, or even, is J&N > J&o if
an equilibrium with infinitely many bins exists?

C. Related Literature

Cheap talk and signaling game problems find applications
in networked control systems when a communication chan-
nel/network is present among competitive and non-cooperative
decision makers [4], [10]. Also, there have been a number
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of related results in the economics and control literature in
addition to the seminal work by Crawford and Sobel, which
are reviewed in [2], [3] (see [11] for an extensive survey).

The quantized nature of the equilibrium makes game theory
connected with the quantization theory. For a comprehensive
survey regarding the history of quantization and results on the
optimality and convergence properties of different quantization
techniques (including Lloyd’s methods), we refer to [12]. In
particular, [13] shows that, for sources with a log-concave
density, Lloyd’s Method I converges to the unique optimal
quantizer. It was shown in [14] and [15] that Lloyd’s Method
I converges to the globally optimal quantizer if the source den-
sity is continuous and log-concave, and if the error weighting
function is convex and symmetric. For sources with bounded
support, the condition on the source was relaxed to include
all continuous and positive densities in [16], and convergence
of Lloyd’s Method I to a (possibly) locally optimal quantizer
was proved. The number of bins of an optimal entropy-
constrained quantizer is investigated in [17], and conditions
under which the number of bins is finite or infinite are
presented. As an application to smart grids, [18] considers
the design of signaling schemes between a consumer and an
electricity aggregator with finitely many messages (signals);
the best responses are characterized and the maximum number
of messages (i.e., quantization bins) are found using Lloyd’s
Method II via simulation.

The existence of multiple quantized equilibria necessitates
a theory to specify which equilibrium point is the solution of
a given game. Two different approaches are taken to achieve
a unique equilibrium. One of them reduces the multiplicity
of equilibria by requiring that off-the-equilibrium-path beliefs
satisfy an additional restriction (e.g., by shrinking the set of
players’ rational choices) [19], [11]. As introduced in [20], the
other approach presents a theory that selects a unique equilib-
rium point for each finite game as its solution; i.e., one and
only one equilibrium points out of the set of all equilibrium
points of this kind (e.g., see [21] for the application).

D. Contributions

(1) Under the exponential source assumption with a negative
bias; i.e., b < 0, we obtain an upper bound on the
number of bins at the equilibrium and show that the
equilibrium cost reduces as the number of bins increases.

(i1) Under the exponential source assumption with a positive
bias; i.e., b > 0, we prove that there exists a unique
equilibrium with N bins for any N € N and there is
no upper bound on the number of bins; in fact, there
exist equilibria with infinitely many bins. Further, the
equilibrium cost achieves its minimum at the equilibrium
with infinitely many bins.

Under the Gaussian source assumption, we show that

there always exist equilibria with infinitely many bins

regardless of the value of b.

(iii)

Due to space constraints, here we provide only the proof
sketches; the detailed proofs are available in [22].

II. EXPONENTIAL DISTRIBUTION

In this section, the source is assumed to be exponential and
the number of bins at the equilibria is investigated. Before
delving into the technical results, we observe the following
fact:

Fact 2.1: Let M be an exponentially distributed r.v. with a
positive parameter \: i.e., the probability distribution function
(PDF) of M is f(m) = Ae™™ for m > 0. The expectation
and the variance of an exponential r.v. truncated to the interval

[a,b] are E[M|a < M < b = %—i—a—ﬁ and
Var (Mla < M <b) = 35 — M—fﬂi}_a)_z, respectively.

The following result shows the existence of an equilibrium
with finitely many bins. Here, |x| denotes the largest integer
less than or equal to x.

Proposition 2.1: Suppose M is exponentially distributed
with parameter \. Then, for b < 0, any Nash equilibrium has
at most |—5}5 + 1] bins with monotonically increasing bin-
lengths.

Proof: Since uy = E[M|my_1 < M < my = oo] =
my—1 + % it follows that
% =uny —mn—1 = (My—1 —un—1) — 2b
> (uy—1 —mpy_2) —2b= (mn_o —un—_2) — 2(2b)

- ui —mo — (N —1)(2b) > —(N — 1)(2b).

Here, the inequalities follow from the fact that the exponential
PDF is monotonically decreasing, which implies that bin-
lengths are monotonically increasing; i.e., I > lr_1. Thus,

for b <0, N <

— 5y + 1J

This is an important result as it provides us with a closed
form expression for the maximum bit rate required by a certain
system to operate at a steady state. For example, there can be
at most one bin at the equilibrium (i.e., a non-informative equi-
librium) if N < | — 555 +1] <26 —55 <1 b< —5;.
However, this result does not characterize the equilibrium
completely; i.e., it does not give a condition on the existence of
an equilibrium with two or more bins. The following theorem
characterizes the equilibrium with two bins, and forms a basis
for equilibria with more bins:

Theorem 2.1: When the source has an exponential dis-
tribution with parameter )\, there exist only non-informative
equilibria if and only if b < f%. An equilibrium with at
least two bins is achievable if and only if b > —i.

Proof Sketch: Consider the two bins [0 = mg,m;) and
[m1,m2 = o0). Then, the centroids of the bins (the decoder
actions) are u; = + L T and uy = % + my. In view of

is obtained. |

X e mi_1
(3), an equilibrium with these two bins exists if and only if
1 m 1
Ama (= pp— L) =~ 4b. 4
o ( Lap ) > )

Note that in (4), m; = 0 is always a solution; however, in
order to have an equilibrium with two bins, we need a non-zero
solution to (4); i.e., my1 > 0. Investigating further gives that the
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equilibrium with two bins can be achieved only if b > 7%_
In this case, m; = +Wo (—(2 + 2)\b)e’(2+2>‘b)) +2(5 +0b),
where Wy (ze®) = x for —1 < z < 0 is the principal branch
of the Lambert W -function. |

Contrarily to the negative bias case, the number of bins at
the equilibrium is not bounded when the bias is positive. The
following theorem investigates the case in which b > 0:

Theorem 2.2: When the source has an exponential distri-
bution with parameter A, for b > 0 and any N € N,

(1) There exists a unique equilibrium with N bins,

(i) The bin-lengths are monotonically increasing.
Further, since the two statements above hold for any N €
N, there exists no upper bound on the number of bins at an
equilibrium.

Proof Sketch: Matching the best responses of the encoder

and decoder; i.e., solving (2) and (3) simultaneously, leads to
following recursion for bin-lengths:

2
g(lk) = X + 2b — h(lk+1) N for k& < N — 2, (5)

with the initial condition g(Iy_1) = 2 + 2b. Here, g(lx) £
lkef,lilk_l and h(ly) 2 eﬂlkik_l The analysis on this recursion
and g and h functions leads to monotonically increasing bin-
lengths. Further, the solution to the recursion in (5) exists for
any N € N. [ ]

Theorem 2.2 shows that, when b > 0, there exists an
equilibrium with N bins for any finite N € N. The following
shows the existence of equilibria with infinitely many bins:

Theorem 2.3: For an exponential source and positive bias
b > 0, there exist equilibria with infinitely many bins. In
particular, all bins must have a length of [*, where [* is the
solution to g(I*) = % 4 2b — h(I*).

Proof Sketch: The existence of a fixed point solution to

the recursion in (5) proves the statement. |

So far, we have shown that at the equilibrium there is an
upper bound on the number of bins when b < 0; i.e., there
can exist only finitely many equilibria with finitely many bins.
On the other hand, when b > 0, there is no upper bound on
the number of bins at the equilibrium, and even there exist
equilibria with infinitely many bins. Therefore, at this point, it
is interesting to examine which equilibrium is preferred by the
decision makers; i.e., which equilibrium is more informative
(has smaller cost).

Theorem 2.4: The most informative equilibrium is reached
with the maximum possible number of bins:

(1) for b < 0, if there are two different equilibria with K
and N bins where N > K, the equilibrium with N bins
is more informative.

(ii) for b > 0, the equilibria with infinitely many bins are the
most informative ones.

Proof Sketch: For any finite N € N, comparing the
decoder costs between an equilibrium with N bins, N + 1
bins, and infinitely many bins yields the desired result. [ ]

Theorem 2.4 implies that, among multiple equilibria, the
one with the maximum number of bins must be chosen by the
players; i.e., the payoff dominant equilibrium is selected [20].

IIT. GAUSSIAN DISTRIBUTION

Let M be a Gaussian r.v. with mean x and variance o?;

ie. M ~ N(p,0%). Let ¢(m) = —L_e~"" be the PDF of

a standard Gaussian r.v., and let ®(b) = f_boo ¢(m)dm be its
cumulative distribution function (CDF). Then, the expectation
of a truncated Gaussian r.v. is the following:

Fact 3.1: The mean of a Gaussian r.v. M ~ N (u,0?) trun-

cated to [a,b] is E[M|a < M < b] = pu — g%

Now we consider an equilibrium with two bins:

Theorem 3.1: When the source has a Gaussian distribution
as M ~ N(u,0?), there always exists an equilibrium with
two bins regardless of the value of b.

Proof Sketch: Consider the two bins (—oco = mg,m;)
and [mq, ma = 00). The centroids of the bins (the action of the
mi—p my—p
decoder) are u; = p— O'i(mﬁ %@_l).
Then, by utilizing (3), an equilibrium with two bins exists if
and only if

mi—p mi—p
ml—u+”<1¢( k) (M >>+b

and us = pu+o

2 \ 1 e(m) e
L CH O
= 20— ——— 4+ —~L = —. 6
“T1- O(c)  @(c) o ©
- A 9o 00 L 6 :
Defining f(c) 2¢ T—o( T @(q and observing

that (6) has always a unique solution, which assures that there
always exists an equilibrium with two bins regardless of b. B

Since the PDF of a Gaussian r.v. is symmetrical about its
mean 4, and monotonically decreasing in the interval [y, c0),
the following can be obtained using a similar reasoning as in
Proposition 2.1:

Proposition 3.1: Suppose there is an equilibrium with N
bins for a Gaussian source M ~ N (u1,0?). Then,

—o0, lim f(¢) = oo, and f’(¢) > 0 show
c— 00

(1) if b < 0, bin-lengths are monotonically increasing and
the number of bins in [, 00) is upper bounded,
(i) if b > 0, bin-lengths are monotonically decreasing and
the number of bins in (—oo, p] is upper bounded.
Proof Sketch: For b < 0 and any bin in [u,00), we
obtain ug — mi_1 = E[M|mg_—1 < M < mi] —mp_1 <o
by applying an inequality on the upper bound of the Mill’s
ratio [23]; i.e., 1f<(1f()c') < @“ for ¢ > 0. Then, a similar
approach as in Proposition 2.1 yields the desired result due
to the monotonicity of a Gaussian PDF on [u,00). Similar
arguments hold for b > 0 on (—oo, . [ |
After showing that there always exists an equilibrium with
two bins independent of b, we may ask whether there always
exists an equilibrium with N bins, or infinitely many bins. The
following theorem answers the second part of this question:
Theorem 3.2: For the Gaussian source M ~ N (u,0?),
there exist equilibria with infinitely many bins.
Proof Sketch: The proof requires individual analysis
for the positive and the negative b values. For b > 0,
first, it is shown that finite bin-lengths are lower and upper
bounded as 2b < [, < 2b + 20. Then, since the number of
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bins in (—oo, u| is bounded for b > 0 by Proposition 3.1,
the position of the left-most bin edge is investigated, and
by utilizing the bounds on bin-lengths, it is proved that
w— L%J(Qa —2b) —20 < mp < u+ 2b+ o. Observe
that the set % £ [p— |&](20 —2b) — 20, u+ 2b+ o] x
[2b, 2b4+20] x [2b, 2b+20] x - - - (where {m1, 12,13, -} € X))
is a convex and compact set by Tychonoff’s theorem [24],
and based on the left-most bin-edge and the bin-lengths, the
other bin-edges can be represented by m; =m + 23:2 l;.
Hence, another convex and _compact set ¢ can be defined
such that {my,ma, - } € . Further, at the equilibrium, the
best responses of the encoder and the decoder in (2) and (3)
can be combined to define a mapping as follows:

[ E[M|mo<M<m [4E[M|mi<M<ms] | p ]
miy 2 +
Mo lE[M\m1<M<m2]42~]E[M\m2<M<m3] +b
A
m= = :
my E[M|mk_1<M<mk]42»IE[M|mk<J\l<mk+1] +b

(>

7 (m). )

Note that the mapping 7 (m) : A — J is continuous under
the point-wise convergence, and hence, under the product
topology. Further, since (countably) infinite product of real
intervals is a locally convex vector space, .# is a locally
convex space. Hence, there exists a fixed point for the mapping
Z such that m* = Z(m*) by Tychonoff’s fixed-point
theorem [24]. This proves the statement. |

IV. CONCLUDING REMARKS

In this paper, the Nash equilibrium of cheap talk has
been characterized for exponential and Gaussian sources. For
exponential sources, it has been shown that the number of
bins is bounded for b < 0, whereas there exist equilibria with
infinitely many bins for b > 0. Further, it has been proved
that, as the number of bins increases, the equilibrium cost of
the encoder and decoder reduces. For Gaussian sources, there
always exists an equilibrium with infinitely many bins.

Future work includes extending the analysis to arbitrary
sources with semi-infinite support and two-sided infinite sup-
port, and the investigation of upper bounds on the number
of bins and the relation between the number of bins and the
equilibrium costs of the players (i.e., equilibrium selection
problem). Further, the existence and convergence of equilibria;
i.e., under what conditions the best responses of the encoder
and the decoder match each other, can be analyzed. It is
also interesting to analyze the performance loss due to the
misalignment between the objective functions in order to
obtain comparisons with optimal quantizers.
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