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ABSTRACT

PARTITIONING MODELS FOR SCALING
DISTRIBUTED GRAPH COMPUTATIONS

Gündüz Vehbi Demirci

Ph.D. in Computer Engineering

Advisor: Cevdet Aykanat

August 2019

The focus of this thesis is intelligent partitioning models and methods for

scaling the performance of parallel graph computations on distributed-memory

systems. Distributed databases utilize graph partitioning to provide servers with

data-locality and workload-balance. Some queries performed on a database may

form cascades due to the queries triggering each other. The current partitioning

methods consider the graph structure and logs of query workload. We introduce

the cascade-aware graph partitioning problem with the objective of minimizing

the overall cost of communication operations between servers during cascade pro-

cesses. We propose a randomized algorithm that integrates the graph structure

and cascade processes to use as input for large-scale partitioning. Experiments

on graphs representing real social networks demonstrate the effectiveness of the

proposed solution in terms of the partitioning objectives.

Sparse-general-matrix-multiplication (SpGEMM) is a key computational ker-

nel used in scientific computing and high-performance graph computations. We

propose an SpGEMM algorithm for Accumulo database which enables high per-

formance distributed parallelism through its iterator framework. The proposed

algorithm provides write-locality and avoids scanning input matrices multiple

times by utilizing Accumulo’s batch scanning capability and node-level paral-

lelism structures. We also propose a matrix partitioning scheme that reduces

the total communication volume and provides a workload-balance among servers.

Extensive experiments performed on both real-world and synthetic sparse ma-

trices show that the proposed algorithm and matrix partitioning scheme provide

significant performance improvements.

Scalability of parallel SpGEMM algorithms are heavily communication bound.

Multidimensional partitioning of SpGEMM’s workload is essential to achieve

higher scalability. We propose hypergraph models that utilize the arrangement of
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processors and also attain a multidimensional partitioning on SpGEMM’s work-

load. Thorough experimentation performed on both realistic as well as syn-

thetically generated SpGEMM instances demonstrates the effectiveness of the

proposed partitioning models.

Keywords: Graph partitioning, propagation models, information cascade, social

networks, randomized algorithms, scalability, databases, accumulo, graphulo, par-

allel and distributed computing, sparse matrices, sparse matrix-matrix multipli-

cation, SpGEMM, matrix partitioning, data locality, hypergraph partitioning,

numerical linear algebra.



ÖZET

TÜRKÇE BAŞLIK

Gündüz Vehbi Demirci

Bilgisayar Mühendisliği, Doktora

Tez Danışmanı: Cevdet Aykanat

Ağustos 2019

Bu tezin odak noktası, dağıtık bellekli sistemlerde paralel çizge hesaplamalarının

performansını ölçeklendirmek için akıllı bölümleme modelleri ve yöntemleridir.

Bu kapsamda dağıtık veritabanları, sunucular arasında veri-yerelliği ve iş-

yükü dengesi sağlamak için grafik bölümlemeden yararlanır. Veritabanında

gerçekleştirilen bazı sorgular, birbirlerini tetikleyen sorgular nedeniyle ardışıklık

gösterebilir. Mevcut bölümleme yöntemleri, grafik yapısını ve sorgu-iş yükünün

kayıtlarını dikkate almaktadır. Bu çalışmada ardışıklık gösteren işlemler

sırasında sunucular arasındaki toplam iletişim maliyetini en aza indirgemek

amacıyla ardışıklığa duyarlı grafik bölümleme problemi ortaya konmaktadır.

Bu haliyle tarafımızdan büyük ölçekli bölümleme için girdi olarak kullanmak

üzere grafik yapısını ve ardışık işlemleri birlikte değerlendiren rastsal bir al-

goritma önerilmektedir. Gerçek sosyal ağları temsil eden çizgeler üzerinde

yapılan deneyler, önerilen çözümün bölümlendirme hedefleri açısından etkinliğini

göstermektedir.

Seyrek-genelleştirilmiş-matris çarpımı (SyGEMM), bilimsel hesaplamalarda

ve yüksek performanslı çizge hesaplarında kullanılan anahtar bir hesaplama

çekirdeğidir. Yineleyici çerçevesi sayesinde yüksek performanslı dağıtık

hesaplama yapabilen Accumulo veritabanı için tarafımızdan bir SyGEMM algo-

ritması önerilmektedir. Önerilen algoritma, Accumulo’nun toplu tarama özelliğini

ve sunucu düzeyinde paralellik yapılarını kullanarak yazma-yerelliği sağlar ve

matrislerini birden fazla kez taranmasına neden olmaz. Ayrıca bu çalışmada

sunucular arasında toplam iletişim hacmini azaltan ve iş yükü dengesi sağlayan

bir matris bölümleme şeması önerilmektedir. Konuya dönük olarak gerçek prob-

lemlerde ortaya çıkan ve sentetik olarak üretilen seyrek matrisler üzerinde yapılan

kapsamlı deneyler, önerilen algoritmanın ve matris bölümleme şemasının önemli

performans iyileştirmeleri sağladığını göstermektedir.

Paralel SyGEMM algoritmalarının ölçeklendirilebilirliği yoğun bir şekilde

iletişim işlemlerine bağlıdır. SyGEMM’in iş yükünün çok boyutlu bölümlenmesi
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daha yüksek ölçeklenebilirlik elde etmek için şarttır. Bu itibarla işlemcilerin dizil-

imini dikkate alarak ve aynı zamanda SyGEMM’in iş yükü üzerinde çok boyutlu

bölümleme elde eden hiperçizge modelleri tarafımızdan önerilmektedir. Yapılan

kapsamlı deneyler, önerilen bölümleme modellerinin etkinliğini göstermektedir.

Anahtar sözcükler : Çizge bölümleme, yayılma modelleri, sosyal ağlar, rastsal al-

goritmalar, ölçeklenebilirlik, veritabanları, accumulo, graphulo, paralel ve dağıtık

hesaplama, seyrek matrisler, seyrek matris-matris çarpımı, SyGEMM, matris

bölümleme, veri yerelliği, hiperçizge bölümleme, doğrusal cebir.
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Chapter 1

Introduction

We consider graph/hypergraph partitioning models for scaling the performance

of parallel graph computations on distributed-memory systems.

Graph partitioning methods are utilized for distributed databases to provide

data-locality and workload-balance among servers [5–9]. Partitioning is gener-

ally performed by considering graph structure and query workload [3, 4, 10–13].

Online social networks (OSNs) are popular graph database applications where

users are represented by vertices and edges/hyperedges represent their links.

Graph/Hypergraph partitioning tools (e.g., Metis [14], Patoh [15]) are used for

partitioning the graph data by considering social ties and link activities. Users

are assigned to servers determined by the partitioning and contents related to a

user are stored by the respective server.

Some queries performed on a database may trigger the execution of further

operations. For example, users in OSNs frequently share contents generated by

others, and therefore; a social network application’s query workload may include

re-sharing operations in the form of cascades. The database needs to copy the

re-shared contents to the servers containing the users that will eventually need

to access this content. Moreover, a cascade process may involve users that are

not necessarily the neighbors of the originator. Therefore, if the link activities
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are considered independently, a database partitioning obtained through consid-

ering only the graph structure would not directly capture the underlying cas-

cade processes (content propagation processes). For this purpose, we develop

a cascade-aware graph partitioning to minimize the propagation traffic between

servers while providing a workload-balance. We address the connection between

the partitioning of cascade-aware and other graph partitioning objectives.

Designing efficient parallel graph algorithms is considered to be a difficult

task due to the requirement of irregular data accesses and high communication-

to-computation ratios in parallel graph algorithms [1, 16]. Graph Basic Linear

Algebra Subprogram (GraphBLAS) specification enables a broad variety of graph

algorithms to be recast in terms of sparse linear algebraic operations. Therefore,

efficient parallelization of GraphBLAS kernels is beneficial for distributed graph

computations. Sparse-general-matrix-multiplication (SpGEMM) forms a basis

for GraphBLAS specification and enables expressing GraphBLAS primitives by

replacing multiplication and addition operations with user-defined operations [27].

An SpGEMM algorithm for Accumulo NoSQL database is provided in Gra-

phulo library [24] to implement GraphBLAS kernels and enable big data com-

putations inside a database system [27]. We seek for alternatives to enhance

SpGEMM’s efficiency in the Accumulo database and propose a new SpGEMM

algorithm. Additionally, we also propose a matrix partitioning scheme for the

proposed SpGEMM algorithm to optimize the total communication volume and

workload-balance among servers. The algorithm provided in Graphulo library

has a trade-off between achieving write-locality and accessing entries of input

matrices multiple times. Our solution mitigates this trade-off effectively and of-

fers significant improvements. The efficiency of the proposed algorithm is further

improved by utilizing the proposed matrix partitioning scheme.

A broad research is made for improving performance of SpGEMM on dis-

tributed and shared-memory parallel computing platforms [1,28,29]. Some of the

studies are concentrated on partitioning SpGEMM’s workload among processors

that are logically arranged as multidimensional grids (i.e., one-dimensional (1D),

2



2D and 3D SpGEMM algorithms) [1, 2]. Given the problem’s sparsity struc-

ture, graph/hypergraph partitioning models to provide effective data and task

distribution among processors are also considered [28, 30–32]. However, these

partitioning methods are not fully concerned with the dimensionality of the pro-

cessor arrangements and the partitioning is performed considering 1D-parallel

SpGEMM algorithms

A major drawback of the previously proposed partitioning models is that 1D

SpGEMM algorithms face communication bottlenecks as the number of proces-

sors increases, which is due to the significant increase in the number of messages

handled by processors. The number of messages exchanged by processors may

introduce significant latency overheads, thus reducing the effectiveness and scal-

ability of parallel algorithms. These overheads can be alleviated by considering

extra dimensions in processor grids. We propose Hypergraph partitioning-based

models that integrate the dimensionality available in processor grids and also

attain multidimensional partitioning on SpGEMM’s workload. Our partitioning

models encode the communication and computational requirements of 2D and

3D SpGEMM algorithms and considerably improve the scalability and efficiency

of these algorithms.

The rest of the thesis is organized as follows: Chapter 2 provides background

information on graph and hypergraph partitioning problems. Chapter 3 intro-

duces the cascade-aware graph partitioning for large graph databases. Chap-

ter 4 discusses scaling sparse matrix-matrix multiplication algorithm for the Ac-

cumulo database. Chapter 5 presents hypergraph partitioning models for 2D and

3D SpGEMM algorithms. Finally, Chapter 6 concludes the thesis.
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Chapter 2

Background

2.1 Graph partitioning

Let G = (V,E) be an undirected graph such that each vertex vi∈V has weight

w(vi) and each undirected edge eij ∈ E connecting vertices vi and vj has cost

cost(eij). Generally, a K-way partition Π = {V1, V2 . . . VK} of G is defined as

follows: Each part Vk ∈ Π is a non-empty subset of V , all parts are mutually

exclusive (i.e., Vk ∩ Vm = ∅ for k 6= m) and the union of all parts is V (i.e.,⋃
Vk∈Π Vk=V ).

Given a partition Π, weight W (Vk) of a part Vk is defined as the sum of

the weights of vertices belonging to that part (i.e., W (Vk) =
∑

vi∈Vk w(vi)). The

partition Π is said to be balanced if all parts Vk∈Π satisfy the following balancing

constraint:

W (Vk) ≤ Wavg(1 + ε), for 1 ≤ k ≤ K (2.1)

Here, Wavg is the average part weight (i.e., Wavg =
∑

vi∈V w(vi)/K) and ε is the

maximum imbalance ratio of a partition.

An edge is called cut if its endpoints belong to different parts and uncut other-

wise. The cut and uncut edges are also referred to as external and internal edges,

4



respectively. The cut size χ(Π) of a partition Π is defined as

χ(Π) =
∑

eij∈EΠ
cut

cost(eij) (2.2)

where EΠ
cut denotes the set of cut edges.

In the multi-constraint extension of the graph partitioning problem, each

vertex vi is associated with multiple weights wc(vi) for c = 1, . . . , C. For a

given partition Π, W c(Vk) denotes the weight of part Vk on constraint c (i.e.,

W c(Vk)=
∑

vi∈Vk w
c(vi)). Then, Π is said to be balanced if each part Vk satisfies

W c(Vk)≤W c
avg(1+ε), where W c

avg denotes the average part weight on constraint c.

The graph partitioning problem, which is an NP-Hard problem [33], seeks to

compute a partition Π∗ of G that minimizes the cut size χ(·) in Eq. (2.2) while

satisfying the balancing constraint in Eq. (2.1) defined on part weights.

2.2 Hypergraph partitioning

A hypergraph H = (V,N) is defined as a two-tuple of vertex set V and net

set N . A hypergraph is the generalization of a graph, where each net connects

possibly more than two vertices and the set of vertices connected by a net nj is

represented by Pins(nj). Each vertex vi∈V is associated with C weights wc(vi)

for c=1, . . . , C, and each net nj∈N is associated with cost(nj).

Π = {V1, V2 · · ·VK} is a K-way partition of H if vertex parts are mutually

disjoint and exhaustive. In Π, a net nj connecting at least one vertex in a part

is said to connect that part. The connectivity set Λ(nj) and the connectivity

λ(nj) = |Λ(nj)| of net nj are respectively defined as the set of parts and the

number of parts connected by nj. A net nj that connects more than one part (i.e.,

λ(nj)>1) is said to be cut and uncut otherwise. Then the connectivity cut size

of Π is defined as

CutSize(Π) =
∑
nj∈N

cost(nj)× (λ(nj)− 1) (2.3)
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In a given partition Π, the cth weight W c(Vk) of a part Vk is

W c(Vk)=
∑
vi∈Vk

wc(vi) (2.4)

Π is said to be balanced if it satisfies

W c(Vk) ≤ W c
avg(1 + εc), ∀Vk ∈ Π and c = 1 . . . C, (2.5)

where W c
avg =

∑
vi∈V w

c(vi)/K is the average part weight on the cth vertex

weights and ε is the maximum allowed imbalance ratio on part weights.

The multi-constraint hypergraph partitioning problem is defined as finding a

K-way partition with the objective of minimizing the cut size given in (2.3) and

the constraint of maintaining balance(s) on the part weights given in (2.5).
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Chapter 3

Cascade-Aware Partitioning of

Large Graph Databases

Distributed graph databases employ partitioning methods to provide data locality

for queries and to keep the load balanced among servers [5–9]. Online social net-

works (OSNs) are common applications of graph databases where users are rep-

resented by vertices and their connections are represented by edges/hyperedges.

Partitioning tools (e.g., Metis [14], Patoh [15]) and community detection algo-

rithms (e.g., [35]) are used for assigning users to servers. The contents generated

by a user are typically stored on the server that the user is assigned.

Graph partitioning methods are designed using the graph structure, and the

query workload (i.e., logs of queries executed on the database), if available [3,4,10–

13]. Some queries performed on the database may trigger further operations. For

example, users in OSNs frequently share contents generated by others, which leads

to a propagation/cascade of re-shares (cascades occur when users are influenced

by others and then perform the same acts) [36–38]. The database needs to copy

the re-shared contents to the servers that contain the users who will eventually

need to access this content (i.e., at least a record id of the original content need

to be transferred).

see [34] for the original work
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Many users in a cascade process are not necessarily the neighbors of the origina-

tor. Hence, the graph structure, even with the influence probabilities, would not

directly capture the underlying cascading behavior, if the link activities are con-

sidered independently. We first aim to estimate the cascade traffic on the edges.

For this purpose, we present the concept of random propagation trees/forests that

encodes the information of propagation traces through users. We then develop

a cascade-aware partitioning that aims to optimize the load balance and reduce

the amount of propagation traffic between servers. We discuss the relationship

between the cascade-aware partitioning and other graph partitioning objectives.

To get insights on the cascade traffic, we analyzed a query workload from Digg,

a news sharing-based social network [39]. The data include cascades with a depth

of up to six links, i.e., the maximum path length from the initiator of the content

to the users who eventually get the content. When we partitioned the graph by

just minimizing the number of links straddling between 32 balanced partitions

(using Metis [14]), the majority of the traffic remained between the servers, as

opposed to staying local. This traffic goes over a relatively small fraction of the

links. Only 0.01% of the links occur in 20% of the cascades, and these links

carry 80% of the traffic observed in these cascades. It is important to identify

the highly active edges and avoid placing them crossing the partitions.

We draw an equivalence between minimizing the expected number of cut edges

in a random propagation tree/forest and minimizing communication during a

random propagation process starting from any subset of users. A probability dis-

tribution is defined over the edges of a graph, which corresponds to the frequency

of these edges being involved in a random propagation process. #P-Hardness of

the computation of this distribution is discussed and a sampling-based method,

which enables estimation of this distribution within a desired level of accuracy

and confidence interval, is proposed along with its theoretical analysis.

Experimentation has been performed both with theoretical cascade models

and with real logs of user interactions. The experimental results show that the

proposed solution performs significantly better than the alternatives in reducing

the amount of communication between servers during a cascade process. While
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the propagation of content was studied from the perspective of data modeling, to

the best of our knowledge, these models have not been integrated into database

partitioning for efficiency and scalability.

3.1 Related Work

Graph partitioning and replication. Graph partitioning has been studied

to improve scalability and query processing performances of the distributed data

management systems. It has been widely used in the context of social networks.

Pujol et al. [3] propose a social network partitioning solution that reduces the

number of edges crossing different parts and provides a balanced distribution of

vertices. They aim to reduce the amount of communication operations between

servers. It is later extended in [10] by considering replication of some users across

different parts. SPAR [11] is developed as a social network partitioning and

replication middle-ware.

Yuan et al. [4] propose a partitioning scheme to process time-dependent social

network queries more efficiently. The proposed scheme considers not only the spa-

tial network of social relations but also the time dimension in such a way that users

that have communicated in a time window are tried to be grouped together. Ad-

ditionally, the social graph is partitioned by considering two-hop neighborhoods of

users instead of just considering directly connected users. Turk et al. [13] propose

a hypergraph model built from logs of temporal user interactions. The proposed

hypergraph model correctly encapsulates multi-user queries and is partitioned un-

der load balance and replication constraints. Partitions obtained by this approach

effectively reduces the number of communications operations needed during exe-

cutions of multicast and gather type of queries.

Sedge [7] is a distributed graph management environment based on Pregel [40]

and designed to minimize communication among servers during graph query pro-

cessing. Sedge adopts a two-level partition management system: In the first level,

complementary graph partitions are computed via the graph partitioning tool
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Metis [14]. In the second level, on-demand partitioning and replication strate-

gies are employed. To determine cross-partition hotspots in the second level, the

ratio of number of cut edges to uncut edges of each part is computed. This ra-

tio approximates the probability of observing a cross-partition query and later is

compared against the ratio of the number of cross-partition queries to internal

queries in a workload. This estimation technique differs from our approach, since

we estimate an edge being included in a cascade process whereas this approach

estimates the probability of observing a cross-partition query in a part and does

not consider propagation processes.

Leopard is a graph partitioning and replication algorithm to manage large-

scale dynamic graphs [5]. This algorithm incrementally maintains the qual-

ity of an initial partition via dynamically replicating and reassigning vertices.

Nicoara et al. [41] propose Hermes, a lightweight graph repartitioner algorithm

for dynamic social network graphs. In this approach the initial partitioning is

obtained via Metis and as the graph structure changes in time, an incremental

algorithm is executed to maintain the quality of the partitions.

For efficient processing of distributed transactions, Curino et al. [8] propose

SCHISM, which is a workload-aware graph model that makes use of past query

patterns. In this model, data items are represented by vertices and if two items

are accessed by the same transaction, an edge is put between the respective pair of

vertices. In order to reduce the number of distributed transactions, the proposed

model is split into balanced partitions using a replication strategy in such a way

that the number of cut edges is minimized.

Hash-based graph partitioning and selective replication schemes are also em-

ployed for managing large-scale dynamic graphs [6]. Instead of utilizing graph

partitioning techniques, a replication strategy is used to perform cross-partition

graph queries locally on servers. This method makes use of past query workloads

in order to decide which vertices should be replicated among servers.
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Multi-query optimization. Le et al. [42] propose a multi-query optimization

algorithm which partitions a set of graph queries into groups where queries in the

same group have similar query patterns. Their partitioning algorithm is based

on k-means clustering algorithm. Queries assigned to each cluster are rewritten

to their cost-efficient versions. Our work diverges from this approach, since we

make use of propagation traces to estimate a probability distribution over edges

in a graph and partition this graph, whereas this approach clusters queries based

on their similarities.

Influence propagation. Propagation of influence [36] is commonly modeled

using a probabilistic model [43, 44] learnt over user interactions [45, 46]. Influ-

ence maximization problem is first studied by Domingos and Richardson [47].

Kempe et al. [48] proved that the influence maximization problem is NP-Hard

under two influence propagation models such as Independent Cascade (IC) and

Linear Threshold (LT) models. The Influence spread function defined in [48]

has an important property called submodularity, which enables a greedy algo-

rithm to achieve (1− 1/e) approximation guarantee for the influence maximiza-

tion problem. However, computing this influence spread function is proven to

be #P-Hard [38], which makes the greedy approximation algorithm proposed

in [48] infeasible for larger social networks. Therefore, more efficient heuristic al-

gorithms are targeted in the literature [38,49–52]. More recently, algorithms that

run nearly in optimal linear time and provide (1− 1/e) approximation guarantee

for the influence maximization problem are proposed in [53–55].

The notion of influence and its propagation processes have also been used to

detect communities in social networks. Zhou et al. [56] find community structure

of a social network by grouping users that have high influence-based similarity

scores. Similarly, Lu et al. [57] and Ghosh et al. [58] consider finding community

partition of a social network that maximizes different influence-based metrics

within communities. Barbieri et al. [59] propose a network-oblivious algorithm

making use of influence propagation traces available in their datasets to detect

community structures.
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3.2 Problem Definition

In this section, we present the graph partitioning problem within the context of

content propagation in a social network where the link structure and the propaga-

tion probability values associated with these links are given. Let an edge-weighted

directed graph G = (V,E,w) represent a social network where each user is rep-

resented by a vertex vi ∈ V , each directed edge eij ∈ E represents the direction

of content propagation from user vi to vj and each edge eij is associated with a

content propagation probability wij ∈ [0, 1]. We assume that the wij probabilities

associated with the edges are known beforehand as in the case of Influence Max-

imization domain [48, 49, 54]. Methods for learning the influence/content propa-

gation probabilities between users in a social network are previously studied in

the literature [45,46]. In this setting, a partition Π of G refers to a user-to-server

assignment in such a way that a vertex vi assigned to a part Vk ∈ Π denotes that

the user represented by vi is stored in the server represented by part Vk.

We adopt a widely used propagation model, the IC model, with propagation

processes starting from a single user for ease of exposition. As we discuss later,

this can be extended to other popular models such as the LT model and prop-

agation processes starting from multiple users as well. Under the IC model, a

content propagation process proceeds in discrete time steps as follows: Let a sub-

set S ⊆ V consists of initially active users who share a specific content for the

first time in a social network (we assume |S| = 1 for ease of exposition). For

each discrete time step t, let set St consists of users that are activated in time

step t ≥ 0, which indicates that S0 = S (i.e., a user becomes activated meaning

that this user has just received the content). Once activated in time step t, each

user vi ∈ St is given a single chance of activating each of its inactive neighbor

vj with a probability wij (i.e., user vi activates user vj meaning that the content

propagates from vi to vj). If an inactive neighbor vj is activated in time step

t (i.e., vj has received the content), then it becomes active in the next time step

t + 1 and added to the set St+1. The same process continues until there are no

new activations (i.e., until St = ∅).
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Kempe et al. [48] define an equivalent process for the IC model by generat-

ing an unweighted directed graph g from G by independently realizing each edge

eij ∈ E with probability wij. In the realized graph g, vertices reachable by a

directed path from the vertices in S can be considered as active at the end of an

execution of the IC model propagation process starting with the initially active

users in S. As a result of the equivalent process of the IC model, the original

graph G induces a distribution over unweighted directed graphs. Therefore, we

use the notation g∼G to indicate that we draw an unweighted directed graph g

from the distribution induced by G by using the equivalent process of IC model.

That is, we generate a directed graph g via realizing each edge eij ∈ G with

probability wij.

Propagation trees. Given a vertex v, we define the propagation tree Ig(v) to

denote a directed tree rooted on vertex v in graph g. The tree Ig(v) corresponds

to an IC model propagation process, when v is used as the initially active vertex,

in such a way that each edge eij ∈ Ig(v) encodes the information that the content

propagated to vj from vi during this process. Here, there can be more than one

possible propagation trees for v on g, since g may not be a tree itself. One of the

possible trees can be computed by performing a breadth-first-search (BFS) on g

starting from vertex v, since IC model does not prescribe an order for activating

inactive neighbors of the newly activated vertices. Note that generating a graph

g and performing a BFS on a vertex v is equivalent to performing a randomized

BFS algorithm starting from the vertex v. The difference between the randomized

BFS algorithm and usual BFS algorithm is that each edge eij ∈ E is searched

with probability wij in the randomized case. That is, during an iteration of BFS,

if a vertex vi is extracted from the queue, each of its outgoing edge(s) eij to an

unvisited vertex vj is examined and added to the queue with a probability wij.

Here we also define a fundamental concept called random propagation tree

which is used throughout the text. A random propagation tree is a propagation

tree that is generated by two level of randomness: First, a graph g is drawn from

the distribution induced by G, then a vertex v ∈ V is chosen randomly and its

propagation tree Ig(v) on g is computed. It is important to note that a random
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Figure 3.1: An IC model propagation instance starting with initially active user
u7. Dotted lines denote edges that are not involved in the propagation process,
straight lines denote edges activated in the propagation process. (a) and (b) dis-
play the same social network under two different partitions {S1 ={u0, u1, u2}, S2 =
{u6, u7, u8, u9}, S3 ={u3, u4, u5}} and {S1 ={u0, u1, u2, u6}, S2 ={u7, u8, u9}, S3 =
{u3, u4, u5}}, respectively.

propagation tree is equivalent to an IC model propagation process starting from

a randomly chosen vertex. Here, the concept of random propagation trees has

similarities to reverse-reachable sets previously proposed in [53, 54]. Reverse-

reachable sets are built on transpose GT of directed graph G by performing a

randomized-BFS starting from a vertex v and including all BFS edges. Hence,

reverse-reachable sets are different from propagation trees in the ways that they

do not constitute directed trees and they are built on the structure of GT instead

of G.

From a systems perspective, if a content propagation occurs between two users

located on different servers, we assume this causes a communication operation.

This is depicted in Figure 3.1 which displays a graph with its edges denoting

directions of content propagations between users. In this figure, two different

partitionings of the same social network are given in Figures 3.1a and 3.1b.

In Figure 3.1a, users are partitioned among three servers as S1 = {u0, u1, u2},
S2 = {u6, u7, u8, u9} and S3 = {u3, u4, u5}. In Figure 3.1b, user u6 is moved from

S2 to S1 where S3 remains the same. In the figure, a content shared by user u7
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propagates through four users u6, u1, u2 and u3 under the IC model. Here, the

straight lines denote the edges along which propagation events occurred and these

lines constitute the propagation tree formed by this propagation process (proba-

bility values associated with the edges will be discussed later in the next section).

The dotted lines denote the edges that are not involved in this propagation pro-

cess. Therefore, in accordance with our assumption, straight lines crossing dif-

ferent parts necessitate communication operations. For instance, in Figure 3.1a,

the propagation of the content from u7 to u6 does not incur any communication

operation, whereas the propagation of the same content from u6 to u1 and u2 in-

curs two communication operations. For the whole propagation process initiated

by user u7, the total number of communication operations are equal to 3 and 2

under the partitions in Figures 3.1a and 3.1b, respectively.

Given a partition Π of G and a propagation tree Ig(v) of vertex v on a directed

graph g∼G, we define the number of communication operations λΠ
g (v) induced

by the propagation tree Ig(v) under the partition Π as

λΠ
g (v) = |{eij ∈ Ig(v) | eij ∈ EΠ

cut}|. (3.1)

That is, the number of communication operations performed is equal to the num-

ber of edges in Ig(v) that are crossing different parts in Π. It can be observed

that each different partition Π of G induces a different communication pattern

between servers for the same propagation process.

Cascade-aware graph partitioning. In the cascade-aware graph partitioning

problem, we seek to compute a partition Π∗ of G that achieves the following two

objectives:

(i) Under the IC model, the expected number of communication operations to

be performed between servers during a propagation process starting from a

randomly chosen user should be minimized.

(ii) The partition should distribute the users to servers as evenly as possible in

order to ensure a balance of workload among them.

15



The first objective reflects the fact that many different content propagations,

starting from different users or subsets of users, may simultaneously occur during

any time interval in a social network and in order to minimize the total commu-

nication between servers, the expected number of communication operations in a

random propagation process can be minimized. It is worth to mention that, due

to the equivalence between random propagation trees and randomized BFS algo-

rithm, the first objective is also equivalent to minimizing the expected number of

cross-partition edges traversed during a randomized BFS execution starting from

a randomly chosen vertex.

To give a formal definition for the proposed problem, we redefine the first ob-

jective in terms of the equivalent process of the IC model. For a given partition

Π of G, we write the expected number of communication operations to be per-

formed during a propagation process starting from a randomly chosen user as

Ev,g∼G[λΠ
g (v)]. Here, subscripts v and g∼G of the expectation function denote

the two level of randomness in the process of generating a random propagation

tree. As mentioned above, a random propagation tree Ig(v) is equivalent to a

propagation process that starts from a randomly chosen user in the network.

Therefore, the expected value of λΠ
g (v), which denotes the expected number of

cut edges included in a random propagation tree, is equivalent to the expected

number of communication operations to be performed. Due to this correspon-

dence, computing a partition Π∗ that minimizes the expectation Ev,g∼G[λΠ
g (v)]

achieves the first objective (i) of the proposed problem. Consequently, the pro-

posed problem can be defined as a special type of graph partitioning in which the

objective is to compute a K-way partition Π∗ of G that minimizes the expectation

Ev,g∼G[λΠ
g (v)] subject to the balancing constraint in Eq. (2.1). That is,

Π∗ = arg min
Π

Ev,g∼G[λΠ
g (v)] (3.2)

subject to W (Vk)≤Wavg(1+ε) for all Vk∈Π. Here, we designate weight w(vi) = 1

of each vertex vi∈V and define the weight W (Vk) of a partition Vk ∈ Π as the

number of vertices assigned to that part (i.e., W (Vk) = |Vk|). Therefore, this

balancing constraint ensures that the objective (ii) is achieved by the partition

Π∗.
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Table 3.1: Notations used

Variable Description

Π = {V1, . . . , Vk} A K-way partition of a graph G = (V,E)

Vk Part k of partition Π

χ(Π) Cut size under partition Π

Ig(v) Random propagation tree

λΠ
g (v)

Communication operations induced by
propagation tree Ig(v) under Π

g∼G Unweighted directed graph g drawn
from the distribution induced by G

Ev,g∼G[λΠ
g (v)]

Expected number of communication
operations during a propagation process

wij Propagation probability along edge eij

pij
Probability of edge eij being involved
in a random propagation process

I
The set of random propagation trees
generated by the estimation technique

FI(eij)
The number of trees in I
that contains edge eij

N The size of set I (i.e., N = |I|)

3.3 Solution

The proposed approach is to first estimate a probability distribution for mod-

eling the propagation and use it as an input to map the problem into a graph

partitioning problem. Given an edge-weighted directed graph G = (V,E,w) rep-

resenting an underlying social network, the first stage of the proposed solution

consists of estimating a probability distribution defined over all edges of G. For

that purpose, we define a probability value pij for each edge eij ∈ E apart from

its content propagation probability wij. The value pij of an edge eij is defined

to be the probability that the edge eij is involved in a propagation process that
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starts from a randomly selected user. Equivalently, when a random propagation

tree Ig(v) is generated by the process described in Section 3.2, the probability

that the edge eij is included in the propagation tree Ig(v) is equal to pij. It is

important to note that the value wij of an edge eij corresponds to the probability

that the edge eij is included in a graph g ∼ G, whereas the value pij is defined to

be the probability that eij is included in a random propagation tree Ig(v) rooted

on a randomly selected vertex v in graph g. For now, we delay the discussion

on the computation of pij values for ease of exposition, and assume that we are

provided with the pij values. Later in this section, we provide an efficient method

that estimates these values.

The function Ev,g∼G[λΠ
g (v)] corresponds to the expected number of cut edges

in a random propagation tree Ig(v) under a partition Π. In other words, if we

draw a graph g from the distribution induced by G and randomly choose a vertex

v and compute its propagation tree Ig(v), then the expected number of cut edges

included in Ig(v) is equal to Ev,g∼G[λΠ
g (v)]. On the other hand, the value pij of

an edge eij is defined to be the probability that the edge eij is included in a

random propagation tree Ig(v). Therefore, given a partition Π of G, the function

Ev,g∼G[λΠ
g (v)] can be written in terms of pij values of all cut edges in EΠ

cut as

follows:

Ev,g∼G[λΠ
g (v)] =

∑
eij∈EΠ

cut

pij (3.3)

In Eq. (3.3), the expected number of cut edges in a random propagation tree is

computed by summing the pij value of each edge eij ∈ EΠ
cut, where the value pij

of an edge eij is defined to be the probability that the edge eij is included in

a random propagation tree. Hence, the main objective becomes to compute a

partition Π∗ that minimizes the total pij values of edges crossing different parts

in Π∗ and satisfies the balancing constraint defined over the part weights. That

is,

Π∗ = arg min
Π

∑
eij∈EΠ

cut

pij (3.4)

subject to the balancing constraint defined in the original problem. As mentioned

earlier, each vertex vi is associated with a weight w(vi) = 1 and part weight
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W (Vk) of a part Vk is defined to be the number of vertices assigned to Vk (i.e.,

W (Vk) = |Vk|).

As a result of Eq. (3.4), the problem can be formulated as a graph partitioning

problem for which successful tools exist [14,60]. However, the graph partitioning

problem is usually defined for undirected graphs, whereas G is a directed graph

and pij values are associated with the directed edges of G. To that end, we build

an undirected graph G′ = (V,E ′) by symmetrizing directed graph G through

computing the cost of each edge e′ij ∈ E ′ as cij = pij + pji.

Let Π be a partition of G′. Since G′ and G consist of the same vertex set

V , Π induces a set EΠ
cut of cut edges for the original graph G. Due to the cost

definitions of edges in E ′, the cut size χ(Π) of G′ under partition Π is equal to

the sum of the pij values of cut edges in EΠ
cut which is shown to be equal to the

value of the main objective function in Eq. (3.2). That is,

χ(Π) =
∑

eij∈EΠ
cut

pij = Ev,g∼G[λΠ
g (v)] (3.5)

Hence, a partition Π∗ that minimizes the cut size χ(·) of G′ also minimizes the

expectation Ev,g∼G[λΠ
g (v)] in the original social network partitioning problem. In

other words, if the partition Π∗ for G′ is an optimal solution for the partitioning

of G′, it is also an optimal solution for Eq. (3.2) in the original problem. Addi-

tionally, the equivalence drawn between the graph partitioning problem and the

cascade-aware graph partitioning problem also proves that the proposed problem

is NP-Hard even the pij values were given beforehand.

In Figure 3.1, the main objective of cascade-aware graph partitioning is de-

picted as follows: Each edge in the figure is associated with a content propagation

probability along with its computed pij value (i.e., each edge eij is associated with

“wij | pij”). The partitioning in Figure 3.1a provides a better cut size both in

terms of number of cut edges and the total propagation probabilities of edges

crossing different parts. However, we assert that the partitioning in Figure 3.1b

provides a better partition for objective function 3.2, at the expense of providing

worse cut size in terms of other cut size metrics (i.e., the sum of pij values of cut

edges is less in the second partition).
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Computation of the pij values. We now return to the discussion on the

computation of the pij values defined over all edges of G and start with the

following theorem indicating the hardness of this computation:

Theorem 1. Computation of the pij value for an edge eij of G is a #P-Hard

problem.

Proof. Let function σ(vk, vi) denote the probability of there being a directed path

from vertex vk to vertex vi on a directed graph g drawn from the distribution

induced by G. Assume that the only path goes from vk to vj is through vi on each

possible g. That is vj is only connected to vi in G (This simplifying assumption

does not affect the conclusion we draw for the theorem). Hence, the probability of

vi included in a propagation tree Ig(vk) is σ(vk, vi). Let pkij denote the probability

of eij is included in Ig(vk). We can compute pkij as

pkij = wij · σ(vk, vi) (3.6)

since inclusion of eij in g and formation of a directed path from vk to vi on g

are two independent events; therefore, their respective probability values wij and

σ(vk, vi) can be multiplied. As mentioned earlier, the value pij of an edge eij is

defined to be the probability of edge eij included in a random propagation tree.

Therefore, we can compute the value pij of an edge eij as follows:

pij =
1

|V |
∑
vk∈V

pkij (3.7)

Here, to compute the pij value of edge eij, we sum the conditional probability
1
|V | · pkij for all vk ∈ V . Due to the definition of random propagation trees, se-

lections of vk in a graph g ∼ G are all mutually exclusive events with equal

probability 1
|V | . Therefore, we can sum the terms 1

|V | · pkij for each vk ∈ V to

compute the total probability pij.

In order to prove the theorem, we present an equivalence between the com-

putation of function σ(·, ·) and the s,t-connectedness problem [61], since the pij
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value of an edge eij depends on the computation of σ(vk, vi) for all vk ∈ V . The

input to the s,t-connectedness problem is a directed graph G = (V,E), where

each edge eij ∈ E may fail randomly and independently from each other. The

problem asks to compute the total probability of there being an operational path

from a specified source vertex s to a target vertex t on the input graph. However,

computing this probability value is proven to be a #P-Hard problem [61]. On

the other hand, the function σ(vk, vi) denotes the probability of there being a

directed path from vk to vi in a g ∼ G, where each edge in g is realized with

probability wij randomly and independently from other edges. It is obvious to

see that the computation of function σ(vk, vi) is equivalent to the computation

of the s,t-connectedness probability (We refer the reader to [38] for a more for-

mal description for the reduction of σ(vk, vi) to s,t-connectedness problem). This

equivalence implies that the computation of function σ(vk, vi) is #P-Hard even

for a single vertex vk, and therefore implies that the computation of pij value for

any edge eij is also #P-Hard.

Theorem 1 states that it is unlikely to devise a polynomial time algorithm

which exactly computes pij values for all edges in G. Therefore, we employ an

efficient method that can estimate these pij values for all edges in G at once.

These estimations can be made within a desired level of accuracy and confidence

interval; but there is a trade-off between the runtime and the estimation accuracy

of the proposed approach. On the other hand, the quality of the results produced

by the overall solution is expected to increase with increasing accuracy of the pij

values.

The proposed estimation technique employs a sampling approach that starts

with generating a certain number of random propagation trees. Recall that a

random propagation tree is generated by first drawing a directed graph g ∼ G
and then computing a propagation tree Ig(v) on g for a randomly selected vertex

v ∈ V . Let I be the set of all random propagation trees generated for estimation

and let N be the size of this set (i.e., N = |I|). After forming the set I, the value

pij of an edge eij can be estimated by the frequency of that edge’s appearance in

random propagation trees in I as follows: Let function FI(eij) denote the number
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of random propagation trees in I that contains edge eij. That is,

FI(eij) = |{Ig(v) ∈ I | eij ∈ Ig(v)}| (3.8)

Due to the definition of pij, the appearance of edge eij in a random propagation

tree Ig(v) ∈ I can be considered as a Bernoulli trial with success probability pij.

Hence, the function FI(eij) can be considered as the number of total successes in

N Bernoulli trials with success probability pij, which implies that FI(eij) is Bi-

nomially distributed with parameters N and pij (i.e., FI(eij)∼Binomial(pij, N)).

Therefore, the expected value of the function FI(eij) is equal to pijN , which also

implies that

pij = E[FI(eij)/N ] (3.9)

As a result of Eq. (3.9), if an adequate number of random propagation trees are

generated to form the set I, the value FI(eij)/N can be an estimation for the

value of pij. Therefore, the estimation method consists of generating N ran-

dom propagation trees that together form the set I, and computing the function

FI(eij) according to Eq. (3.8) for each edge eij ∈ E. After computing the function

FI(eij) for each edge eij, we use FI(eij)/N as an estimation for the pij value.

Implementation of the estimation method. We seek an efficient implemen-

tation for the proposed estimation method. The main computation of the method

consists of generating N random propagation trees. A random propagation tree

can be efficiently generated by performing a randomized BFS, starting from a

randomly chosen vertex, in G. It is important to note that the randomized BFS

algorithm starting from a vertex v is equivalent to drawing a graph g ∼ G and

performing a BFS starting from the vertex v on g. That is, the randomized

BFS algorithm is equivalent to the method introduced in Section 3.2 to gener-

ate a propagation tree Ig(v) rooted on v. Therefore, forming the set I can be

accomplished by performing N randomized BFS algorithms on G starting from

randomly chosen vertices. Moreover, the computation of the function FI(·) for all

edges in E can be performed while forming the set I with a slight modification to

the randomized BFS algorithm. For this purpose, a counter for each eij ∈ E can

be kept in such a way that its value is incremented each time the corresponding

22



edge is traversed during a randomized BFS execution. This counter denotes the

number of times an edge is traversed during the performance of all randomized

BFS algorithms. Therefore, after N randomized BFS executions, the function

FI(eij) for an edge eij is equal to the value of the counter maintained for that

edge.

Algorithm. The overall cascade-aware graph partitioning algorithm is described

in Algorithm 3.1. In the first line, the set I is formed by performing N random-

ized BFS algorithms, where the function FI(eij) is computed for each edge eij ∈ E
during these randomized BFS executions. In lines 2 and 3, an undirected graph

G′ = (V,E ′) is built via composing a new set E ′ of undirected edges, where each

undirected edge e′ij ∈ E ′ is associated with a cost of cij using the estimations

computed in the first step. In line 4, each vertex vi ∈ V is associated with a

weight w(vi) = 1 in order to ensure that the weight of a part is equal to the

number of vertices assigned to that part. Lastly, a K-way partition Π of the

undirected graph G′ is obtained using an existing graph partitioning algorithm

and returned as a solution for the original problem. Here, the graph partitioning

algorithm is executed with the same imbalance ratio as with the original problem.

Determining the size of set I. As mentioned earlier, the accurate estimation

of the pij values is a crucial step to compute “good” solutions for the proposed

problem, since the graph partitioning algorithm used in the second step makes use

of these pij values to compute the costs of edges in G′. The total cost of cut edges

in G′ represents the value of the objective function in Eq. (3.2). Therefore, the pij

values need to be accurately estimated so that the graph partitioning algorithm

correctly optimizes the objective function.

Estimation accuracies of the pij values depend on the number of random prop-

agation trees forming the set I. As the size of the set I increases, more accurate

estimations can be obtained. However, we want to compute the minimum value

of N to get a specific accuracy within a specific confidence interval. More for-

mally, let p̂ij be the estimation computed for the pij value of an edge eij ∈ E (i.e.
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Algorithm 3.1 Cascade-Aware Graph Partitioning

Input: G = (V,E,w), K, ε
Output: Π

1: Form a set I of N random propagation trees by performing randomized BFS
algorithms on G and compute FI(eij) for each eij ∈ E according to Eq. (3.8)

2: Build an undirected graph G′ = (V,E ′) where edge set E ′ is composed as
follows:

E ′ = {e′ij | eij ∈ E ∨ eji ∈ E}
3: Associate a cost cij with each e′ij ∈ E ′ as follows:

cij =


FI(eij)/N + FI(eji)/N, if eij ∈ E ∧ eji ∈ E
FI(eij)/N, if eij ∈ E ∧ eji 6∈ E
FI(eji)/N, if eij 6∈ E ∧ eji ∈ E

4: Associate each vertex vi ∈ V with weight w(vi) = 1.
5: Compute a K-Way partition Π of G′ using an existing graph partitioning

algorithm (using the same imbalance ration ε).
6: return Π

p̂ij = FI(eij)/N), we want to compute the minimum value of N to achieve the

following inequality:

Pr[|p̂ij − pij| ≤ θ ,∀eij ∈ E] ≥ 1− δ. (3.10)

That is, with a probability of at least 1 − δ, we want the estimation p̂ij to be

within θ of pij for each edge eij ∈ E. For that purpose, we make use of well-known

Chernoff [62] and Union bounds from probability theory. Chernoff bound can be

used to find an upper bound for the probability that a sum of many independent

random variables deviates a certain amount from their expected mean. In this

regard, due to the function FI(·) being Binomial, Chernoff bound can guarantee

the following inequality:

Pr [|FI(eij)− pijN | ≥ ξ pijN ] ≤ 2 exp(− ξ2

2 + ξ
· pijN) (3.11)

for each edge eij ∈ E. Here, ξ denotes the distance from the expected mean in

the context of Chernoff bound.

In Eq. (3.11), dividing both sides of the inequality |FI(eij)− pijN | ≥ ξ pijN in
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the function Pr[·] by N and taking ξ = θ/pij yields

Pr[|p̂ij − pij| ≥ θ] ≤ 2 exp(− θ2

2pij + θ
·N)

≤ 2 exp(− θ2

2 + θ
·N) (3.12)

which denotes the upper bound for the probability that the accuracy θ is not

achieved for a single edge eij (the last inequality in Eq. (3.12) follows, since

pij ≤ 1). Moreover, RHS of Eq. (3.12) is independent from the value of pij and

its value is the same for all edges in E, which enables us to apply the same bound

for all of them. However, our objective is to find the minimum value of N to

achieve accuracy θ for all edges simultaneously with a probability at least 1− δ.
For that purpose, we need to find an upper bound for the probability that there

exists at least one edge in E for which the accuracy θ is not achieved. We can

compute this upper bound using Union bound as follows:

Pr[|p̂ij − pij| ≥ θ ,∃eij ∈ E] ≤ 2|E| exp(− θ2

2 + θ
·N) (3.13)

Here, we simply multiply RHS of Eq. (3.12) by |E|, since for each edge in E, the

accuracy θ is not achieved with a probability at most 2 exp(− θ2

2+θ
·N). In order

to achieve the Eq. (3.10), RHS of Eq. (3.13) need to be at most δ. That is,

2|E| exp(− θ2

2 + θ
·N) ≤ δ (3.14)

Solving this equation for N yields

N ≥ 2 + θ

θ2
· ln 2|E|

δ
(3.15)

which indicates the minimum value of N to achieve θ accuracy for all edges in E

with a probability at least 1− δ.

The accuracy θ determines how much error is made by the graph partitioning

algorithm while it performs the optimization. As shown in Eq. (3.5), for a par-

tition Π of G′ obtained by the graph partitioning algorithm, the cut size χ(Π)

is equal to the value of main objective function (3.2). However, the cost values

associated with the edges of G′ are estimations of their exact values and therefore,

the partition cost χ(Π) might be different from the exact value of the objective
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function. In this regard, the difference between the objective function and the

partition cost can be expressed as follows:

Ev,g∼G[λΠ
g (v)]− χ(Π) ≤ θ · |EΠ

cut| (3.16)

Here, the error is computed by multiplying the accuracy θ by the number of cut-

edges of G under the partition Π, since for each edge in EΠ
cut, at most θ error can

be made with a probability at least 1 − δ. Therefore, even if it were possible to

solve the graph partitioning problem optimally, the solution returned by Algo-

rithm 3.1 would be within θ · |EΠ
cut| of the optimal solution for the original problem

with a probability at least 1 − δ. Consequently, as the value of θ decreases, the

partition obtained by Algorithm 3.1 will incur less error for the main objective

function, which will enable the graph partitioning algorithm to perform a better

optimization for the original problem.

Complexity analysis. The proposed algorithm consists of two main computa-

tional phases. In the first phase, for an accuracy θ with confidence δ, the set I

is generated via performing at least N = 2+θ
θ2 · ln 2|E|

δ
randomized BFS algorithms

and each of these BFS executions takes Θ(V + E) time. The second phase of

the algorithm performs the partitioning of the undirected graph G′ which is con-

structed from the directed graph G by using FI(eij) values computed in the first

phase. The construction of the graph G′ can be performed in Θ(V + E) time.

The partitioning complexity of the graph G′, however, depends on the partition-

ing tool used. In our implementation we preferred Metis which has a complexity

of Θ(V + E + K logK), where K being the number of partitions. Therefore, if

θ and δ are assumed to be constants, the overall complexity of Algorithm 3.1 to

obtain a K-way partition can be formulated as follows:

Θ(
2 + θ

θ2
ln

2|E|
δ

(V + E)) + Θ(V + E +K logK)

= Θ((V + E) logE +K logK). (3.17)

Eq. (3.17) denotes serial execution complexity of Algorithm 3.1. The proposed
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algorithm’s scalability can be improved even further via parallel processing, since

the estimation technique is embarrassingly parallel. Given P parallel processors,

N propagation trees in I can be computed without necessitating any communica-

tion or synchronization (i.e., each processor can generate N/P trees by separate

BFS executions). The only synchronization point is needed in the reduction of

FI(eij) values computed by these processors. This reduction operation, however,

can be efficiently performed in logP synchronization phases. Additionally, there

exist parallel graph partitioning tools (e.g., ParMetis [63]) which can improve the

scalability of the graph partitioning phase.

Extension to the LT model. Even though we have illustrated the problem

and solution for the IC model, both our problem definition and proposed solution

can be easily extended to other models such as the LT (linear threshold) model.

It is worth to mention that the proposed solution does not depend on the IC

model or the probability distribution defined over edges (i.e., wij probabilities).

As long as the random propagation trees can be generated, the proposed solution

does not require any modification for the use of any different cascade model or

the probability distribution defined over edges.

We skip the description for the LT model and just provide the equivalent pro-

cess of LT model proposed in [48]. In the equivalent process of the LT model, an

unweighted directed graph g is generated from G by realizing only one incoming

edge of each vertex in V . That is, for each vertex vi ∈ V , each incoming edge

eji of vertex vi has probability wji of being selected and only the selected edge

is realized in g. Given a directed graph g generated by this equivalent process, a

propagation tree Ig(v) rooted on vertex v again can be computed by performing

a BFS starting from v on g. Different from the equivalent process of IC model,

there can be only one propagation tree for each vertex, since all vertices have

only one incoming edge to these vertices. However, a propagation tree Ig(v) un-

der LT model still encodes the same information as in IC model; that is, each

edge eij ∈ Ig(v) encodes the information that a content propagates from vi to vj.
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In the problem definition part, we make use of the notion of propagation trees

in such a way that edges in a propagation tree that are crossing different parts

are assumed to necessitate communication operations between servers. This as-

sumption also holds for the LT model, since propagation trees generated by the

equivalent processes of IC and LT models encode the same information. There-

fore, minimizing the expected number of communication operations during an

LT propagation process starting from a randomly chosen user still corresponds to

minimizing the expected number of cut edges in a random propagation tree. In

this regard, we do not need any modification for the objective function (3.2) and

we still want to compute a partition Π∗ that minimizes the expected number of

cut edges in a random propagation tree (the only difference is in the process of

computing a random propagation tree under LT model).

In the solution part, we generate a certain number of random propagation trees

in order to estimate a probability distribution defined over all edges in E. The

estimated probability distribution associates each edge with a probability value

denoting how likely an edge is included in a random propagation tree under the

IC model. The associated probability values are also later used as costs in the

graph partitioning phase. However, both the estimation method and the overall

solution do not depend on anything specific to the IC model and only require

a method for generating random propagation trees which is mentioned above.

Moreover, concentration bounds attained for the estimation of the probability

distribution still holds under the LT model and the number of random propaga-

tion trees forming the set I in Algorithm 3.1 should satisfy Eq. (3.15).

Processes starting from multiple users. The method proposed for the prop-

agation processes starting from a single user can be generalized for propagation

processes that start from multiple users as follows: Instead of the definition of

random propagation trees, we define random propagation forest Ig(S) for a ran-

domly selected subset of users S ⊆ V . The only difference between the two

definitions is that a random propagation forest consists of multiple propagation

trees that are rooted on the vertices in S. However, these propagation trees must

be edge-disjoint and if a vertex is reachable from two different vertices in S, this
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vertex can be arbitrarily included in one of the propagation trees rooted on these

vertices. As noted earlier, the IC model does not prescribe an order for activating

inactive neighbors; therefore, a random propagation forest over the set S can be

computed by first drawing a graph g ∼ G, and then performing a multi-source

BFS on g starting from the vertices in S. The order of execution of multi-source

BFS determines the form of propagation trees in the propagation forest Ig(S).

In a partition Π of propagation forest Ig(S), each cut edge incurs one commu-

nication operation. So, the total number of communication operations induced

by Π is defined to be the number of cut edges which we denote as λΠ
g (S). These

new definitions do not require any major modification for the optimization prob-

lem introduced in Eq. (3.2) and we just replace the expectation function with

Ev,g∼G[λΠ
g (S)]. That is, our objective becomes computing a partition that mini-

mizes the expected number of cut edges in a random propagation forest.

To generalize the proposed solution, we redefine pij value of an edge eij as the

probability of edge eij included in a random propagation forest instead of a ran-

dom propagation tree. With this new definition of pij values, Eqs. (3.3) and (3.4)

can still be satisfied; hence, a partition Π∗ that minimizes the sum of pij values

of edges crossing different parts also minimizes the expectation Ev,g∼G[λΠ
g (S)].

The new definition of pij values necessitates some modifications to the esti-

mation method proposed earlier. Recall that, for the previous definition of pij

values, we generate a set I of random propagation trees and compute the func-

tion FI(·) for each edge eij. For the new definition of pij values, the estimations

can be obtained with a similar approach; however, the set I must now consist

of random propagation forests and FI(·) must denote frequencies of edges to

appear in these random propagation forests. Therefore, the only modification

required for Algorithm 3.1 is to replace the step that the set I is generated by

performing N randomized BFS algorithms. The new set I of random propagation

forests can be obtained with a similar approach such that instead of performing

randomized single-source BFS algorithms, we perform randomized multi-source

BFS algorithms. These two BFS algorithms are essentially the same except that

multi-source BFS starts execution with its queue containing a randomly selected
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subset of vertices instead of a single vertex. The new definitions together with the

modifications performed on the overall solution do not affect the concentration

bounds obtained in Eq. (3.15).

3.4 Extensions and Limitations

Here, we show how the proposed cascade-aware graph partitioning algo-

rithm (CAP) can be incorporated into other graph partitioning objectives.

Non-cascading queries. Queries such as “reading-friend’s-posts” and “read-

all-posts-from-friends” can be observed more frequently than cascading (i.e., re-

share) operations in a typical OSN application. The number of communication

operations for such non-cascading queries may require minimizing the number of

cut edges if query workload is highly changing or not available, or minimizing

the total traffic crossing different parts if it can be estimated. The cascade-aware

graph partitioning aims at reducing the cut edges that have high probability of

being involved in a random propagation process under a specific cascade model.

Assigning unit weights to all edges (i.e., cij = 1 for each edge eij) makes the ob-

jective same as minimizing the number of cut edges. A combination of objectives

can easily be achieved by assigning each edge cost cij = 1 + α(pij + pji), where α

determines the relative weight of traffic/cascade-awareness.

Intra-propagation balancing among servers. This paper considers the num-

ber of nodes/users as the only balancing criteria for the proposed cascade-aware

partitioning. On the other hand, the proposed formulation can be enhanced to

handle balance on multiple workload metrics via a multi-constraint graph parti-

tioning. For example, a balanced distribution of the number of content propa-

gation operations within servers can be attained via the following two-constraint

formulation. We assign the following two weights to each vertex vi:

w1(vi) = 1 and w2(vi) =
∑
eki∈E

pki. (3.18)
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Here, the summation in the second weight represents the sum of p probabilities

of the incoming edges of vertex vi. Under this vertex weight definition, the two-

constraint partitioning maintains balance on both the number of users assigned

to servers as well as the number of intra-propagation operations to be performed

within servers. The latter balancing holds because of the fact that the expected

number of propagations within a part Vk is∑
eij∈E(Vk)

pij (3.19)

where E(Vk) denotes the set of edges pointing towards the vertices in Vk.

Repartitioning. As graph databases are usually dynamic, i.e., new vertices and

edges are added or removed etc., repartitioning is necessary [5–7,41]. Repartition-

ing methods aims to maintain the quality of an initial partition via reassigning

vertices to parts as the graph structure changes. However, the costs of new edges

should be computed for repartitioning. That is, if a new direct edge is established

in G, then its p value need to be computed before repartitioning. The pij value

of a new edge eij can be computed using pki value of each incoming edge eki of

vertex vi as follows:

pij = wij ×
[

1−
∏
eki∈E

(1− pki)
]

(3.20)

That is, the content propagation probability wij is multiplied by the probability

of there being at least one edge eki incoming to vertex vi is activated during a

random propagation process. It is important to note that establishing the new

edge eij also affects pjk value of each outgoing edge ejk of vertex vj. If these

values also need to be updated during repartitioning, Eq.( 3.20) can be applied

for each edge ejk, in succession for updating the value of pij. In short, while

moving vertices between parts during repartitioning, the pij value of any edge

eij can be updated via applying Eq. (3.20) in a correct order. By updating pij

values on demand, the existing repartitioning approaches can be adapted for the

cascade-aware graph partitioning problem.
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Replication. Replication strategies need some modifications in order to be used

for the cascade-aware graph partitioning. It should be noted that, even though the

cut size of graph G′ can be reduced via replication of some vertices among multiple

parts, this approach also incurs additional communication operations. This is

because, when a replicated vertex becomes active during a content propagation

process, the content needs to be transferred to each server that the vertex is

replicated.

3.5 Experimental Evaluation

In this section, we experimentally evaluate the performance of the proposed so-

lution on social network datasets. We develop an alternative solution, which

produces competitive results, as a baseline algorithm in our experiments. The

baseline algorithm directly makes use of propagation probabilities between users

in the partitioning phase (i.e., wij values). Additionally, we also test various algo-

rithms previously studied in the literature [3,4] and compared with the proposed

solution.

3.5.1 Experimental Setup

Datasets. Table 3.2 displays the properties of the real-world social networks used

in our experiments. Many of these datasets are used in the context of influence

maximization research [54]. The first 13 datasets (Facebook–LiveJournal) are

collected from Stanford Large Network Dataset Collection1 [64] and they contain

friendship, communication or citation relationships between users in various real-

world social network applications. The remaining datasets: Twitter (large) is

collected from [65], uk-2002 and webbase-2001 are collected from Laboratory

1https://snap.stanford.edu/data
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for Web Algorithmics2 [66] and sinaweibo is collected from Network Repos-

itory3 [67]. Additionally, we also make use of a synthetic graph, named as

random-social-network, which we generate by using graph500 [68] power law

random graph generator. The graph500 tool is initialized with two parameters

namely as edge-factor and scale in order to produce graphs with 2scale vertices

and edge-factor×2scale directed edges. We set both scale and edge-factor to 16

to produce random-social-network dataset.

All datasets are provided in the form of a graph, where users are represented

by vertices and relationships by directed or undirected edges. To infer the direc-

tion of content propagation between users, we interpret these social networks as

follows: For directed graphs, we assume that a propagation may occur only in

the direction of a directed edge, whereas for undirected graphs, we assume that

a propagation may occur in both directions along an undirected edge. Therefore,

we did not apply any modifications to the directed graphs, whereas we modi-

fied the undirected graphs by replacing each undirected edge with two opposite

directed edges.

2http://law.di.unimi.it
3http://networkrepository.com
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Table 3.2: Dataset Properties

number of in degree out degree

Vertices Edges max avg max avg Descripton

Facebook 4,039 176,468 1,045 44 1,045 44 Social network from Facebook

wiki-Vote 7,115 103,689 893 15 457 15 Wikipedia who-votes-on-whom network

HepPh 34,546 421,534 411 12 846 12 Arxiv High Energy Physics paper citation network

email-Enron 36,692 367,662 1,383 10 1,383 10 Email communication network

Epinions 75,879 508,837 1,801 7 3,035 7 Who-trusts-whom network of Epinions.com

Twitter (small) 81,306 1,768,135 1,205 22 3,383 22 Social network from Twitter

Slashdot 82,168 870,161 2,510 11 2,552 11 Slashdot social network from February 2009

email-EuAll 265,214 418,956 929 2 7,631 2 Email communication network

dblp 317,080 2,099,732 343 7 343 7 DBLP collaboration network

youtube 1,134,890 5,975,248 28,754 5 28,754 5 Youtube online social network

Pokec 1,632,803 30,622,564 8,763 19 13,733 19 Pokec online social network

wiki-Talk 2,394,385 5,021,410 100,022 2 3,311 2 Wikipedia talk (communication) network

LiveJournal 4,847,571 68,475,391 20,292 14 13,905 14 LiveJournal online social network

Twitter (large) 11,316,811 85,331,843 564,512 7 214,381 7 Social network from Twitter

uk-2002 18,484,123 292,243,668 194,942 16 2,449 16 Web graph crawled (2002) under .uk domain

sinaweibo 58,655,849 522,642,104 278,490 9 278,490 9 Sina Weibo online social network

webbase-2001 118,142,155 1,019,903,190 816,127 8 3,841 8 Web graph crawled (2001) by WebBase [69]

random-social-network 65,536 910,479 9,613 19 3,233 19 Generated by graph500 power law graph generator
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In the datasets in Table 3.2, the information about the content propagation

probabilities between users is not available. Therefore, for each dataset, we draw

values uniformly at random from the interval [0, 1] and associate these values with

the edges connecting its pairs of users as the propagation probabilities. We repeat

this process five times for each dataset and obtain five different versions of the

same social network having different propagation probabilities associated with

its edges. Using these versions of the social network, we performed the same set

of experiments on each different version and reported the averages of the results

obtained for that specific dataset.

Given an underlying social network with its associated propagation probabil-

ities, our aim is to find a user partition that minimizes the expected number of

communication operations during a random propagation process under a specific

cascade model. There have been effective approaches in the literature to learn

the propagation probabilities between users in a social network [45, 46]. Infer-

ring these probability values using logs of user interactions is out of the scope

of this paper. However, we also work on a real-world dataset, from which real

propagation traces can be deduced, to test the proposed solution.

Baseline partitioning (BLP) algorithm. One can partition the input graph

in such a way that the edges with high propagation probabilities are removed from

the cut as much as possible. To achieve this, the sum of propagation probabilities

of the cut edges can be considered as an objective function to be minimized in

the graph partitioning problem. The baseline algorithm also builds an undirected

graph from a given social network and makes use of a graph partitioning tool.

Instead of computing a new probability distribution over all edges (i.e., the pij

values), the baseline algorithm directly makes use of propagation probabilities

associated with edges (i.e., the wij values). That is, the cost cij of an undirected

edge e′ij of G′ is determined using wij and wji values instead of pij and pji values

of edges eij and eji, respectively. By this way, the graph partitioner minimizes

the sum of propagation probabilities associated with the edges crossing different

parts. The difference between the baseline algorithm and the proposed solution

is the cost values associated with the edges of the undirected graph provided to

the graph partitioner.
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Other tested algorithms. In our experiments, we also test three previously

studied social network partitioning algorithms for comparison purposes. The first

of these algorithms (CUT) is given in [3] and aims to minimize the number of

links crossing different parts (i.e., basically minimizes the number of cut edges).

The second algorithm (MO+) [3] makes use of a community detection algorithm

and performs partitioning based on the community structures inherent to social

networks.

As the third algorithm, we consider the social network partitioning algorithm

provided in [4]. The social graph is partitioned in such a way that two-hop neigh-

borhood of a user is kept in one partition, instead of the one-hop network. For

that purpose, an activity prediction graph (APG) is built and its edges are asso-

ciated with weights that are computed using the number of messages exchanged

between users in a time period. Since the wij values can not be directly con-

sidered as the number of messages exchanged between users, we make use of

FI(eij) values computed by CAP algorithm. That is, we designate the number

of messages exchanged in a time period between users as FI(eij). Additionally,

to compute edge weights, the algorithm uses two parameters which are the total

number of past periods considered and a scaling constant (these parameters are

referred to as K and C in [4]). We set these parameters to one, since we can not

partition FI(eij) values into time periods. Using these values, we construct the

same APG graph and partition this graph. We refer to this algorithm as 2Hop

in our experiments.

Content propagations. To evaluate the qualities of the partitions obtained by

the tested algorithms, we performed a large number of experiments based on both

real and IC based traces of propagation on real-world social networks. We gen-

erated the IC based propagation data as follows: First, we generate a randomly

selected subset of users, then execute an IC model propagation process starting

from the users in this set. The size of the set is randomly determined and chosen

uniformly at random from the interval [1, 50]. During this propagation process,
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we count the total number of propagation events that occurred between the users

located on different parts. As mentioned earlier, such propagation events cause

communication operations between servers according to our problem definition.

For each of the datasets, we perform 105 such experiments and compute the av-

erage of the total number of communication operations performed under a given

partition. This average corresponds to an estimation for the expected number of

communication operations during a random propagation process.

Partitioning framework. The graphs generated by algorithms, except MO+,

are partitioned using state-of-the-art multi-level graph partitioning tool Metis [14]

using the following set of parameters: We specify partitioning method as mul-

tilevel k-way partitioning, type of objective as edge-cut minimization and the

maximum allowed imbalance ratio as 0.10. All the other parameters are set to

their default values. We implemented MO+ algorithm by using a community

detection algorithm4 provided in [70] with its default parameters.

In order to observe the variation of the relative performance of the algorithms,

each graph instance is partitioned K-way for K = 32, 64, 128, 256, 512 and 1024,

respectively. In order to observe the performance gain achieved by intelligent

partitioning algorithms, all graph instances are also partitioned random-wise,

which is referred to as random partitioning (RP) algorithm.

3.5.2 Experimental Results

Figure 3.2 compares the performance of the proposed CAP algorithm against the

existing algorithms 2Hop, MO+, CUT as well as BLP. In the figure, we display

the geometric means of the ratios of the communication operation counts incurred

by the partitions obtained by CAP, BLP, CUT, MO+ and 2Hop to those by RP,

for each different K value. We run CAP algorithm with accuracy θ = 0.01 and

δ = 0.05. As seen in the figure, BLP performs much better than both 2Hop and

4http://www.mapequation.org/code.html
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Figure 3.2: The geometric means of the communication operation counts in-
curred by the partitions obtained by BLP, CUT [3], CAP, MO+ [3] and 2Hop [4]
normalized with respect to those by RP.

MO+, whereas it performs slightly better (6%–9% on average) than CUT. These

experimental results justify the use of BLP as a baseline algorithm to test the

validity of the proposed CAP algorithm. As also seen in the figure, the proposed

CAP algorithm performs significantly better than all algorithm.
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Table 3.3: Average number of communication operations during IC model propagations under partitions obtained by

RP (Random partitioning), BLP (Baseline partitioning) and CAP (proposed cascade-aware graph partitioning) algorithms.

K=32 K=64

RP BLP CAP RP BLP CAP

comm comm cut comm cut %imp comm comm cut comm cut %imp

Facebook 3,787 1,818 0.32 1,647 0.38 9.40 3,854 2,344 0.52 2,187 0.57 6.66

wiki-Vote 2,127 1,681 0.74 1,360 0.82 19.11 2,160 1,824 0.82 1,497 0.87 17.91

HepPh 12,048 4,092 0.29 3,155 0.44 22.91 12,580 5,095 0.36 3,858 0.52 24.28

email-Enron 25,153 6,539 0.39 5,083 0.45 22.27 25,514 8,073 0.45 6,193 0.52 23.29

Epinions 29,801 12,781 0.59 8,290 0.66 35.14 30,264 13,232 0.64 8,699 0.70 34.26

Twitter (small) 68,391 11,901 0.18 8,827 0.23 25.83 69,470 14,348 0.22 10,379 0.27 27.66

email-EuAll 27,543 3,709 0.21 2,592 0.31 30.11 28,050 24,421 0.75 2,934 0.35 87.99

Slashdot 57,426 29,724 0.71 21,497 0.77 27.68 58,313 29,416 0.74 22,433 0.79 23.74

dblp 240,487 36,939 0.17 33,853 0.20 8.36 244,170 40,818 0.19 37,270 0.22 8.69

youtube 648,399 147,215 0.33 122,535 0.40 16.76 659,107 163,117 0.38 134,613 0.46 17.47

Pokec 429,046 129,345 0.26 117,943 0.31 8.82 435,335 154,124 0.33 141,410 0.39 8.25

wiki-Talk 729,773 115,825 0.44 93,005 0.47 19.70 740,897 125,724 0.47 98,511 0.50 21.64

LiveJournal 1,152,319 279,846 0.24 234,804 0.30 16.10 1,168,167 317,001 0.29 267,697 0.36 15.55

Twitter (large) 4,183,322 1,950,300 0.57 1,194,675 0.75 38.74 4,250,880 1,942,093 0.68 1,268,234 0.79 34.70

uk-2002 6,933,807 107,593 0.01 60,539 0.03 43.73 7,046,263 114,284 0.01 64,713 0.03 43.38

sinaweibo 40,403,232 12,192,759 0.46 9,541,550 0.56 21.74 40,404,365 12,356,095 0.50 10,169,184 0.61 17.70

webbase-2001 29,301,906 614,458 0.02 329,646 0.03 46.35 29,774,985 651,124 0.02 358,722 0.04 44.91

norm avgs wrto RP 1.00 0.21 0.16 25.16 1.00 0.26 0.17 31.82
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K=128 K=256

Facebook 3,884 2,774 0.70 2,629 0.73 5.24 3,893 3,107 0.82 2,980 0.85 4.09

wiki-Vote 2,174 1,931 0.88 1,837 0.96 4.89 2,184 2,125 0.96 2,101 0.97 1.13

HepPh 12,409 5,954 0.44 4,389 0.60 26.29 12,850 7,034 0.53 5,048 0.68 28.23

email-Enron 25,714 9,596 0.53 7,636 0.59 20.42 25,820 11,505 0.59 10,208 0.65 11.27

Epinions 30,506 13,285 0.68 9,094 0.72 31.55 30,653 13,635 0.71 9,574 0.74 29.78

Twitter (small) 69,993 17,111 0.27 12,336 0.34 27.90 70,169 20,687 0.34 14,709 0.41 28.89

email-EuAll 28,266 24,241 0.79 3,231 0.41 86.67 28,348 24,172 0.81 4,207 0.47 82.60

Slashdot 58,716 29,501 0.76 23,149 0.81 21.53 58,946 30,265 0.79 23,667 0.81 21.80

dblp 245,923 43,376 0.20 39,053 0.24 9.97 247,006 45,240 0.21 40,534 0.25 10.40

youtube 664,146 177,097 0.43 146,781 0.51 17.12 666,821 195,400 0.49 158,057 0.54 19.11

Pokec 438,930 182,158 0.40 168,153 0.49 7.69 440,504 210,461 0.48 201,080 0.61 4.46

wiki-Talk 747,415 130,856 0.49 111,842 0.51 14.53 747,916 142,779 0.50 138,546 0.52 2.97

LiveJournal 1,177,061 347,405 0.33 295,910 0.40 14.82 1,182,573 368,749 0.36 318,370 0.44 13.66

Twitter (large) 4,284,834 3,449,396 0.86 1,308,157 0.81 62.08 4,301,563 3,610,392 0.93 1,343,795 0.83 62.78

uk-2002 7,101,990 117,968 0.01 68,482 0.03 41.95 7,129,786 126,795 0.01 71,213 0.03 43.84

sinaweibo 40,726,570 12,836,470 0.53 10,679,002 0.63 16.81 40,886,216 13,232,762 0.57 11,027,580 0.65 16.66

webbase-2001 30,011,343 682,865 0.02 383,526 0.04 43.84 30,129,511 717,763 0.02 405,536 0.04 43.50

norm avgs wrto RP 1.00 0.28 0.19 32.04 1.00 0.31 0.21 29.97
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K=512 K=1024

Facebook 3,912 3,625 0.95 3,555 0.95 1.91 3,914 3,721 0.97 3,687 0.97 0.91

wiki-Vote 2,186 2,135 0.97 2,131 0.97 0.21 2,190 2,138 0.96 2,115 0.97 1.11

HepPh 12,822 7,956 0.61 5,555 0.76 30.18 12,863 8,910 0.70 6,075 0.82 31.82

email-Enron 25,835 13,560 0.66 12,733 0.71 6.10 25,897 15,679 0.72 14,621 0.75 6.75

Epinions 30,631 14,396 0.74 10,320 0.75 28.32 30,674 15,302 0.77 11,424 0.77 25.34

Twitter (small) 70,309 24,979 0.42 18,020 0.50 27.86 70,430 33,555 0.55 23,861 0.64 28.89

email-EuAll 28,388 24,255 0.83 6,109 0.58 74.81 28,390 25,421 0.86 10,569 0.70 58.42

Slashdot 59,053 30,532 0.81 24,340 0.82 20.28 59,161 30,944 0.82 24,938 0.83 19.41

dblp 247,367 47,106 0.22 41,875 0.26 11.11 247,658 49,605 0.24 43,372 0.27 12.57

youtube 668,146 200,723 0.52 166,605 0.56 17.00 668,800 212,618 0.55 180,943 0.58 14.90

Pokec 441,892 232,194 0.55 214,309 0.67 7.70 442,150 249,415 0.60 223,356 0.72 10.45

wiki-Talk 752,402 635,183 0.90 622,024 0.92 2.07 752,048 672,420 0.93 663,852 0.92 1.27

LiveJournal 1,185,101 389,357 0.39 340,986 0.48 12.42 1,185,655 412,393 0.42 362,391 0.52 12.12

Twitter (large) 4,310,133 3,498,242 0.94 1,472,766 0.85 57.90 4,314,342 3,917,869 0.97 3,397,889 0.94 13.27

uk-2002 7,144,002 138,545 0.02 75,149 0.04 45.76 7,150,971 156,001 0.02 82,082 0.05 47.38

sinaweibo 40,966,473 13,630,831 0.60 11,516,372 0.67 15.51 40,983,365 14,209,656 0.63 11,904,051 0.69 16.23

webbase-2001 30,188,276 735,969 0.02 427,812 0.04 41.87 30,218,102 760,751 0.02 441,437 0.04 41.97

norm avgs wrto RP 1.00 0.36 0.26 27.36 1.00 0.38 0.30 22.14

”%imp“: improvement of CAP over BLP, ”cut“: ratio of number of cut edges to total number of edges, K: number of parts/servers.
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Table 3.3 compares the performance of the proposed CAP algorithm against

BLP and RP on each graph for each K value, in terms of average number of

communication operations during IC model propagation simulations. Here, par-

titioning of a graph for each different K value constitutes a partitioning instance.

For each K value, the last column entitled “%imp” displays the percent improve-

ment of CAP over BLP for each dataset in terms of the number of communication

operations. For each K value, the last row entitled “norm avgs wrto RP” dis-

plays the geometric means of the ratios of the communication operation counts

incurred by the partitions obtained by BLP and CAP to those by RP. The table

also contains a “cut” column which displays the ratio of the number of cut edges

to the total number of edges for each partitioning instance.

As seen in Table 3.3, BLP performs significantly better than RP in all parti-

tioning instances. This is because, BLP successfully reduces the sum of propa-

gation probabilities of cut edges and reduces the chances for propagation events

to occur between different parts. On average, partitions obtained by BLP in-

curs 4.76x, 3.84x, 3.57x, 3.22x, 2.77x and 2.63x less communications than RP

for K = 32, 64, 128, 256, 512 and 1024 servers, respectively. The decrease in the

performance gap between BLP and RP with increasing K can be attributed

to the performance degradation of the graph partitioning tool for high K val-

ues. Especially, whenever the average number of vertices assigned to parts (i.e.,

|V |/K) decreases below some certain threshold (e.g., for K=1024 and K=512 on

Facebook and wiki-Vote datasets), improvements of Metis significantly degrades

as can be seen from Table 3.3. However, for the case of web graphs (e.g., uk-2002

and webbase-2001), Metis provides significantly better partitions, providing cut

ratios below 0.1 (i.e., structures of graphs also have effect on quality of partitions

produced by Metis). As a result, the number of inter-partition communication

operations are significantly less in cases of these graphs as compared to other

cases.

As seen in Table 3.3, CAP performs significantly better than BLP in all of

the partitioning instances. If the cut ratio values are closely inspected, parti-

tions obtained by CAP leaves more edges in the cut (i.e., higher cut ratios); but

these partitions incur less communication operations. On average, CAP achieves
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25.16%, 31.82%, 32.04%, 29.97%, 27.36% less communication operations than

BLP for K = 32, 64, 128, 256, 512 and 1024 servers, respectively. Especially, the

best improvement is obtained on email-EuAll social network for K=64, where

the partitions obtained by CAP achieve 88% less communication operations than

those by BLP. Also in this partitioning instance, CAP achieves a cut ratio of 0.35

which is significantly less than 0.75 of BLP. However, as the value of K increases,

the improvement of CAP over BLP decreases for some social networks; especially

for wiki-Talk and wiki-Vote, where 19.11% and 19.70% improvements of CAP

over BLP for K = 32, respectively, decrease to 1.11% and 1.27% for K=1024.

This can be attributed to Eq. (3.16), since as the value of K increases, the number

of cut edges is also expected to increase. As shown in Eq. (3.16), the number of

cut edges directly affects the error made by CAP algorithm: the upper bound of

the error made by CAP algorithm is shown to be proportional to the number of

cut edges. Indeed, the performance improvement of CAP over BLP is observed

to be the lowest on the partitioning instances for which CAP incurs the highest

cut ratio. For instance, on datasets Facebook, wiki-Talk and wiki-Vote for

K = 1024, partitions generated by CAP have cut ratios of 0.97, 0.97 and 0.92

respectively.

The performance decrease of CAP can be alleviated by making more accurate

estimations for the pij values and decreasing the value of θ. However, the cut

ratio depends on the graph partitioning tool performance, dataset characteristics

and imbalance ratios used during partitioning. In order to get better cut ratios,

the imbalance constraint can be relaxed and increased to higher values (e.g., we

used imbalance ratio of 0.1 in our experiments).

To observe how the improvement of CAP algorithm changes with re-

spect to the cut ratio, we perform the same set of experiments also on

random-social-network. As seen in Table 3.4, partitions obtained by CAP

algorithm cause 43% less communication operations for K=32 even though the

fraction of edges are 6% more than that of BLP. As noted in previous experimen-

tal results, the improvement of CAP over BLP decreases as the value of K and the

cut ratio increases: the percent improvement of CAP over BLP decreases from

43% to 30% as the fraction of cut edges increases from 0.91 to 0.95 on K = 32
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Table 3.4: Results for IC model propagations on random-social-network. ”cut“
column denotes the fraction of edges remain in the cut after partitioning, ”comm”
column denotes the average number of communication operations and ”%imp”
column denotes the percent improvement of CAP over BLP.

RP BLP CAP

K cut comm cut comm cut comm %imp

32 0.97 24,690 0.85 20,981 0.91 11,890 43.33
64 0.98 25,119 0.92 18,638 0.93 12,317 33.91

128 0.99 25,328 0.93 18,484 0.94 12,635 31.64
256 0.99 25,378 0.94 18,546 0.94 12,961 30.11
512 0.99 25,400 0.95 19,911 0.95 13,515 32.12

1024 0.99 25,511 0.95 20,279 0.95 14,229 29.83

and K = 1024, respectively.

Sensitivity analysis. We performed experiments to see how the accuracy

parameter θ affects the performance of the CAP algorithm. For different

values of θ and K, we compare the performance of CAP against RP on

random-social-network. In Figure 3.3, we designate the size of set I as

|I| = 10, 102, 103, 104 and 105 respectively. Experiments are performed under

K-way partitions for K = 32, 64, 128 and 256. We plot the percent increase in

the performance of CAP over RP on y-axis. The accuracy values are computed

for confidence δ = 0.05 and displayed on the right side of the figure. As seen in

the figure, with increasing size of set I, the value of θ decreases exponentially and

the improvement of CAP increases logarithmically. Additionally, as also observed

earlier, the relative performance of CAP decreases with increasing K. The best

performance improvement is obtained for K = 32 where CAP performs 2x better

than RP. These results can be attributed to the results of Eq. 3.16, since for

higher values of K, both the cut ratio and the error made by the CAP algorithm

increases. However, as the accuracy increases, the error made by CAP decreases

and the overall optimization quality improves.
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Figure 3.3: Variation in the improvement of CAP over RP with different sizes of
set I. Dashed curve denotes the accuracy θ, whereas solid lines denotes variations
in the improvements for random-social-network on K = 32, 64, 128 and 256
parts/servers.

Relationship with Minimizing Cut Edges. We also performed experiments

to observe how much the cascade-based estimation of traffic is related to the per-

formance measure of minimizing the number of cut edges. Previously, we asserted

that different objectives can be encoded in the same cut size definition through

assigning different weights to costs associated with edges by each objective (i.e.

cij = 1 + α(pij + pji)). The parameter α controls how much the cascade-based

estimation of the traffic is considered. Figure 3.4 displays the average number

of communication operations and ratio of cut edges, by varying parameter α,

obtained by CAP for HepPh dataset on K = 32 parts/servers (i.e., the α value is

multiplied by FI(eij) value of each edge). As seen in the figure, with increasing

α, the average number of communication operations decreases, whereas the ratio

of the number of cut edges increases. On the other hand, the increase in the

cut size slows down after α = 10−2 and cut ratio becomes at most 0.44, since

the cut size also has effect on the average number of communication operations.

Note that for the smallest value of α, CAP becomes almost equivalent to CUT,

providing equally well partitions in terms of number of cut edges (black-dashed

curve denotes the cut value obtained by CUT algorithm). If the query workload

is dominated by non-cascading queries and there is comparably small number of

cascades, than α value can be set to smaller values, or vice versa.
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Figure 3.4: Variation of average number of communication operations and cut
values obtained by CAP for different α values. Experiments are performed for
HepPh dataset on K = 32 parts/servers. Solid curve denotes communication val-
ues, dashed curve denotes cut values (Black-dashed curve denotes the cut value
obtained by CUT algorithm).

Running times. We performed our experiments on a server having 256 GB main

memory and two Intel(R) Xeon(R) CPU E7-8860 v4 @ 2.20GHz processors, each

of which consists of 18 cores and is able to run 36 threads concurrently. One of

the largest social networks we used in our experiments, sinaweibo, consists of

approximately 58M vertices and 522M edges. For this social network, the estima-

tion of pij values took approximately 5.9 hours and required 59GB main memory.

For the estimation phase, we employed shared memory parallelism and gener-

ated the set I via using 72 threads. The partitioning phase of undirected graph

G′ into K = 1024 parts via Metis took approximately 1, 25 hours and required

71GB main memory. It is worth to mention that partitioning time of sinaweibo

via Pulp [71], which is a label propagation-based partitioning tool, took approx-

imately 1.1 hour in case of BLP algorithm. Similarly, the biggest graph we used

in our experiments, webbase-2001, has 118M vertices and 1B edges. For this

dataset, the estimation phase took approximately 2.2 hours and required 130GB

main memory. However, even though webbase-2001 has more vertices and edges

than sinaweibo, partitioning this graph into K = 1024 parts took approximately

0.5 hours and required 51GB main memory. Note that the estimation phase of

CAP takes only 4.7x and 4.4x more time than the partitioning phase on the

two large datasets sinaweibo and webbase-2001, respectively. These relative

runtime comparisons suggest that cascade-aware graph partitioning, considered

as an offline process that will be used in relatively long time intervals, runs in

reasonable time limits for large-scale social networks.
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3.5.3 Experiments on Digg Social Network with Real

Propagation Traces

In this section, we use actual propagation traces collected from Digg5 [39] social

news portal. Digg is an OSN where users can share and vote for news stories,

and designate others as friends to inform about their activities. Friendships can

be designated as one-way relationships in such a way that if a user vi declares

another user vj as a friend, then vi is informed of activities of vj but not vice

versa. Users follow activities of their friends in their news feeds where the stories

their friends shared or voted for are displayed. With these properties of Digg

social network, a story can propagate through users once it is shared or voted

for. Propagation of news stories can be considered as propagation of contents in

our problem definition.

The Digg dataset contains a directed graph G = (V,E) representing the un-

derlying social network which consists of 71,367 users and 1,731,658 friendship

links. As friendships are formed as one-way relationships, they are represented

by directed edges. Each directed edge eij ∈ E means that user vj is following the

activities of user vi; therefore, the content propagation can occur in the direction

of vi to vj. Additionally, the dataset contains log L of past activities of users

over a set N of news stories. Each entry (vi, nk, ti) ∈ L means that user vi ∈ V
has voted for news story nk ∈ N at time ti. The dataset contains 3,018,197 votes

made on 3,553 news stories (i.e., |L| = 3,018,197 and |N | = 3,553).

In order to deduce the content propagation traces from log L, we follow the

approach proposed in [59]. In this approach, if user vi votes for the news story

nk, then it is assumed that vi is probably influenced by one of its friends that

have voted for the same story before. However, in order for vi to be influenced

by its friends, the difference between their voting times should be within a time

window t∆. Let P k
i denote the set of users that potentially influence user vi in

voting for news story nk, we define P k
i as

P k
i = {vj ∈ V | (vj, vi) ∈ E ∧ ti − tj ≤ t∆}. (3.21)

5www.isi.edu/ lerman/downloads/digg2009.html
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In our experiments, we set the time window t∆ as one month following the ap-

proach in [59]. The set P k
i induces a subgraph gk = (V,Ek) of G, where potential

influencers of each user are denoted by the directed edges in Ek as follows:

Ek = {(vj, vi) ∈ E | vj ∈ P k
i }. (3.22)

The subgraph gk is reminiscent of a directed graph g ∼G, where each directed

edge eij is associated with a propagation probability wij and g is generated by the

equivalent process of the IC model as described in Section 3.2. Note that g is also

a subgraph where each user may have multiple potential influencers and one of

them can be arbitrarily selected to generate a propagation tree/forest. Therefore,

we generate a propagation forest for the news story nk on gk as follows: Let Ik(S)

denote a propagation forest on gk, where propagation trees are rooted on vertices

in S and the set S is composed of vertices that are having no incoming edges (i.e.,

users in the set S do not have any potential influencers).

The propagation forest Ik(S) can be computed by performing a multi-

source BFS starting from vertices in S on gk as if a random propagation tree

is built from a g∼G. It is important to note that multiple propagation forests

can be generated depending on the execution of multi-source BFS on gk. Edges

in the propagation forest Ik(S) still encode the information as to propagation

traces through users. We generate propagation trees/forests for all news stories

in Log L, and use them instead of performing the IC model propagation simu-

lations. Algorithm 3.2 presents computations we performed on log L to deduce

the content propagation traces.

After generating the propagation trees/forests for all news stories available in

log L, we sample 90% of these trees/forests to use in Algorithm 3.1. That is,

instead of randomly generating random propagation forests, we use real propa-

gations in log L to compute the function FI(·) and estimate pij values of edges

in G. We use the remaining 10% of the propagation forests to test the qualities

of the partitions returned by Algorithm 3.1. If an edge in a propagation forest

crosses different parts, we count that edge as one communication operation.

We compare the qualities of the partitions produced by CAP algorithm against
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Algorithm 3.2 Generating Propagation Trees/Forests from logs of past propa-
gation traces

Input: G = (V,E), L, t∆
Output: I

1: Partition log L based on news stories and obtain Lk for each story nk ∈ N
2: Initialize an empty set I of propagation forests
3: for each Lk do
4: Sort entries (vi, nk, ti) ∈ Lk according to their timestamps ti in increasing

order
5: Initialize a directed graph gk = (V,Ek), where Ek = ∅
6: for each entry (vi, nk, ti) ∈ Lk do
7: Mark vi as activated
8: for each (vj, vi) ∈ E do
9: if vj is activated and tj − ti ≤ t∆ then

10: Ek = Ek ∪ {(vj, vi)}
11: Initialize set S = {vi | in-degree of vi = 0 in gk}
12: Perform multi-source BFS on gk starting from the vertices in S and generate

a propagation forest Ik
13: I = I ∪ {Ik}
14: return I

those of a slightly modified version of the BLP algorithm presented previously.

In the modified version of BLP, we associate unit cost with each edge of the

undirected graph that is produced from the input social graph. This modification

causes BLP to regard only the friendship structure of Digg social network and

produce partitions that minimize the number of friendship links crossing different

parts. In this way, BLP and CUT algorithms become equivalent.

In Table 3.5, we present the results of the experiments on Digg social network.

In addition to CAP and the modified version of BLP, we also include the results

for partitions generated by RP. For each of these partitions, we compute the

average number of communication operations induced on the propagation trees

that are generated and sampled from 10 percent of log L.

As seen in the Table 3.5, BLP performs much better than 2Hop, CUT, MO+

and RP algorithms. For K = 32, the partition generated by BLP incurs approx-

imately 2x less communication operations than RP. The performance improve-

ments of BLP is less for higher values of K. For example, BLP performs 2 times
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Table 3.5: Experimental results on Digg social network. For each tested algo-
rithm, average number of communication operations induced during propagation
of news stories are displayed. ”%imp” column denotes the percent improvement
of CAP over BLP.

K RP MO+ 2Hop BLP CAP %imp

32 192 189 151 101 40 60.80
64 195 193 160 86 44 48.11

128 196 196 167 119 62 47.97
256 197 197 172 128 77 39.65
512 198 198 174 133 102 23.06

1024 198 198 177 152 131 13.53

better than RP for K = 1024. CAP algorithm, on the other hand, consistently

performs better than BLP for all values of K. Especially, for K = 32, CAP al-

gorithm incurs 60% less communication operations. However, as the value of

K increases from 32 to 1024, the overall improvement of CAP over BLP de-

creases to 13%. This is because the accuracy obtained by 90% of the propagation

trees/forest sampled from log L remains constant as we increase the value of K

and therefore the error made by CAP algorithm increases as we have showed in

Eq. 3.16. Additionally, the performance of the graph partitioning tool is expected

to decrease for higher values of K where the average number of vertices per part

reduces below 100 for K = 1024.

Results displayed in Table 3.5 illustrates the effectiveness of the CAP algo-

rithm in a case where actual propagation traces are used instead of the IC model

simulations.

3.6 Conclusion

We studied the problem of cascade-aware graph partitioning, where we seek to

compute a user-to-server assignment that minimizes the communication between

servers/parts considering content propagation processes.

We employed a sampling-based method to estimate a probability distribution

by which each edge of a graph is associated with a probability of being involved
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in a random propagation process. We use these estimates as part of the input of

graph partitioning. The proposed solution works under various cascade models

and requires that parameters of these models are given beforehand. Theoretic

results that show how our solution achieves the stated objectives are also derived.

To the best of our knowledge, this is the first work that incorporates the models

of graph cascades into a systems performance goal.

We performed experiments under the widely used IC model and evaluated the

effectiveness of the proposed solution in terms of partitioning objectives. We

implemented the solution over real logs of propagation traces among users, in

addition to using their social network structure. Experiments demonstrate the

effectiveness of the proposed solution both in presence and absence of actual

propagation traces.
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Chapter 4

Scaling Sparse Matrix-Matrix

Multiplication in the Accumulo

Database

Relational databases have long been used as data persisting and processing layer

for many applications. However, with the advent of big data, the need for storing

and processing huge volumes of information made relational databases an unsuit-

able choice for many cases. Due to the limitations of relational databases, several

NoSQL systems have emerged as an alternative solution. Today, big Internet

companies use their own NoSQL database implementations especially designed

for their own needs (e.g., Google Bigtable [72], Amazon Dynamo [73], Facebook

Cassandra [74]). Especially, the design of Google’s Bigtable has inspired the

development of other NoSQL databases (e.g., Apache Accumulo [75], Apache

HBase [76]). Among them, Accumulo has drawn much attention due to its high

performance on ingest (i.e., writing data to database) and scan (i.e., reading data

from database) operations, which make Accumulo a suitable choice for many big

data applications [77].

Solutions for big data problems generally involve distributed computation and

see [29] for the original work
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need to take the full advantage of data locality. Therefore, instead of using an

external system, performing computations inside a database system is a prefer-

able solution [26]. One approach to perform big data computations inside a

database system is using NewSQL databases [78]. These type of databases seek

solutions to provide scalability of NoSQL systems while retaining the SQL guar-

antees (ACID properties) of relational databases. However, even though using a

NewSQL database can be a good alternative, some researchers take a different

approach and seek solutions based on performing big data computations inside

NoSQL databases [26]. To that extent, the Graphulo library [24] realizing the

kernel operations of Graph Basic Linear Algebra Subprogram (GraphBLAS) [79]

in Accumulo NoSQL database is recently developed. GraphBLAS is a community

that specifies a set of computational kernels that can be used to recast a wide

range of graph algorithms in terms of sparse linear algebraic operations. There-

fore, realizing GraphBLAS kernels inside NoSQL databases enables performing

big data computations inside these systems, since many big data problems involve

graph computations [80].

One of the most important kernel operations in GraphBLAS specification is

Sparse Generalized Matrix Multiplication (SpGEMM). SpGEMM forms a basis

for many other GraphBLAS operations and used in a wide range of applications

in big data domain such as subgraph detection and vertex nomination, graph

traversal and exploration, community detection, vertex centrality and similar-

ity computation [23–25]. An efficient implementation for SpGEMM in Accumulo

NoSQL database is proposed in [27]. The authors actually discuss two multiplica-

tion algorithms which are referred to as inner-product and outer-product. Among

the two algorithms, the outer-product is shown to be more efficient, and there-

fore is included in Graphulo Library [24]. The inner-product has the advantage

of write-locality while ingesting the result matrix, but has the disadvantage of

scanning one of the input matrices multiple times. On the other hand, the outer-

product algorithm can not fully exploit write-locality, but requires scanning both

of the input matrices only once.

In this work, we focus on improving the performance of SpGEMM in Accumulo

for which we propose a new SpGEMM algorithm that overcomes the trade-offs
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presented earlier. The proposed solution alleviates scanning of input matrices

multiple times by making use of Accumulo’s batch-scanning capability which is

used for accessing multiple ranges of key-value pairs in parallel. Even though the

use of the batch-scanning introduces some latency overheads, these overheads are

alleviated by the proposed solution and by using node-level parallelism structures.

Moreover, the proposed solution provides write-locality while ingesting the result

matrix and does not require further computations when the result matrix need

to be scanned, which was not the case for the previously proposed SpGEMM

algorithm in [27].

We also propose a matrix partitioning scheme that improves the performance

of the proposed SpGEMM algorithm via reducing the total communication vol-

ume and providing a balance on the workloads of the servers. Since matrices in

Accumulo can only be partitioned according to sorted order of their rows and

split points applied on rows, we propose a method that reorders input matrices

in order to achieve the desired data distribution with respect to a precomputed

partitioning. We cast the partitioning of matrices as a graph partitioning problem

for which we make use of a previously proposed bipartite graph model in [30].

We propose a modification to this graph model in order to better comply with

the proposed SpGEMM iterator algorithm and Accumulo’s own architectural de-

mands.

We conduct extensive experiments using 20 realistic matrices collected from

various domains and synthetic matrices generated by graph500 random graph gen-

erator [68]. On all test instances, the proposed algorithm significantly performs

better than the previously proposed solution without the use of any intelligent

input matrix partitioning scheme. The performance of the proposed algorithm is

improved even further with the use of the proposed matrix partitioning scheme.

54



4.1 Background

4.1.1 Accumulo

Accumulo is a highly scalable, distributed key-value store built on the design

of Google’s Bigtable. Accumulo runs on top of Hadoop Distributed File Sys-

tem (HDFS) [81] to store its data and uses Zookeeper [82] to keep coordination

among its services. Data is stored in the form of key-value pairs where these

key-value pairs are kept sorted at all times to allow fast look up and range-scan

operations. Keys consist of five components namely as row, column family, col-

umn qualifier, visibility and timestamp. Values can be considered as byte arrays

and there is no restriction for their format or size. These key-value pairs are kept

sorted in ascending, lexicographical order with respect to the key fields.

Accumulo groups key-value pairs into tables and tables are partitioned into

tablets. Tablets of a table are assigned to tablet servers by a master which stores

all metadata information and keeps coordination among tablet servers. Tables are

always split on row boundaries and all key-value pairs belonging to the same row

are stored by the same tablet server. This allows modifications to be performed

atomically on rows by the same server. All tables consist of one tablet when

they are created for the first time, and as the number of key-value pairs in a

tablet reaches to a certain threshold, the corresponding tablet is split into two

tablets and one of these tablets is migrated to another server. It is also possible

to manually add split points to a table to create tablets a priori and assign them

to servers. This eliminates the need of waiting the tablets to split on their own

and allows writing or reading data in parallel, which increases the performance

of ingest and scan operations.

Reading data on the client side can be performed using sequential-scanner or

batch-scanner capabilities of Accumulo. Sequential-scanning allows access to a

range of key-value pairs in sorted order, whereas batch-scanning allows concur-

rent access to multiple ranges of key-value pairs in unsorted order. Similarly,

writing data is performed through using batch-writer which provides mechanisms
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to perform modifications to tablets in parallel.

It is also possible to perform distributed computations inside Accumulo by us-

ing its iterator framework. Iterators are configured on tables for specific scopes,

and forms an iterator tree according to their priority. After configured on ta-

bles, iterators are applied in succession to the key-value pairs during scan or

compaction times. Since a table may consist of multiple tablets and span to

multiple tablet servers, each tablet server executes its own iterator stack concur-

rently, which provides a distributed execution. Users can implement customized

iterators that can be plugged into available iterator tree on a table and obtain

distributed parallelism by performing a batch-scan operation over a range of key-

value pairs. An iterator applied during a batch-scan operation is executed on

tablet servers that are spanned by the given range of key-value pairs.

4.1.2 Related Work

Parallelization of SpGEMM operation on shared-memory architectures have been

extensively studied in many research works [83–85]. More recently, matrix parti-

tioning schemes that utilize spatial and temporal locality in row-by-row parallel

SpGEMM on many-core architectures are proposed in [28].

Several publicly available libraries exist to perform SpGEMM on distributed

memory architectures [20, 86]. Buluc and Gilbert [1] studies sparse SUMMA

algorithm, a message passing algorithm, which employs 2D block decomposition

of matrices. Akbudak and Aykanat [32] propose hypergraph models for outer-

product message passing SpGEMM algorithm to reduce communication volume

and provide computational balance among processors. More recently, hypergraph

and bipartite graph models are proposed in [30] for outer-product, inner-product

and row-by-row-product formulations of message passing SpGEMM algorithms

on distributed memory architectures.

Graphulo library1 [24] also provides a distributed SpGEMM implementation

1https://github.com/Accla/graphulo
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developed by Hutchison et al. [27], running on top of Accumulo’s iterator frame-

work. The method proposed in [27] utilizes the outer-product formulation of

SpGEMM in the form of C = AB. In this approach each column of A is multi-

plied by its corresponding row of B (i.e., ith column of A is multiplied by ith row

of B), and the resulting matrices of partial products by such multiplications are

summed to get the final matrix C. To benefit from high performance attained by

rowwise table accesses in Accumulo, AT and B are stored in separate tables (i.e.,

scanning columns of A corresponds to scanning rows of AT ).

The SpGEMM algorithm proposed in [27] is executed by an iterator applied

on a batch-scan performed on the table storing matrix AT . Therefore, each tablet

server iterates through local rows of AT and scans the corresponding rows of B to

perform the outer-product operations between them. The required rows of B can

be stored locally as well as stored by other servers, since theAT andB matrices are

stored as separate tables and Accumulo may assign respective tablets to different

servers even the same split points are applied on these tables. If we assume that

scanning rows of B does not incur any communication costs (i.e., the respective

tablets of AT and B are co-located), writing the resulting C matrix back to the

database still incurs significant amount of communication costs in this approach.

This is because, the partial result matrices cannot be aggregated before being

written back to the database and in the worst case, a partial result matrix can

have nonzero entries that should be broadcast to almost all tablet servers available

in the system, which may necessitate a tablet server to communicate with all the

other tablet servers during this phase. Because of these reasons, writing phase of

this outer-product SpGEMM algorithm becomes the main bottleneck. Therefore,

Hutchison et al. [27] discuss also an alternative approach and propose an inner-

product algorithm which requires scanning the whole B matrix for each local row

of A. Although this inner-product approach has the advantage of write-locality,

it is considered infeasible due to the necessity of scanning the whole B matrix for

each row of A. Therefore, the outer-product implementation of the SpGEMM is

included in the Graphulo library.

Our solution to perform SpGEMM in Accumulo differs from [27] in the way

that it provides the advantage of write-locality, similar to the one provided by
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the inner-product approach, and alleviates scanning all rows of matrix B for

each row of A by a tablet server. To provide that, our solution makes use of

Accumulo’s batch-scanning capability which enables accessing to multiple rows

of matrix B in parallel. However, our approach suffers from the latency overheads

introduced by performing a batch-scan operation for each local row of A. As we

discuss in the following sections, this latency overhead can be hugely resolved by

batch-processing of multiple local rows of matrix A by tablet servers and using

multi-threaded parallelism.

In our experimental framework, MPI-based distributed SpGEMM algorithms

are omitted due to the significant differences between MPI and Accumolo iter-

ators, since Accumulo’s architectural properties violates fairness of performance

comparisons between the proposed SpGEMM iterator algorithm and MPI-based

algorithms. For instance, (1) Accumulo provides fault-tolerance mechanisms

which incur additional computational overheads (e.g., disk accesses, data repli-

cation, cache updates etc.). (2) In MPI-based implementations, input matrices

are present in memory of processors before performing communication and arith-

metic operations, whereas in Accumulo, input matrices may be present in disk

as well. (3) Communication operations are performed very differently in MPI

and Accumulo: communication operations between servers are performed in a

streaming manner in Accumulo, whereas in MPI, communication operations are

performed in synchronized steps.

4.2 Row-by-Row Parallel SpGEMM Iterator

Algorithm

Iterators are the most convenient way to achieve distributed parallelism in Ac-

cumulo, since they are concurrently executed by tablet servers on their locally

stored data. The proposed iterator algorithm is based on row-by-row parallel

matrix multiplication and data distribution.
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4.2.1 Row-by-Row Parallel SpGEMM

We summarize the row-by-row SpGEMM which leads to row-by-row paralleliza-

tion: Given matrices A, B and C, the product C=AB is obtained by computing

each row C(i, :) as follows:

C(i, :) =
∑

A(i,j)∈A(i,:)

A(i, j)B(j, :). (4.1)

Here, A(i, :), B(j, :) and C(i, :) denote the ith row, jth row and ith row of matrices

A, B and C, respectively. That is, each nonzero A(i, j) of row i of A is multiplied

by all nonzeros of row j of B and each multiplication A(i, j)B(j, k) for a nonzero

B(j, k) of row j of B produces a partial result for the entry C(i, k) of row i of C.

Accumulo’s data model presents a natural way of storing sparse matrices in

such a way that each key-value pair stored in a table has row, column and value

subfields which can together store all the necessary information to represent a

nonzero entry. Therefore, tables can be seen as sparse matrices that are rowwise

partitioned among tablet servers, since tables are always split on row boundaries

among tablet servers and all key-value pairs belonging to the same row are always

contained in the same tablet server. Due to this correspondence between key-value

pairs and nonzero entries, and between tables and sparse matrices, we use these

term pairs interchangeably.

Another important feature of Accumulo is that it builds row indexes on tables

and allows efficient lookup and scan operations on rows. However, scanning

key-value pairs in a column is impractical, because Accumulo does not keep a

secondary index on columns and this operation necessitates scanning all rows of

a table. If both columns and rows of a table need to be scanned, transpose of the

table also need to be stored in a separate table in Accummulo. For instance, the

outer-product parallel SpGEMM algorithm [27] needs to scan columns of matrix

A for the multiplication C=AB; and therefore, keeps AT instead of A.
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4.2.2 Iterator Algorithm

Let matrices A, B and C are stored by K tablet servers where we denote the kth

tablet server by Tk for k = 1 . . . K. For now, also assume that these matrices are

stored in separate tables (e.g., matrix A is stored in table A).

Since these matrices are rowwise partitioned among tablet servers, also assume

that each tablet server Tk stores kth row blocks Ak, Bk and Ck of matrices A,

B and C, respectively. Note that a row block of a matrix consists of a num-

ber of consecutive rows of the respective matrix (e.g., Ak may consist of rows

A(i, :), A(i+ 1, :), . . . , A(j, :)). Here, row blocks Ck and Ak are conformable, i.e.,

C(i, :)∈Ck iff A(i, :)∈Ak. Before performing the computation C=AB, the ma-

trix C can be thought of as an empty table. In this setting, the proposed iterator

algorithm should be configured on a batch-scanner provided with a range covering

all rows of matrix A (i.e., the entire range of table A). Performing this batch-scan

operation ensures that each tablet server Tk concurrently executes the iterator

algorithm on its local portion Ak of A.

After configured on the batch-scanner on matrix/table A, the proposed iter-

ator algorithm proceeds as follows: Each tablet server Tk iterates through its

locally stored rows of Ak and computes the corresponding rows C(i, :) according

to Eq. (4.1). It is important to note that Accumulo provides a programming

framework that allows only iteration through key-value pairs (i.e., nonzero en-

tries); and therefore, we can assume that each tablet server Tk is provided with a

sorted stream of its local nonzero entries in Ak. These nonzero entries are lexico-

graphically sorted with respect to their first row and then their column indices.

Thus, during the scan of this stream, it is possible to scan all nonzeros of Ak in

row basis by keeping the nonzero entries belonging to the same row in memory

before proceeding to the next row. In this way, iterations can be considered as

proceeding rowwise in Ak.

During the iteration of each row A(i, :)∈Ak, the computation of row C(i, :)

necessitates scanning row B(j, :) for each nonzero A(i, j)∈A(i, :) to perform mul-

tiplication A(i, j)B(j, :). Some of these required rows of B are stored locally,
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Algorithm 4.1 Iterator Algorithm

Input: Matrices A, B and C are distributed among K tablet servers.
Input: Local matrices Ak, Bk and Ck stored by server Tk.
Output: Arithmetic results are written back to Ck

1: Initialize a thread cache
2: Initialize sets Φ, B(Φ)
3: while source iterator has key-value pairs (i.e., ∃A(i, j) ∈ Ak) do
4: Iterate through all nonzero entries of A(i, :)
5: for all A(i, j) ∈ A(i, :) do
6: if j 6∈ B(Φ) then
7: B(Φ) = B(Φ) ∪ {j}
8: Φ = Φ ∪ {A(i, :)}
9: if |B(Φ)| > threshold then

10: Execute multiply(Φ, B(Φ)) by a worker thread in the thread cache
11: Initialize new sets Φ, B(Φ)
12: Join with all threads in the thread cache
13: return

whereas the remaining rows are stored by other tablet servers. Therefore, to

retrieve these B-matrix rows, Tk performs a batch-scan operation provided with

multiple ranges covering these required rows over matrix B. As mentioned ear-

lier, Accumulo allows simultaneous access to multiple ranges of key-value pairs

via its batch-scanning capability. This operation provides an unsorted stream

of nonzero entries belonging to the required rows of B, because these nonzero

entries can be retrieved from remote servers in arbitrary order and batch-scan

operation does not guarantee any order on them. As these nonzero entries are

retrieved, for each retrieved nonzero B(j, k) of a required row B(j, :), the com-

putation C(i, k) =C(i, k) + A(i, j)B(j, k) is performed. The final row C(i, :) is

obtained after the stream of nonzero entries belonging to the required rows of

B are all processed. The pseudocode implementation of the proposed iterator

algorithm is presented in Algorithm 4.1.

4.2.3 Communication and Latency Overheads

For each row of Ak, the tablet server Tk performs a batch-scan operation on

multiple ranges covering the required rows of B (i.e., ranges need to cover each row
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B(j, :) of B for each nonzero A(i, j)∈A(i, :) of Ak). This operation necessitates Tk

to perform one lookup on the row index of B, which is stored by the master tablet

server, in order to determine the locations of the required B-matrix rows. After

this lookup operation and the servers storing these B-matrix rows are determined,

data retrieval is performed via communicating with multiple tablet servers in

parallel.

This operation incurs significant latency overheads due to the lookups per-

formed on the master tablet server for each row A(i, :) ∈ Ak and establishing

connections with tablet servers storing required rows of B. Additionally, this

approach may necessitate redundant communication operations and increase the

total communication volume among tablet servers, since the same row of B may

be retrieved multiple times by the same tablet server for computing different rows

of C. In other words, a tablet server Tk needs to retrieve row j of B for each row

of Ak that has a nonzero at column j. For instance, if Ak contains two nonzero

entries A(i, k) and A(j, k), then two different batch-scan operations performed

by Tk to compute rows C(i, :) and C(j, :) necessitates retrieval of the same row

B(k, :) twice.

In the proposed algorithm, the aforementioned shortcomings are alleviated by

processing multiple rows of A simultaneously. That is, a tablet server Tk iterates

through multiple rows in Ak and creates batches of rows to be processed together

before performing any computation or a batch-scan operation. Let Φ ⊆ Ak

denote such a batch that is generated by iterating through multiple rows and

contains rows A(i, :), A(i + 1, :), . . . , A(j, :). Further, let B(Φ) denote an index

set indicating the required B-matrix rows to compute the corresponding rows

C(i, :), C(i+ 1, :) . . . C(j, :) for the batch Φ. The row indices in the set B(Φ) are

determined as the union of indices of columns on which rows in Φ have at least

one nonzero. That is,

B(Φ) = {j | ∃A(i, j) ∈ A(i, :) ∧ A(i, :) ∈ Φ} . (4.2)

By computing the set B(Φ), a single batch-scan operation can be performed

for multiple rows in Φ to retrieve all of the required rows of B at once instead of
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performing separate batch-scans for each A(i, :) ∈ Φ. After performing a single

batch-scan over rows in B(Φ), the tablet server Tk is again provided with an

unsorted stream of nonzero entries belonging to the rows corresponding to row

indices in B(Φ). Each retrieved nonzero entry B(j, k) of a required row B(j, :) is

then multiplied with each nonzero entry in the jth column segment of Φ. Then,

each partial result obtained by multiplication A(i, j)B(j, k) is added to the entry

C(i, k) ∈ C(i, :). That is, each nonzero B(j, k) is multiplied by column j of Ak to

contribute to the column j of Ck. So, the local matrix multiplication algorithm

performed by Tk is a variant of column-by-column paralel SpGEMM although

the proposed iterator algorithm utilizes the row-by-row parallelization to gather

the B-matrix rows needed for processing nonzeros in Ak.

Processing rows in Ak in batches significantly reduces the latency overheads

and communication volume among tablet servers, because both the number of

lookup operations and the redundant retrieval of rows of B are reduced by this

approach. Here, the size of a batch becomes an important parameter, since it

directly affects the number of lookup operations and the communication volume

among tablet servers. As the size of a batch increases, both the number of lookup

operations and the total communication volume among tablet servers decreases,

since as more rows of Ak are added to a single batch, it is more likely that nonzero

entries belonging to different A-matrix rows share the same column. However,

the size of a batch is bounded by the hardware specifications of tablet servers (i.e.,

total memory). In our experiments, we determined the best suitable batch size

by testing various values in our experimentation environment.

4.2.4 Thread Level Parallelism

Even though the batch processing of multiple rows of Ak by the tablet server

Tk significantly reduces the latency overheads, further enhancements for the pro-

posed iterator algorithm can be achieved via using node-level parallelism struc-

tures, such as threads.

In a single-threaded execution, the main execution thread of Tk stays idle and
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Figure 4.1: Sample execution of the proposed iterator algorithm by a tablet server
Tk. Batches Φ1 and Φ2 are processed by two separate threads. Arrows indicate
the required rows of matrix B by each worker thread.

performs no computation by the time between initiating the batch-scan and the

stream of nonzero entries become ready to be processed during the processing of

a batch Φ. In order to avoid this idle time, we utilize a multi-threaded approach

in which the main thread assigns the task of processing the current batch Φ of Ak

to a worker thread and continues iterating through the remaining rows to prepare

the next batch. Whenever the main thread prepares the next batch, it assigns

the task of processing this batch to a new worker different than the previous

worker(s). This multi-threaded execution enables processing multiple batches of

Ak concurrently by worker threads and thus achieving node-level parallelism in

a streaming manner. After a batch Φ is fully processed by a worker thread, the

resulting C-matrix rows are written back to database by the same worker thread.

This write operation will not incur communication if row blocks Ak and Ck are

stored by the same server.

In the proposed implementation, creating a new thread for each batch Φ also

incurs additional computational cost and latency. In this regard, we make use

of thread caches which create new threads only if there is no available thread

to process the current batch (Java standard library also provides various thread

caches/pools having different implementation schemes). These thread caches cre-

ate new threads only if necessary and reuses them in order to alleviate the cost

of creating new threads.
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Figure 4.1 displays a sample execution of the proposed iterator algorithm

by a tablet server Tk. The main execution thread creates batches Φ1 and

Φ2 and assigns them to worker threads which then perform batch-scan opera-

tions to retrieve required rows of B and compute {A(i, :)B,A(i + 1, :)B} and

{A(j, :)B,A(j + 1, :)B}, respectively. For each batch, the required rows of B

are denoted by arrows pointing to the respective rows. For instance, the worker

thread processing batch Φ1 needs to receive rows x, y and z of matrix B, since

rows A(i, :) and A(i+ 1, :) have nonzeros only in these three columns. Similarly,

the worker thread processing batch Φ2 concurrently performs a batch-scan to re-

trieve rows y and z of matrix B. However, rows y and z need to be retrieved by

tablet server Tk twice, since each worker thread scans these rows separately. The

redundant retrieval of rows y and z increases the total communication volume,

but can be avoided by increasing the batch size. For instance, instead of pro-

cessing Φ1 and Φ2 by separate threads, these batches can be merged into a single

batch and processed by the same thread. By this way, a single batch-scan can

be performed to retrieve rows B(y, :) and B(z, :), and the redundant retrieval of

rows y and z can be avoided.

4.2.5 Write-locality

To obtain write-locality during ingestion of rows in row block Ck, the responsi-

bility of storing Ck must be given to the same tablet server storing row block Ak,

since rows of Ck are locally computed on that server. However, if matrices A and

C are stored as two different tables, Accumulo can not guarantee that row blocks

Ak and Ck are stored by the same tablet server, since Accumulo’s load balancer

may assign corresponding tablets to different servers according to the partition

of key space. Therefore, creating different tables for each matrix may necessitate

redundant communication operations during ingestion of the resulting matrix C.

To achieve write-locality discussed as above, we use a single table M instead

of three different tables for matrices A, B and C. This approach ensures that

rows A(i, :), B(i, :) and C(i, :) are stored by the same tablet server and these
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

c1 c2 c3 c4 c5

r1 1
r2 4
r3 9 6
r4 16
r5 25 15 5


C

=



c1 c2 c3 c4 c5

r1 1
r2 2
r3 3 3
r4 4
r5 5 5 5


A

×



c1 c2 c3 c4 c5

r1 1
r2 2
r3 3
r4 4
r5 5


B

(a)

row family qualifier value
1 A 1 1
1 B 5 1
1 C 5 1
2 A 2 2
2 B 4 2
2 C 4 4
3 A 2 3
3 A 3 3
3 B 3 3
3 C 3 9
3 C 4 6

Tablet 1

row family qualifier value
4 A 4 4
4 B 2 4
4 C 2 16
5 A 1 5
5 A 3 5
5 A 5 5
5 B 1 5
5 C 1 25
5 C 3 15
5 C 5 5

Tablet 2

(b)

Figure 4.2: A sample SpGEMM instance in which matrices A, B and C are stored
in single a table M and partitioned among two tablet servers.

rows together belong to ith row of table M . Here, it is worth to note that

storing row B(i, :) along with rows A(i, :) and C(i, :) is not necessary for the

proposed iterator algorithm and matrix B can be stored in a separate table. On

the other hand, we preferred to store all three matrices in a single table M due

to the requirements of the input matrix partitioning scheme discussed later in

Section 4.3. To distinguish the nonzero entries of these matrices in table M , we

use the column family subfield of a key. However, scanning nonzero entries of a

specific row of a matrix necessitates scanning nonzero entries of other matrices

as well, since ith row of M contains nonzero entries of rows A(i, :), B(i, :) and

C(i, :). This inefficiency can be resolved with the use of locality groups which

directs Accumulo to separately store the key-value pairs belonging to different

column families. That is, even rows A(i, :), B(i, :) and C(i, :) belong to the same

row of M and stored by the same tablet server, these rows are separately stored
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on disk. This allows scanning a range of key-value pairs belonging to the same

column family without accessing key-value pairs belonging to the other column

families.

Keeping matrices A, B and C under different column families and defining

locality groups for these matrices in table M creates an of illusion three different

tables being stored in a single table. It is still possible to perform batch-scan over

rows of A and B separately without accessing nonzero entries of each other. For

instance, the proposed SpGEMM iterator algorithm can be configured on a batch-

scanner, given the range covering column family of A, on table M . Each tablet

server is still provided with a sorted stream of nonzero entries in Ak and nothing

need to be modified in the proposed iterator algorithm. The only difference is

the range provided for the batch-scanner on table M .

In Figure 4.2, the contents of table M are displayed for a sample SpGEMM

instance, in which two tablet servers are used and a split point 3 is configured on

table M . The nonzeros of the first three rows are stored in Tablet 1, whereas the

others are stored in Tablet 2. Although the figure shows nonzero entries belonging

to different matrices are placed one after each other and kept in lexicographically

sorted order,these nonzero entries are stored separately on disk and it is possible

to scan any row of a matrix in table M without redundantly accessing nonzero

entries of other matrices. However, if the table M is scanned without specifying

any column family, all nonzero entries are retrieved in this order.

4.2.6 Implementation

In Algorithms 4.1 and 4.2, we present the pseudocode of our implementation for

the proposed solution. Algorithm 4.1 is the main iterator algorithm executed

by the main thread running on each tablet server Tk. The main thread iterates

through rows in Ak and prepares batches of rows of matrix A and assigns these

batches to worker threads to perform multiplication and communication opera-

tions. Algorithm 4.2 is executed by worker threads to process a given batch Φ.
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Accumulo iterators are Java classes that implement SortedKeyValueItera-

tor (SKVI) interface which tablet servers load and execute during scanning or

compaction phases on tablets of a table. In order to have custom logic inside Ac-

cumulo iterators, a Java class that implements SKVI interface should be written.

These iterators are added to iterator trees of tables according to their priority,

and the output of an iterator is used as the input of the next iterator whose

priority is less than the previous. Therefore, the source of an iterator can be

Accumulo’s own data sources as well as another iterator having higher priority in

the iterator tree. We implemented our algorithm in the seek() method of SKVI,

which is the first method executed by the iterator after initialized by the tablet

server (i.e., Algorithm 4.1 is executed in the seek() method).

In Algorithm 4.1, the main iterator thread starts with initializing a thread

cache and two sets Φ and B(Φ). For the thread cache, we use Java’s own cached

thread pool implementation. The set Φ is represented with a two dimensional

hash-based table which is available in Google Guava Library [87]. The table

data structure supports efficient access to its cells since it is backed with a two

dimensional hash-map (i.e., accessing to any cell in the table is performed in

constant time). The set B(Φ) is a typical list data structure and used to keep

distinct column indices of nonzero entries in the current batch Φ.

After the initialization step, the main thread starts iterating through the rows

in local portion Ak of matrix A. As each row A(i, :) ∈ Ak is retrieved, it is

included into the current batch Φ until the batch-size threshold is reached. The

set B(Φ) is used to keep distinct column indices of nonzero entries encountered so

far in the current batch. These column indices correspond to the rows of B that

are required to perform all the multiplications for the batch Φ. These operations

are carried out between lines 4 to 12 in Algorithm 4.1.

In the proposed algorithm, we define the batch size threshold in terms of the

number of distinct column indices of the nonzero entries in Φ (i.e., the size of

the batch is |B(Φ)|). In this way, we try to increase the number of nonzeros that

share the same column indices in Φ and therefore reduce the redundant retrieval

of B-matrix rows as much as possible. For instance, if two distinct rows A(i, :)
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Algorithm 4.2 Multiplication Algorithm

Input: Φ,B(Φ)
1: Perform batch-scan on matrix B over rows B(j, :) for each j ∈ B(Φ)
2: Initialize an empty C(i, :) for each A(i, :) ∈ Φ
3: for all retrieved nonzero B(j, k) ∈ B(j, :) for a j ∈ B(Φ) do
4: for all entry A(i, j) ∈ Φ do
5: C(i, k) = C(i, k) + A(i, j) ∗B(j, k)
6: for all computed C(i, :) do
7: Add C(i, :) to batch-writer queue
8: return

and A(j, :) have nonzero entries in common column indices and these rows are

processed in different batches, then the same B-matrix rows corresponding to

these column indices need to be redundantly retrieved for each of these batches

by the same tablet server. In a different perspective, if a row of Ak introduced

to Φ does not increase the batch size, then all of its nonzeros must share the

same column indices with the rows added to Φ earlier. Hence, by increasing the

batch size threshold, the likelihood of reducing redundant retrieval of B-matrix

rows is possible. For example, in one extreme, if the whole Ak is processed in a

single batch, then there will be no redundant communication, since each required

B-matrix row need to be retrieved only once. Here, if the batch size is set to a

large number, the level of concurrency may degrade in a tablet server, since fewer

batches and threads will be generated and all CPU cores may not be efficiently

utilized. On the other hand, if the batch size is set to a small number, the

number of lookups and the total communication volume will increase. The size

of the current batch is controlled in line 10 of Algorithm 4.1.

After the current batch Φ is prepared, Algorithm 4.2 provided with the pa-

rameters Φ and B(Φ), is executed on a worker thread chosen from the thread

cache. Communication and multiplication operations for the batch Φ are han-

dled by this worker thread. In Algorithm 4.2, the worker thread first initializes

a batch-scanner on matrix B and provides this scanner with a range covering all

rows B(j, :) for each j∈B(Φ).

After performing the batch-scan operation, the worker thread initializes data

structures representing C matrix rows to be computed. To represent an empty
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C(i, :) row, we again make use of the two dimensional hash-based table data

structure, which was previously used to represent the batch Φ. As mentioned

earlier, this data structure enables efficient access to its entries (i.e., each nonzero

ci,j) and allows us to efficiently combine partial results contributing to the same

entries of matrix C, as performed in line 6 of Algorithm 4.2.

In line 7, a batch-writer is initialized after computing row C(i, :) for each row

A(i, :) ∈Φ. In the for-loop between lines 8 and 9, each computed row C(i, :) is

added to batch-writer queue buffer via a mutation object and written back to

the database (i.e., to the ith row of table M under the respective column family

for matrix C). As mentioned earlier, these operations do not necessitate any

communication operations and can be locally performed due to the usage of a

single table M and the write-locality achieved through this approach.

In Algorithm 4.1, the execution of the main thread continues until each row

A(i, :)∈Ak is processed. In line 13, the main thread waits for the worker threads

in the thread cache to join. Upon joining with all threads, the iterator algorithm

finishes and the resulting matrix C is available in table M . It is important to note

that to scan the final matrix C, there is no need to apply a summing-combiner or

another iterator, as was not the case in the algorithm previously proposed in [27].

The computational complexity of Algorithm 4.1 depends on the number of

nonzero arithmetic operations flops(A · B) required to perform the multiplica-

tion C=AB where flops(A ·B) =
∑

i

∑
aij∈A(i,:) nnz(B(j, :)). Insert and lookup

operations performed on data structures Φ and B(Φ) can be performed in con-

stant time, since these data structures are 2-dimensional hash-map-based table

and hash-map-based set data structures, respectively. Elements in B(Φ) can be

traversed in time linear time to the number of elements in this data structure.

Assuming that the perfect workload load balance is achieved, each server ap-

proximately performs flops(A·B)
K

nonzero arithmetic operations. Therefore, if the

multi-threaded execution is not enabled, computation time of Algorithm 4.1 can

be given as Θ(flops(A·B)
K

), since the term flops(A·B)
K

dominates other hidden factors

associated with the number of local nonzero entries Ak, Bk and Ck on each server
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Tk. For the communication complexity, each server, in the worst case, may com-

municate with all other tablet servers and receive O(flops(A·B)
K

) nonzero entries of

matrix B, since the number of nonzero entries retrieved can not be higher than

the number nonzero arithmetic operations performed by a tablet server (i.e., at

most, one B-matrix entry can be retrieved for each nonzero arithmetic opera-

tion). The communication cost of Algorithm 4.1 is O(ts(K − 1) + tw
flops(A·B)

K
)

where ts and tw denotes per-message latency and per-word bandwidth costs, re-

spectively. Therefore, the parallel execution time of Algorithm 4.1 can be given

as O(tsK + (1 + tw)flops(A·B)
K

).

4.3 Partitioning Matrices

Here, we adapt the bipartite graph model recently proposed in [30] for row-by-

row parallelization SpGEMM on distributed memory architectures. In this model,

the SpGEMM instance C = AB is represented by the undirected bipartite graph

G = (VA ∪ VB, E). The vertex sets VA and VB represent the rows of A and B

matrices, respectively. That is, VA contains vertex ui for each row i of A and VB

contains vertex vj for each row j of B.

A K-way vertex partition of G

Π(V ) =
{
V 1 =V 1

A ∪ V 1
B, V

2 =V 2
A ∪ V 2

B, · · · , V K =V K
A ∪ V K

B

}
is decoded as a mapping of rows of input matrices to tablet servers as follows:

ui ∈ V k
A and vj ∈ V `

B correspond to assigning row i of A and row j of B to tablet

servers Tk and T`, respectively. Here, a vertex ui also represents row C(i, :), since

the tablet server that owns row A(i, :) is given the responsibility of computing and

storing row C(i, :). Therefore, a partition obtained over rows of A also determines

the partition of rows of C.

Through our experimentation and analysis over the proposed iterator algo-

rithm, we observed that the numbers of nonzero entries stored for each of the A,
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B and C matrices by a server are better measures than the number of floating-

point operations performed for representing the associated computational load.

That is, nonzero entries of each of the matrices A, B and C should be evenly

distributed in order to achieve a workload balance among servers. Therefore, we

assume that row i of A and row j of B respectively incur the computational loads

of nnz(A(i, :)) and nnz(B(j, :)) to the servers they are assigned to. Here, nnz(·)
denotes the number of nonzeros in a row. Note that storing row i of C also incurs

the computational load of nnz(C(i, :)), because writing nonzero entries of out-

put matrix C may require more computation time as compared to the scanning

entries of input matrices.

Instead of estimating the relative computational loads associated with indi-

vidual nonzeros of input and output matrices, we propose a three constraint

formulation in which we associate three weights with each vertex as follows:

w1(ui) = nnz(A(i, :)), w2(ui) = 0, w3(ui) = nnz(C(i, :)), ∀ui ∈ VA
w1(vj) = 0, w2(vj) = nnz(B(j, :)), w3(vj) = 0, ∀vj ∈ VB

This 3-constraint partitioning captures maintaining a balanced distribution of

nonzero entries of all matrices A, B and C among tablet servers. We should note

here that the bipartite graph model given here differs from the model given in [30]

because of this multi-constraint formulation.

In order to compute w3(vi) of vertex vi, we need to know the total number

of nonzero entries in row C(i, :) before partitioning, which necessitates perform-

ing a symbolic multiplication. This symbolic multiplication can be efficiently

performed for just one time, using the proposed SpGEMM algorithm without

adopting any partitioning scheme.

In graph G, there exists an undirected edge eij ∈ E that connects vertices

ui ∈ VA and vj ∈ VB for each nonzero A(i, j) ∈ A. We associate each edge eij

with a cost equal to the number of nonzeros in the respective row j of B, i.e.,

cost(eij) = nnz(B(j, :))

This edge-cost definition refers to the amount of communication volume to incur

if row i of A and row j of B are assigned to two different tablet servers.
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In a given partition Π, uncut edges do not incur any communication. Cut edge

eij, where ui ∈ V k
A and vj ∈ V `

B, refers to the fact that tablet server T` stores

row j of B, whereas tablet server Tk stores row i of A and is responsible of

computing row i of C. Hence, this cut edge will incur the transfer of B matrix

row B(j, :) from tablet server T`. Thus, the partitioning objective of minimizing

the cutsize according to Eq. (2.3) relates to minimizing the total communication

volume that will be incurred due to the transfer of B-matrix rows. However, the

cutsize overestimates the total communication volume in some cases: Consider

two cut-edges eij and ehj, where ui ∈ V k
A , vj ∈ V `

B and uh ∈ V k
A . These two cut-

edges show the need of tablet server Tk to retrieve row j of B for computing rows

h and i of C. The cutsize incurred by these cut-edges according to Eq. (2.3) will

be equal to cost(eij) + cost(ehj) = 2nnz(B(j, :)). However, tablet server Tk may

process rows h and i of matrix A in a single-batch, which causes Tk to retrieve row

j of B only once, thus necessitating a communication volume of only nnz(B(j, :))

rather than 2nnz(B(j, :)).

In general, consider a B-matrix row vertex that has d neighbors (A-matrix

row vertices) in Vk. The cutsize definition encodes this situation as incurring a

communication volume of d× nnz(B(j, :)); however, the actual communication

volume will vary between nnz(B(j, :)) and d × nnz(B(j, :)), depending on the

number distinct batches of Tk that require row j of B. For example in Figure 4.1,

the degree of B-matrix row vertex vy is 3 and its weight is nnz(B(y, :))=3. The

cutsize encodes the total communication volume as 9. However, row y of B will

be retrieved from the respective server to Tk only once for each of the two batches

Φ1 and Φ2, thus the total communication volume will be 6 instead of 9.

Accumulo partitions tables into tablets via split points defined over row keys.

For instance, if the split points a, b, c are applied on table M , rows of matrices A,

B and C will be distributed to intervals [0, a], (a, b], (b, c], (c,∞]. For instance,

if a row index i ∈ [0, a], than rows A(i, :), B(i, :) and C(i, :) will be stored by the

tablet server responsible for storing interval [0, a].

For a given partition Π of G, the desired data distribution of matrices A, B

and C can only be achieved by reordering these matrices in table M and applying
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a set of proper split points. That is, the sorted order of the new row indices of

matrices A, B and C, together with the set of split points, ensure Accumulo to

automatically achieve the desired data distribution. So, a given partition Π is

decoded as inducing a partial reordering on the rows of the matrices as follows:

C-/A-matrix rows corresponding to the vertices in V k+1
A are reordered after the

rows corresponding to the vertices in V k
A and B-matrix rows corresponding to the

vertices in V k+1
B are reordered after the rows corresponding to the vertices in V k

B .

The row ordering obtained by this method is referred to as a partial ordering;

because rows corresponding to the vertices in a part are reordered arbitrarily.

Then the split points are easily determined on the part boundaries of row blocks

according to Π.

The size of the proposed bipartite graph model is linear in the number of rows,

columns and nonzero entries of matrix A ∈ Rm×n, since there exist a vertex vi for

each row A(i, :), a vertex vj for each row B(j, :) and an edge for each nonzero entry

A(i, j) in matrix A. So the topology of the bipartite graph can be built in Θ(m+

n+nnz(A)) time. The first and second weights (w1(vi) and w2(vi)) of vertices can

be determined from input matrices in Θ(nnz(A)+nnz(B)) time. Computing the

third weight (w3(vi)) of vertices necessitates the symbolic multiplication of input

matrices A and B (since w3(vi) = nnz(C(i, :))). Hence, the complexity of building

the proposed graph model is Θ(flops(A · B) + m + n + nnz(A) + nnz(B)). On

the other hand, complexity of the partitioning phase depends on the partitioning

tool. In [88], complexity of Metis is reported as Θ(V + E + K logK) where

V (= m+ n) is number of vertices, E (= nnz(A)) is number of edges in a graph

andK is the number of parts. The running time of the partitioning phase becomes

Θ(m+n+nnz(A) +K logK) thus leading to overall running time complexity of

Θ(flops(A ·B)+m+n+nnz(A)+nnz(B)+K logK)= Θ(flops(A ·B)+K logK).
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4.4 Experimental Evaluation

We compare the performance of the proposed SpGEMM iterator algorithm (RRp)

against the baseline algorithm (BL) [27], which is currently available in the Gra-

phulo Library, on a fully distributed Accumulo cluster. We also evaluate the

performance of the graph partitioning-based RRp (gRRp), where the input and

output matrices are reordered using the partitioning scheme proposed in Sec-

tion 4.3. We use the state-of-the-art graph partitioning tool Metis to partition

the graph model in gRRp. We set the maximum load imbalance ε = 0.005 and

performed edge cut minimization. We used both realistic and synthetically gen-

erated sparse matrices as SpGEMM instances in our experiments.

4.4.1 Datasets

Table 4.1 displays properties of matrices used in the experiments. These matrices

are included in our dataset since they arise in various real-world applications and

also used in recent research works [28,85,89,90].

We performed our experiments in two different categories: In the first category,

a sparse matrix is multiplied with itself (i.e., C = AA), and in the second category,

two different conformable sparse matrices are multiplied (i.e., C = AB). The first

category C = AA arises in graph applications such as finding all-pairs-shortest

paths [91], self similarity joins and summarization of sparse dataset [92,93]. The

second category C = AB is a more general case and especially arise in applications

such as collaborative filtering [94] and similarity joins of two different sparse

datasets [93].

The C = AA category contains 13 sparse matrices all selected from UFL sparse

matrix collection [95]. As seen in Table 4.1 all of these matrices contain more

than 100K rows.
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Table 4.1: Dataset Properties

Number of nonzeros
Number of in a row in a column

Matrix Rows Columns Nonzeros Avg Max Avg Max

C = AA

2cubes sphere 101,492 101,492 1,647,264 16 31 16 31
filter3D 106,437 106,437 2,707,179 25 112 25 112
598a 110,971 110,971 1,483,868 13 26 13 26
torso2 115,967 115,967 1,033,473 9 10 9 10
cage12 130,228 130,228 2,032,536 16 33 16 33
144 144,649 144,649 2,148,786 15 26 15 26
wave 156,317 156,317 2,118,662 14 44 14 44
majorbasis 160,000 160,000 1,750,416 11 11 11 18
scircuit 170,998 170,998 958,936 6 353 6 353
mac econ fwd500 206,500 206,500 1,273,389 6 44 6 47
offshore 259,789 259,789 4,242,673 16 31 16 31
mario002 389,874 389,874 2,101,242 5 7 5 7
tmt sym 726,713 726,713 5,080,961 7 9 7 9

C = AB

cfd2 (A) 123,440 123,440 3,087,898 25 30 25 30
cfd2.P (B) 123,440 4,825 528,769 4 10 110 181

boneS01 (A) 127,224 127,224 6,715,152 53 81 53 81
boneS01.P (B) 127,224 2,394 470,235 4 10 196 513

shipsec5 (A) 179,860 179,860 10,113,096 56 126 56 126
shipsec5.P (B) 179,860 2,959 541,099 3 13 183 456

thermomech dK (A) 204,316 204,316 2,846,228 14 20 14 20
thermomech dM (B) 204,316 204,316 1,423,116 7 10 7 10

offshore (A) 259,789 259,789 4,242,673 16 31 16 31
offshore.P (B) 259,789 9,893 1,159,999 4 13 117 221

amazon0302 (A) 262,111 262,111 1,234,877 5 5 5 420
amazon0302-user (B) 262,111 50,000 576,413 2 302 12 27

amazon0312 (A) 400,727 400,727 3,200,440 8 10 8 2,747
amazon0312-user (B) 400,727 50,000 882,813 2 1,675 18 38

C = AB (graph500)

scale=15
(A)
(B)

32,768 32,768 441,173 13 5,942 13 2,067
32,768 32,768 441,755 13 5,976 13 2,041

scale=16
(A)
(B)

65,536 65,536 909,301 13 9,719 13 3,273
65,536 65,536 909,854 13 9,670 13 3,407

scale=17
(A)
(B)

131,072 131,072 1,864,398 14 15,643 14 5,227
131,072 131,072 1,864,338 14 15,743 14 5,301

scale=18
(A)
(B)

262,144 262,144 3,806,212 14 25,332 14 8,303
262,144 262,144 3,804,831 14 25,324 14 8,277
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The C = AB category contains seven SpGEMM instances. The SpGEMM in-

stances amazon0302 and amazon0312 are used for collaborative filtering in rec-

ommendation systems [94]. In these instances, A matrices represent similarities

of items and B matrices represent preferences of users and synthetically generated

following the approach in [28], where the item preferences of users follow Zipf dis-

tribution. The SpGEMM instances boneS01, cfd2, offshore and shipsec5 are used

during the setup phase of Algebraic multigrid methods (AMG) [96]. In these in-

stances, A matrices are selected from UFL and their corresponding interpolation

operators are generated as the B matrices by using a tool2 in [96] (matrices with

suffix ”.P” in Table 4.1). The last SpGEMM instance contains two conformable

matrices thermomech dK and thermomech dM.

The C = AB category also contains four SpGEMM instances whose A and

B matrices are synthetically generated by using the Graph500 power law graph

generator [68]. These synthetic matrices are previously used in [27] to evaluate

the performance of the BL algorithm. We also use this tool with the same set of

parameters. The tool takes two parameters, referred to as scale and edge-factor,

and produces square matrices with 2scale rows and edge-factor× 2scale nonzero

entries. We fix edge-factor to 16 as in [27] and set scale = 15, 16, 17, 18 to

generate four different sized SpGEMM instances (e.g., for scale = 15 we generate

two different square matrices A and B with 215 rows and 16×215 nonzero entries).

4.4.2 Accumulo Cluster

The cluster we used in our experiments consists of 12 nodes and these nodes are

connected via DGS-3120-24TC ethernet switch. Each node has two Intel-Xeon-

E5-2690-v4 processors each of which consists of 14 cores and is able to run 28

threads concurrently. Additionally, each node has 256 GB main memory in addi-

tion to its 16 TB local storage. We designate two of these nodes as control nodes

on which we run ZooKeeper, HDFS NameNode, Accumulo master, garbage col-

lector and monitor processes. The remaining nodes are used as worker nodes and

2https://github.com/pyamg/pyamg
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run only HDFS DataNode and Accumulo tablet server processes. In order to

conduct strong scalability analysis, we run BL, RRp and gRRp algorithms for all

SpGEMM instances on K = 2, 4, 6, 8 and 10 tablet servers.

4.4.3 Evaluation Framework

To measure the running time of BL, we first ingest input matrices A and B

as separate tables, then we define split points that distribute rows of matrices

to tablet servers evenly. By this partitioning, the first K − 1 tablet servers are

assigned bn/Kc rows (n being the number of rows of a matrix) and the last

tablet server is assigned all the remaining rows. The Graphulo library does not

support any other load balancing scheme other than defining split points on rows

as performed in our implementation, and this approach is also followed in [27].

After ingesting the A and B matrices, we call the SpGEMM routine provided by

Graphulo library from a client process running on one of the control nodes. We

measure the running time of BL as the total time the corresponding routine takes

within the client process.

To measure the running time of RRp, we ingest matrices A and B in a single

table M and we define split points on table M to evenly distribute rows of M

among tablet servers, as done in BL. After this operation, we call the proposed

SpGEMM routine within a client process running on one of the control nodes and

measure the total running time of the multiplication operation. In this routine,

the proposed iterator is applied on a batch-scanner which is provided with a range

covering all rows of A under the column family of table M . The running time of

gRRp is measured similarly.

The running times of all algorithms are obtained by averaging 5 successive runs.

These times cover the entire process of performing multiplications of matrices A

and B and writing the resulting matrix C back to database. However, in BL,

outer-products results that contribute to the same nonzero entries of C are not

combined/summed before being written back to table C. Summations of these

partial results are performed by applying a scanning-time summing-combiner on
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table C. Therefore, to obtain the final matrix C in parallel by all tablet servers, a

batch-scan operation covering all rows of matrix C need to be performed. On the

other hand, the C matrices computed by RRp and gRRp do not require applying

a summing-combiner or performing any further computations, since all partial re-

sults contributing to the same nonzero entries of C are already combined/summed

before being written back to the database. This difference violates the fairness of

the comparisons made among the algorithms, since BL performs less computation

than both RRp and gRRp during SpGEMM operations. In this regard, we also

compare the time required to scan the C matrices produced by all algorithms and

include in our experimental results. In order to get scanning times, we performed

a batch-scan operation covering all rows of C, after performing the SpGEMM

operation on matrices A and B, and measure the time required to receive all the

nonzero entries of C by the client process running on one of the control nodes.

4.4.4 Experimental Results

Table 4.2 displays the measured running times of BL, RRp and gRRp to perform

SpGEMM instances on K = 2, 4, 6, 8 and 10 tablet servers. The rows entitled as

“norm avgs wrto BL” display the geometric means of the ratios of the running

times of RRp and gRRp to those of BL in the respective categories.

As seen in Table 4.2, in both C = AA and C = AB categories, RRp consis-

tently performs much better than BL on all test instances except for amazon0312

on K = 2 servers. Moreover, the performance improvement of RRp over BL

increases with increasing K. On average, in the C = AA category, RRp runs

1.75x, 2.56x, 2.85x, 3.33x and 3.44x faster than BL on K = 2, 4, 6, 8 and 10

tablet servers, respectively. Similarly, these values become 2.50x, 3.70x, 3.80x,

4.34x and 4.34x in the C = AB category. Additionally, we also observe that BL

can not scale on some instances, especially on scircuit and tmt sym instances,

where the running time of BL increases as K increases from 8 to 10. However,

RRp displays better scalability than BL, since in all test cases the running time

of RRp decreases with the increasing value of K.

79



Table 4.2: Multiplication Times (ms)
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Table 4.3: Scanning Times (ms)
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The performance of RRp is further improved by gRRp on almost all SpGEMM

instances. On average, gRRp provides an improvement of 12% over RRp on

K = 2 servers and this improvement significantly increases to 32% on K = 10

servers in the C = AA category. In the C = AB category, gRRp performs 12%

better than RRp on K = 2 servers and this improvement slightly increases to 13%

on K = 10 servers. These results indicate that the graph partitioning approach

increases the scalability of RRp, since the decrease in the communication volume

among tablet servers increases the efficiency of parallel algorithm.

Figure 4.3(a) displays the average speedup curves for the multiplication phase

over each SpGEMM category. Speedup values on an SpGEMM instance are

attained with respect to the running time of BL for the same instance on K = 2

tablet servers. In both categories, both RRp and gRRp scale linearly and display

significantly better scalability than BL. For example, on K = 10 servers, RRp and

gRRp achieve speedup values of 6.37 and 8.82 respectively, whereas BL achieves

only 1.84 in the C = AA category. Similarly, these speedup values become 11.50,

13.80 and 2.89 respectively in the C = AB category. Additionally, as can be

inferred from the speedup curves, the efficiency of RRp is further increased by

gRRp and higher speedup values are obtained via intelligent partitioning of input

matrices. As also seen in Figure 4.3(a), the performance improvement of gRRp

over RRp on the scalability is much more pronounced in the C = AA category

than in the C = AB category.

Table 4.3 displays the times required to scan C matrices produced by all algo-

rithms after they perform respective SpGEMM instances. As seen in the table,

scanning phase of BL requires significantly more time than those of RRp and

gRRp due to the summing-combiner applied on table C by Graphulo library. In

the C = AA category, on average, scanning phase of RRp and gRRp algorithms

runs 1.55x and 1.78x faster than that of BL on K = 2 servers and this perfor-

mance improvement increases to 2.85x and 3.33x on K = 10 servers, respectively.

Similarly in the C = AB category, scanning phase of RRp and gRRp runs 2.04x

faster than that of BL on K = 2 servers and this improvement increases to 3.33x

on K = 10 servers, respectively.
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(a) Speedup curves for multiplication phase.
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(b) Speedup curves for scanning phase.
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(c) Speedup curves for the overall execution time.

Figure 4.3: Average speedup curves of BL, RRp and gRRp with respect to the
running time of BL on K = 2 tablet servers. a) Multiplication phase. b) Scanning
phase. c) Overall execution time.
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Figure 4.4: Running times of BL, RRp and gRRp to perform SpGEMM instances,
which are generated by graph500 tool, on K = 10 tablet servers.

Figure 4.3(b) displays the average speedup curves for the scanning phase over

each SpGEMM category. As seen in Figure 4.3(b), both RRp and gRRp displays

significantly better scalability than BL. Comparison of Figures 4.3(a) and 4.3(b)

show that the performance improvement of gRRp over RRp is considerably less

on the scanning phase than the multiplication phase, as discussed earlier. This

is because the scanning phase involves communication only between the control

server and tablet servers (i.e., no communication among tablet servers) and the

graph partitioning only encapsulates the amount of communication volume during

the multiplication phase. The considerable performance improvement of gRRp

over RRP in C = AA category can be attributed to the fact that gRRp provides

better nonzero distribution of C matrix among tablet servers, due to the third

constraint placed on vertices (i.e., the w3
i weight), as compared to RRp, and

therefore, achieves better load balance during the scan of C-matrix.

It is worth to mention that speedup values attained by BL in the scanning

phase decrease as the number of tablet servers increases in some cases (e.g., when

the number of servers increases from 8 to 10 in Figure 3 (b)). This performance de-

crease can be mainly attributed to the partitioning scheme used in BL where input

matrices are partitioned rowwise among servers without considering the workload

associated with these rows (i.e., each server is assigned bn/Kc rows). However,

the computational load associated with each row may drastically deviate, since
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these rows, especially dense rows, may necessitate many summing-combining op-

erations due to the partial results contributing to the same nonzero entries. Thus

BL suffers from load imbalance due to uneven nonzero entry distribution among

tablet servers, leading to lower speedup values.

Figure 4.3(c) displays the average speedup curves for the overall execution

time (i.e. the total time spent on multiplication plus scanning phases) of the

SpGEMM operations. As seen in Figure 4.3(c), both RRp and gRRp scales

significantly better than BL in the total execution time.

Figure 4.4 displays the variation of the running times of the multiplication

phase of all algorithms on K = 10 servers with increasing scale factor of SpGEMM

instances that are produced by the graph500 tool. This figure is included here

in accordance with the experimental results reported in [27]. As seen in the

figure, both RRP and gRRp perform significantly better than BL, whereas gRRp

performs slightly better than RRp.

4.4.5 Varying Key-Value size

In this section, we report the results of the experiments conducted to show the

variation of the performance improvement of gRRp over RRp with increasing

key-value pair sizes. For the previous experiments, we designate the sizes of row,

column and value fields of key-value pairs as 8 bytes each (i.e., the size of each

nonzero is 24 bytes). Hence, in order to obtain different sized key-value pairs for

an SpGEMM instance, we keep the sizes of row and column fields fixed and set

the size of the value field to 16, 32, 64 and 128-bytes. The scaler multiplication

of two value fields is performed via Java’s BigDecimal Class.

In Figure 4.5, we plot the average speedup curves of RRp and gRRp, with dif-

ferent key-value sizes, over each SpGEMM category. For each SpGEMM instance

and value-field size, speedup values are computed with respect to the running

time of RRp on K = 2 tablet servers. As seen in the figure, the performance

improvement of gRRp over RRp increases significantly for both categories with
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Figure 4.5: Average speedup curves of RRp and gRRp with varying key-value
sizes. Speedup values are computed with respect to the running times of RRp on
K = 2 tablet servers.
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increasing key-value pair size. For example, for the C = AA category on K = 10

servers, gRRp runs 1.58x, 1.83, 2.30 and 2.80x faster than RRp for value-field

sizes of 16, 32, 64 and 128 bytes, respectively. Similarly, for the C = AB category

on K = 10 servers, gRRp runs 1.39x, 1.24x, 1.61x and 1.88x faster than RRp

for value-field sizes of 16, 32, 64 and 128 bytes, respectively. This increase in

the performance improvement of gRRp over RRp is because of the fact that the

communication volume increases with increasing value-field sizes and hence the

improvements to be attained by graph partitioning, which has the objective of

minimizing total communication volume, become more pronounced on the overall

performance. So the preprocessing overhead is expected to amortize in such ap-

plications, since the partitioning overhead is independent of the sizes of key-value

pairs.

4.5 Conclusion

We proposed an iterator algorithm to perform distributed SpGEMM in Accumulo

database. The proposed algorithm utilizes row-by-row parallel SpGEMM which

achieves write-locality during ingestion of the output matrix. However, this ap-

proach necessitates performing multiple batch-scan operations, which introduces

significant latency overheads. These overheads are alleviated by performing local

SpGEMM operations via multiple batches and utilizing multi-threaded paral-

lelism. Extensive experiments performed on a wide range of realistic and syn-

thetic SpGEMM instances showed that the proposed algorithm outperforms the

outer-product implementation provided in the Graphulo library, by a large mar-

gin.

We also proposed a matrix partitioning scheme that reduces the total com-

munication volume while maintaining workload balance among servers. The ex-

periments also showed that the proposed matrix partitioning scheme provides

significant improvements. The preprocessing overhead due to graph partitioning

is expected to amortize in applications that require repeated SpGEMMs involv-

ing input matrices having the same sparsity patterns as well as applications that
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have large key-value sizes. The latter is because of the fact that the partitioning

overhead is independent of the sizes of key-value pairs, whereas communication-

volume overhead increases with increasing sizes of key-value pairs thus increasing

the performance improvement attained by using graph partitioning.

The proposed SpGEMM algorithm adopts 1D matrix partitioning scheme in

which matrices are rowwise partitioned among tablet servers. However, 1D al-

gorithms face communication bottlenecks when the number of tablet servers in-

creases, since the total communication volume and the number of messages need

to be handled by a single server may drastically increase. In order to address this

issue, as a future work, we will also investigate 2D matrix partitioning schemes

in which matrices are partitioned both rowwise and column-wise among servers.

Iterative methods to solve problems such as sparse non-negative matrix factor-

ization [97–100] heavily depend on repeated sparse matrix and low-rank matrix

multiplication. We observed significant computational and latency overheads

during repeated invocation of iterator algorithms in Accumulo. Therefore, we

are planning to investigate potential performance enhancements to the proposed

SpGEMM iterator algorithm for efficient use in such cases.

88



Chapter 5

Cartesian Partitioning Models

for 2D and 3D Parallel SpGEMM

Algorithms.

Sparse general matrix multiplication (SpGEMM) is a kernel operation in many

scientific computing applications such as finite element simulations [101], molecu-

lar dynamics [102,103], linear programming (LP) [104,105] and linear solvers [17,

18]. Additionally, SpGEMM is also utilized in high-performance graph compu-

tations such as graph contraction [19], betweenness centrality computation [20],

Markov clustering [21], triangle counting [22] and graph traversal [23].

Extensive research is made for parallelizing SpGEMM on various parallel com-

puting platforms [1, 28, 29]. Considering the sparsity structure of the problem,

much research is devoted to graph/hypergraph partitioning models to offer ef-

ficient data and task partitioning among processors [28, 30, 32]. The proposed

graph/hypergraph partitioning models incur preprocessing overhead. Hence, ap-

plications, that involve repeated SpGEMM in which the sparsity patterns of input

matrices remain the same in all iterations, benefit more from these models. For

instance, as mentioned in [30, 32], similarity join [106] and collaborative filter-

ing [94] algorithms utilize SpGEMM of the forms C=AWA or C=AWB where
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W -matrix is used for adjusting feature ranking and importance of items in the

filtering. Additionally, LP problems are solved via interior point methods which

require the solution of linear system (AD2AT )x= b. In each iteration, the linear

system is solved via forming the coefficient matrix C = AB where the sparsity

patterns of both A and B=D2AT matrices remain unchanged.

Iteration space of SpGEMM operation can be visualized as a sparse 3D

cube (workcube) and parallel SpGEMM algorithms are categorized according to

the partitioning of this workcube [2]. In this categorization, 1D, 2D and 3D algo-

rithms are defined according to the number of dimensions by which the workcube

is partitioned. Efficient implementations of 1D, 2D and 3D parallel SpGEMM al-

gorithms are given in [1,2,30]. An important drawback of 1D parallel SpGEMM

algorithms is that these algorithms face communication bottlenecks, since the

volume/number of messages handled by processors may drastically increase with

increased number of processors. However, by utilizing additional dimensions in

processor grids and partitioning the iteration space in multiple dimensions, these

overheads can be significantly reduced.

In this paper, we propose hypergrah partitioning models for 2D and 3D parallel

SpGEMM algorithms given in [1, 2]. In other words, we offer intelligent matrix

partitioning schemes to improve the scalability and efficiency of these algorithms.

The graph/hypergraph models given in [28,30,32] partition the iteration space of

SpGEMM in a single dimension and can be considered as 1D parallel SpGEMM

algorithms. The fine-grained hypergraph model proposed in [31] achieves a multi-

dimensional partitioning on the SpGEMM’s workload, but the task distribution

is performed on processors that are logically arranged in a single dimension, thus

becoming 1D algorithm as well.

We conduct extensive experiments to evaluate our partitioning models on

SpGEMM instances arising from real-world applications as well as on synthet-

ically generated instances. Experimental results demonstrate that our models

provide significant improvements for the algorithms given in [1, 2] and improve

these algorithms’ scalability and efficiency on real-world datasets. On syntheti-

cally generated instances, improvements of our models are slightly less due to the
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limited availability of optimization on these datasets.

The rest of the paper is organized as follows. Section 5.1 present related

work. Section 5.2 summarizes the existing 2D and 3D SpGEMM algorithms

in the literature. Sections 5.3.1 and 5.3.2 describe our proposed Hypergraph

partitioning models for 2D and 3D SpGEMM algorithms. Section 5.4 presents

experimental results. Finally, Section 5.5 concludes the paper.

5.1 Related Work

In the literature, there are extensive research work considering paralleliza-

tion of SpGEMM algorithms for various shared-memory parallel architectures.

An efficient SpGEMM implementation is provided by Intel’s math kernel li-

brary (MKL) [107]. Various partitioning and cache optimization techniques,

which significantly improve the performance of MKL, are studied by Pat-

wary et al. [84]. Hypergraph and bipartite graph models that exploit spatial

and temporal locality of row-by-row parallel SpGEMM on Intel Xeon Phi many

core processor architecture are considerd by Akbudak and Aykanat [28]. Studies

considering GPU architectures also exist [85, 89, 96, 108]; and libraries such as

CUSPARSE [109] and CUSP [110] provide efficient GPU-based SpGEMM imple-

mentations.

SpGEMM algorithms are also extensively studied for distributed memory sys-

tems. There are publicly available libraries such as Trilinos [86] and Combinato-

rial BLAS (CombBLAS) [20] which offer efficient distributed memory SpGEMM

implementations. CombBLAS library provides an implementation of sparse

SUMMA algorithm [1] which operates on a two-dimensional (2D) virtual pro-

cessor grid and utilizes 2D block partitioning of input and output matrices. To

perform local computations, this algorithm uses a sequential SpGEMM kernel

based on heap and double-compressed-sparse-column data structures. By consid-

ering an extra third dimension in the virtual processor grid, Azad et al. [2] propose

an extension for the sparse SUMMA algorithm. Their algorithm also extends the

sequential SpGEMM kernel in sparse SUMMA algorithm by considering multi-

threaded execution. Akbudak and Aykanat [32] consider a distributed SpGEMM
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outer-product formulation and propose hypergraph-partitioning-based models for

effective task and data distribution. Hypergraph and bipartite graph partition-

ing models are studied in [30] for outer-product, inner-product and row-by-row-

product formulations for distributed-memory SpGEMM. Ballard et al. [31] pro-

pose a fine-grain hypergraph model that allows multi-dimensional partitioning of

the work required by SpGEMM for different class of algorithms (e.g., 1D/2D/3D

SpGEMM algorithms).

In [111, 112], theoretical lower bounds on communication costs of parallel

SpGEMM algorithms are studied. A survey of parallel SpGEMM algorithms

is given in [113], along with their theoretical assessment of the expected com-

munication costs on random matrices. Sparsity-dependent communication lower

bounds for parallel SpGEMM algorithms are also discussed through the use of

the fine-grain hypergraph model in [31].

In the fine-grain model, each nonzero scalar multiplication is represented by a

vertex and each nonzero entry of the input and output matrices is also represented

by a different vertex. Therefore, it is able to determine task and data distribu-

tion simultaneously. It can model different classes of SpGEMM algorithms (i.e.,

1D/2D/3D algorithms) by using hypergraph coarsening methods. The fine-grain

hypergraph model, however, is described as a theoretical approach [31] and is

found to be impractical [2, 30] due to the hypergraph’s considerably large size.

The fine-grain model achieves multi-dimensional partitioning in a single partition-

ing phase without taking into account the processor arrangement (i.e., without

considering dimensionality in processor grid).

Our proposed hypergraph partitioning models significantly differ from the fine-

grain model given in [31]. In order to match the sizes of the virtual processor grid

and to capture the nice upper-bounds provided by multi-dimensional grid on the

number of messages handled by processors, we suggest a multi-phase partitioning

framework. Within the multi-phase partitioning framework, we suggest multi-

constraint partitioning formulations to encode computational load-balance among

processors.

92



X

X

X

X

X

X

X X

X X

X

X

X

X

A

B

C

ℓ

�

�

Figure 5.1: Workcube W of an SpGEMM instance C = AB where A ∈ R3×4,
B ∈ R4×2 and C ∈ R3×2. “x” denotes a nonzero entry in the respective matrix.
Intersections of projections of nonzero entries produce voxels in W .

5.2 SpGEMM Algorithms

5.2.1 Workcube Representation

Given matrices A ∈ Rm×`, B ∈ R`×n and C ∈ Rm×n, a sparse 3D cube (workcube)

W of size m×`×n can be utilized to represent the iteration space of the SpGEMM

operation C=AB (See Figure 5.1) [2, 31]. In W , each voxel W (i, j, k), whose

projections onto A- and B-faces contain nonzero entries, represents a nontrivial

scalar multiplication A(i, k)B(k, j) (i.e., both A(i, k) 6= 0 and B(k, j) 6= 0). The

nonzero pattern of matrix C is determined by projections of these voxels onto

C-face. Subcubes of W , which are respectively called “layers” and “fibers”, can

be obtained by fixing one and two indices. So, W (i, :, :),W (:, j, :) and W (:, :, k)

denote the ith horizontal, jth frontal and kth lateral layers, respectively. Fibers,

which are denoted by W (i, :, j), W (i, k, :) and W (:, j, k), are obtained through

intersecting layers along different dimensions. For instance, the intersection of

ith horizontal and jth frontal layers is fiber W (i, :, j).

Horizontal layer W (i, :, :) represent all computations using the nonzeros of row

A(i, :) and the task of computing row C(i, :). Frontal layer W (:, j, :) represent

all computations using column B(:, j) and the task of computing column C(:, j).

Lateral layer W (:, :, k) represent computation of the outer-product of column

A(:, k) with row B(k, :).
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Figure 5.2: Workcube partitioning for 1D, 2D and 3D SpGEMM algorithms. 1D
algorithm partitions horizontal layers, 2D algorithm partitions both horizontal
and frontal layers, 3D algorithm partitions horizontal, frontal and lateral layers
among processors. Gray shaded areas show horizontal blocks, fiber blocks and
cuboids assigned to a processor.

In [2], distributed-memory SpGEMM algorithms are categorized depending on

the number of dimensions by which the workcube is partitioned. In this catego-

rization, 1D, 2D and 3D algorithms are defined (see Figure 5.2). 1D, 2D and 3D

algorithms necessitates communication on one, two and all three of the matrices,

respectively. Communication on an input matrix relates to the expand-type com-

munications of the corresponding input matrix nonzero entries. Communication

on the output matrix relates to the fold-type communications on the partial re-

sults for the same output matrix entries generated by distinct processors. In the

following two subsections, we concisely describe 2D- and 3D-parallel SpGEMM

algorithms for which we propose intelligent partitioning schemes.

5.2.2 2D: Sparse SUMMA algorithm [1]

In sparse SUMMA algorithm, multiplication C=AB is performed on a 2D virtual

px×py=p processor grid. The xth processor-row and the yth processor-column

of the 2D grid are respectively denoted by Px,: and P:,y. So the processor in the

xth row and the yth column of the grid is denoted by Px,y.

A, B and C matrices are partitioned into 2D blocks in such a way that each

matrix is partitioned rowwise among px processor-rows and columnwise among py

processor-columns (see Figure 5.3). Rows of C are partitioned conformably with

rows of A, whereas columns of C are partitioned conformably with columns of
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Figure 5.3: 2D block partitioning of matrices on 3× 4 processor grid. Solid lines
show that A-matrix rows and B-matrix columns are partitioned conformably
with the workcube/task partition. Dotted lines show that B-matrix rows and
A-matrix columns are partitioned independent from the task partitioning.

B. Submatrices Ax,y and Bx,y are stored by Px,y and submatrix Cx,y is computed

by the same processor. Let mx and `x be the number of A-/C-matrix rows and

B-matrix rows assigned to processor-row P (x, :) and let ny and `y be the number

of B-/C-matrix columns and A-matrix columns assigned to processor-column

P (:, y). Then, submatrices Ax,y, Bx,y and Cx,y are of sizes mx×`y, `x×ny and

mx×ny, respectively.

Under this data distribution among processors, all submatrices along the xth

row block of A are needed by each processor Px,y in processor-row Px,:. Similarly,

all submatrices along the yth column block of B are needed by each processor

Px,y in processor-column P:,y. Hence, each processor Px′,y′ broadcasts its local

submatrix Ax′,y′ along the processor-row Px′,: as well as local submatrix Bx′,y′

along processor-column P:,y′ . This 2D partitioning strategy provides an upper

bound on the volume and the number of messages exchanged between processors

during these broadcast operations, since the collective communication operations

are restricted to the rows and columns of the processor grid.

The parallel sparse SUMMA algorithm [1] performs the collective communi-

cation operations in stages in order to reduce the local memory requirements of

the processors. Although this approach reduces the processors’ local memory

requirement, it increases the latency overhead due to the significantly increased

number of collective operations.
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Figure 5.4: 3D partitioning of the workcube on a 3× 4× 4 grid. Solid lines
show that rows and columns of all matrices are partitioned conformably with the
workcube/task partition.

In this algorithm, the workcube is partitioned into px×py fiber blocks. Each

fiber block Wx,y,: is of size mx×`×ny and the tasks/voxels in the fiber block Wx,y,:

is computed by processor Px,y. In other words, px×py 2D block partitioning

is obtained on the C-face of the workcube and each submatrix Cx,y is locally

computed by Px,y. Figure 5.5 displays a sample workcube partitioning on a 2D

grid of size 3×4=12.

5.2.3 3D: Split-3D-SpGEMM algorithm [2]

Split-3D-SpGEMM algorithm runs on 3D virtual px× py×pz = p processor grid

and extends 2D algorithm [1] by considering an additional third dimension. Let

Px,y,z be the processor in the xth horizontal, the yth frontal and the zth lateral

layer of the grid and let the xth horizontal, the yth frontal and the zth lateral

layers of the 3D grid are respectively denoted by Px,:,:, P:,y,: and P:,:,z. Moreover,

let Px,y,:, Px,:,z and P:,y,z denote the processor-fibers obtained by intersecting the

respective processor-layers.

This algorithm splits the 2D blocks of 2D-partitioned A, B and C matrices

into distinct third-dimensional disjoint subblocks. That is, A, B and C matrices

are partitioned into 2D blocks among px×pz, py×pz and px×py processors, respec-

tively (see Figure 5.4). Then, 2D blocks of A, B and C matrices are split into

subblocks among py, px and pz processors, respectively. For instance, py subblocks
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Ax,1,z, Ax,2,z, . . . , Ax,y,z are obtained by splitting each 2D block Ax,z of matrix A

and these subblocks are respectively assigned to processors Px,1,z, Px,2,z, . . . , Px,y,z

of processor-fiber Px,:,z.

The broadcast of Ax,z from a single processor Px,z in 2D algorithm is split

and concurrently performed between py processors in this novel scheme. That

is, processors Px,1,z, Px,2,z, . . . , Px,y,z concurrently broadcast A-matrix subblocks

Ax,1,z, Ax,2,z, . . . , Ax,y,z, respectively. Similarly, the broadcast of By,z is split

among px processors. Because of C-matrix blocks are also split along the z

dimension, local partial C-subblock results are combined through reduce (fold)

type of operations along the z dimension to obtain the final C-block results. The

3D algorithm is more scalable compared to the 2D algorithm and offers better

upper bounds on the communication overheads [2] at the cost of reduce-type

operations along the z dimension.

In this algorithm, the workcube is partitioned into px× py×pz cuboids. Each

cuboid Wx,y,z is of size mx×`z×ny and the tasks/voxels in the cuboid Wx,y,z is

computed by processor Px,y,z. In other words, px×py 2D block block partitioning

is applied on the C-face of the workcube and each subblock by Cx,y is collectively

computed among the processors of the processor-fiber Px,y,:. Figure 5.6 displays

a sample workcube partitioning among 3×4×4 =48 processors.

5.3 Partitioning Models

In this section, we propose hypergraph models, that achieve 2D and 3D cartesian

partitioning of the workcube, to improve the performance of 2D- and 3D-parallel

SpGEMM algorithms given in Sections 5.2.2 and 5.2.3, respectively.
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5.3.1 2D Cartesian Partitioning of Workcube

2D cartesian partitioning of the workcube is performed through two partitioning

phases φ1 and φ2. In φ1, a px-way partitioning on the horizontal layers of the

workcube is obtained and each part is assigned to a distinct processor-row. In

phase φ2, a py-way partitioning on the frontal layers of the workcube is obtained

and each part is assigned to a distinct processor-column.

For phase φ1, we define a hypergraph H(φ1) = {V H , NL} with m vertices,

` nets and nnz(A) pins. Here, nnz(·) corresponds to the number nonzeros in

the respective matrix. H(φ1) contains a vertex vHi ∈ V H for each horizontal

layer W (i, :, :) and each vertex vHi represents the computation of C(i, :). H(φ1)

contains a net nLk ∈NL for each lateral layer W (:, :, k) and each net nLk represents

row B(k, :). A net nLk ∈NL connects each vertex vHi for which the intersection of

horizontal layer W (i, :, :) and fiber W (i, :, k) is nonempty. Formally,

pins(nLk ) = {vHi | ∃W (i, j, k) ∈ W (i, :, :) ∩W (:, :, k)}

Alternatively, in matrix theoretic view,

pins(nLk ) = {vHi | ∃k ∈ cols(A(i, :))},

where cols(A(i, :)) is the set of column indices of the nonzeros in row A(i, :).

We associate each vertex vHi with a weight w(vHi ) that is equal to the number

of voxels in horizontal layer W (i, :, :). That is,

w(vHi ) =
∑

k∈cols(A(i,:))

nnz(B(k, :)) = |W (i, :, :)|.

We associate each net with a cost equal to the number of nonzeros in the respective

B-matrix row, i.e.,

cost(nLk )=nnz(B(k, :))

A px-way partition Πpx(φ1)={V H
1 , V H

2 , . . . , V H
px } of H(φ1) induces the follow-

ing task partitioning: All tasks corresponding to vertices in V H
x ∈ Πpx(φ1) are

assigned to processor-row Px,:. That is, the task of computing an individual row
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of matrix C is performed by the processors of the same row of the grid. Addi-

tionally, this partitioning induces a partial reordering on the horizontal layers so

that the horizontal layers belonging to the same part are reordered consecutively

(in any order) to form a horizontal block. This partially reordered workcube will

be referred to as W . Then, the tasks corresponding to the xth horizontal block

W x,:,: of W is assigned to processor-row Px,:.

The weight of a part V H
x is equal to the number of voxels in the horizontal

block W x,:,:. Hence, maintaining balance on part weights encodes the balance

on the px horizontal blocks’ voxel counts, thus encoding computational balance

among px processor-rows.

For a cut-net nLk with connectivity set Λ(nLk ), each part V H
x ∈ Λ(nLk ) corre-

sponds to processor-row Px,: which is assigned the horizontal layers whose inter-

section with lateral layer W (:, :, k) is nonempty. In other words, for each part

V H
x ∈Λ(nLk ), all tasks assigned to processor-row Px,: in Λ(nLk ) require row B(k, :).

Here, aB-matrix row distribution is consistent with task partition Π(φ1) if each

row B(k, :) is stored by one of the processor-rows in Λ(nLk ). The distribution of

nonzeros of a B-matrix row along the respective processor-row is determined by

the partition obtained in phase φ2. Under this data distribution, assume that

row B(k, :) is stored by processor-row Px,: in Λ(nLk ). Processor-row Px,: expands

row B(k, :) to all processor-rows in Λ(nLk ) − {Px,:}, thus cut-net nLk incurs the

communication of

nnz(B(k, :))×
(
|Λ(nLk )| − 1

)
words. The total communication volume between processor-rows can be given as

ExpVol(B) =
∑
nL
k∈Ne

nnz(B(k :))×
(
|Λ(nLk )| − 1

)
.

Therefore, minimizing the cutsize according to Eq. (2.3) corresponds to minimiz-

ing the total communication volume on B-matrix rows.

For phase φ2, we define a hypergraph H(φ2)={V F , NL} with n vertices, ` nets

and nnz(B) pins. H(φ2) contains a vertex vFj ∈V F for each frontal layer W (:, j, :)
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and each vertex vFj represents the computation of column C(:, j). H(φ2) contains

a net nLk ∈NL for each lateral layer W (:, :, k) and each net nLk represents column

A(:, k). A net nLk connects each vertex vFj for which the intersection of frontal

layer W (:, j, :) and lateral layer W (:, :, k) is nonempty. Formally,

pins(nLk ) = {vFj | ∃W (i, j, k) ∈ W (:, j, :) ∩W (:, :, k)}

Alternatively, in matrix view,

pins(nLk ) = {vFj | ∃k ∈ rows(B(:, j))},

where rows(B(:, j)) denotes the set of row indices of the nonzeros in row B(j, :).

We associate each net nLk with a cost equal to the number of nonzeros in the

respective A-matrix column, i.e.,

cost(nLk )=nnz(A(:, k)).

A py-way partition Πpy(φ2) = {V F
1 , V

F
2 , . . . , V

F
py} of hypergraph H(φ2) in-

duces the following task partitioning: All tasks corresponding to vertices in

V F
y ∈Πpy(φ2) are computed by processor-column P:,y. That is, the task of com-

puting an individual column of matrix C is restricted to the processors of the

same column of the grid. This partitioning also induces a partial reordering on

the frontal layers so that the frontal layers belonging to the same part are re-

ordered consecutively (in any order) to form a frontal block. Then, frontal block

W :,y,: of the reordered workcube is computed by processor-column P:,y.

The px-way horizontal partition Πpx(φ1) together with py-way partition Πpy(φ2)

form fiber blocks W x,y,: including voxels in the intersection of horizontal block

W x,:,: and frontal block W :,y,: of the reordered workcube. So, the partition

(Π(φ1),Π(φ2)) induces assigning fiber block W x,y,: to processor Px,y.

In phase φ2, we employ a multi-constraint partitioning formulation to achieve

a balanced voxel distribution on fiber blocks. For this purpose, we associate each

vertex vFj of V F with px weights wc(vFj ) for c= 1, 2, . . . , px. Here, wc(vFj ) is set

equal to the number of voxels in the intersection of frontal layer W (:, j, :) and

horizontal block W c,:,:. That is,

wc(vFj ) = |W (:, j, :) ∩W c,:,:|.
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Here, | · | denotes the number of voxels in the respective subcube of W . Alterna-

tively, in matrix view,

wc(vFj ) =
∑

vHi ∈V H
c

|{k | k ∈ cols(A(i, :)) ∧ k ∈ rows(B(:, j))|

For a given partition Πpy(φ2)={V F
1 , V

F
2 , . . . , V

F
py} of H(φ2), the cth weight of

part V F
y ∈ Πpy(φ2) is equal to the number of voxels in the fiber block W c,y,:. That

is,

W c(V F
y ) =

∑
vFj ∈V F

y

wc(vFj )

=
∑

vFj ∈V F
y

|W (:, j, :) ∩W c,:,:|

= |W :,y,: ∩W c,:,:|

So, maintaining balance on the cth part weights corresponds to maintaining bal-

ance on the voxel counts of the fiber blocks in the horizontal block Wc,:,:. The hor-

izontal partition Πpx(φ1) already produces horizontal blocks having roughly equal

number of voxels. Therefore, the single partitioning constraint in φ1 together with

the multiple (i.e., px constraints) partitioning constraints in φ2 encodes maintain-

ing balance on the voxel counts in the individual fiber blocks. Since each fiber

block is assigned to a separate processor, the proposed formulation encodes the

computational load-balance between processors in the 2D grid.

For a cut-net nLk with the connectivity set Λ(nLk ), each part V F
y ∈Λ(nLk ) cor-

responds to the processor-column P:,y which is assigned the frontal layers whose

intersection with lateral layer W (:, :, k) is nonempty. In other words, for each

part V F
y ∈Λ(nLk ), the tasks assigned to the processor-column P:,y in Λ(nLk ) require

column A(:, k).

An A-matrix column distribution is consistent with task partition Π(φ2) if

each column A(:, k) is stored by one of the processor-columns in Λ(nLk ). Under

this distribution, assume that A(:, k) is stored by processor-column P:,y in Λ(nLk ).

Processor-column P:,y expands A(:, k) to all processor-columns in Λ(nLk )−{P:,y}
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so that cut-net nLk incurs communication of

nnz(A(:, k))×
(
|Λ(nLk )| − 1

)
words. The total communication volume between processor-columns is

ExpVol(A) =
∑
nL
k∈Ne

nnz(A(:, k))×
(
|Λ(nLk )| − 1

)
.

Therefore, minimizing the cut size according to Eq. (2.3) corresponds to mini-

mizing the total communication volume on A-matrix columns.

As discussed earlier, task partition Π(φ1) induces a distribution on B-matrix

rows among processor-rows. The distribution of nonzeros of a B-matrix along a

processor-row is determined by Π(φ2) as follows: Assume that a processor-row Px,:

in Λ(nLk ) stores row B(k, :) by utilizing Π(φ1). If vFj ∈V F
y in Π(φ2), each nonzero

B(k, j) of row B(k, :) is stored by processor Px,y. That is, the nonzero distri-

bution of row B(k, :) among processors of Px,: follows the partitioning obtained

on the workcube’s front layers. Expanding a B-matrix row from a processor-row

is performed in such a way that each processor in that processor-row expands

its local nonzero row segment along its processor-column. While the non-zero

distribution of a B-matrix row may change the number of messages, it does not

change the total volume of communication.

As also discussed earlier, task partition Π(φ2) induces a consistent A-matrix

column distribution among processor-columns. Π(φ1) determines the distribution

of nonzeros of an A-matrix column in a respective processor-column as follows:

Assume that a processor-column P:,y in Λ(nLk ) stores column A(:, k) by utilizing

Π(φ2). If vHi ∈V H
x in Π(φ1), each nonzero A(i, k) of column A(:, k) is stored by

processor Px,y. That is, the nonzero distribution of column A(:, k) in processor-

column P:,y follows the partitioning obtained on the workcube’s horizontal layers.

Expanding an A-matrix column from a processor-column is performed in such

a way that each processor in that processor-column expands its local nonzero

column segment along its processor-row. While the nonzero distribution of an

A-matrix column may change the number of messages, it does not change the

total volume of communication.
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Figure 5.5: Sparse Summa (2D) algorithm. Partitioning of the workcube on a
3×4 2D grid. “x” denotes a nonzero entry in the respective matrix.

The discussion given in the above two paragraphs imply the following: The

partitioning of A-matrix rows determines the total communication volume on

B-matrix rows, whereas the partitioning of B-matrix columns does not have an

effect on this volume. The total communication volume on A-matrix columns is

determined by the partitioning of B-matrix columns whereas it is independent

from the partitioning of A-matrix rows.

Figure 5.5 displays the proposed partitioning model. In phase φ1, a cut-net nLk

representing lateral layer W (:, :, k) and row B(k, :) has connectivity set Λ(nLk ) =

{P2,:, P3,:}, since horizontal-layer blocks W 2,:,: and W 3,:,: contain voxels in the

intersection with the W (:, :, k). Hence, nonzero row segments of row B(k, :) are

stored by processors P2,2, P2,3 and P2,4 in processor-row P2,: ∈ Λ(nLk ) and these

processors expand the three row segments (drawn in three parallelograms) along

their processor-columns. For example, processor P2,2 expands its nonzero row

segment to processor P3,2 since fiber blocks W 2,2,: and W 3,2,: have voxels and

require this row segment.

In phase φ2, a net nLk representing lateral layer W (:, :, k) and column A(:, k) has

connectivity set Λ(nLk ) = {P:,2, P:,3, P:,4}, since frontal-layer blocks W :,:,2, W :,:,3
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and W :,:,4 contain voxels in the intersection with W (:, :, k). Hence, nonzero col-

umn segments of columnA(:, k) are stored by processors P2,2 and P3,2 in processor-

column P:,2 ∈ Λ(nLk ) and these processors expand these column segments along

their processor-rows. For example, processor P3,2 expands its nonzero column

segment to processors P3,3 and P3,4 since fiber blocks W 3,2,:, W 3,3,: and W 3,4,:

have voxels and require this column segment.

5.3.2 3D Cartesian Partitioning of Workcube

The proposed model consists of three partitioning phases φ1, φ2 and φ3. In the

first phase φ1, a px-way partitioning on the horizontal layers of the workcube is

obtained and each part is assigned to a distinct horizontal layer of the processor

grid. In the second phase φ2, a py-way partitioning on the frontal layers of the

workcube is obtained and each part is assigned to a distinct frontal layer of the

processor grid. In the last phase φ3, a pz-way partitioning on the lateral layers of

the workcube is obtained and each part is assigned to a distinct lateral layer of

the processor grid. The hypergraph models H(φ1) and H(φ2) are the same with

those proposed for the 2D partitioning model in Section 5.3.1.

For phase φ3, we define a hypergraph H(φ3) = {V L, NZ} with ` vertices,

nnz(C) nets and |W | pins. H(φ3) contains a vertex vLk ∈ V L for each lateral

layer W (:, :, k) and each vertex vLk represents the outer-product of column A(:, k)

with row B(k, :). H(φ3) contains a net nZi,j ∈ NZ for each fiber W (i, j, :) that

has a voxel (partial product) contributing to nonzero entry C(i, j). A net nZi,j

connects each vertex vLk for which the intersection of lateral layer W (:, :, k) and

fiber W (i, j, :) is nonempty. Formally,

pins(nZi,j) = {vLk | ∃W (i, j, k) ∈ W (i, j, :) ∩W (:, :, k)}

Alternatively, in matrix view,

pins(nZi,j) = {vLk | ∃k ∈ cols(A(i, :)) ∧ ∃k ∈ rows(B(:, j))}

We associate each net nZi,j with cost(nZi,j)=1.
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A pz-way partition Πpz(φ3) = {V L
1 , V

L
2 , . . . , V

L
pz} of hypergraph H(φ3) induces

the following task partitioning: All tasks corresponding to vertices in V L
z ∈Πpz(φ3)

are assigned to lateral layer P:,:,z of the processor grid. In other words, the task

of computing an individual outer product of an A-matrix column with the cor-

responding B-matrix row is restricted to a lateral layer of the processor grid.

Moreover, this partitioning induces a partial reordering on the lateral layers in

such a way that the lateral layers belonging to the same part are reordered con-

secutively (in any order) to form a lateral block. Then, the responsibility of

computing the zth lateral block W :,:,z is given to the lateral processor layer P:,:,z.

The px×py fiber block partition induced by (Π(φ1), Π(φ2)) together with the

pz-way partition Πpz induces a px×py×pz cuboid partition such that a cuboid

W x,y,z contains voxels in the intersection of fiber block W x,y,: and lateral block

W :,:,z. Hence, the partition (Π(φ1),Π(φ2),Π(φ3)) is decoded as assigning cuboid

W x,y,z to processor Px,y,z.

To maintain balance on the voxel counts of the cuboids, we associate each

vertex vLk ∈V L with px×py weights wc,d(vLk ) for c=1, 2, . . . , px and d=1, 2, . . . , py.

For the sake of clarity of presentation, we denote constraints by two-dimensional

array format (c, d), whereas they are actually stored as 1D vectors to be com-

formable with the input format requirements of the multi-constraint partitioners.

Here, we set wc,d(vLk ) equal to the number of voxels in the intersection of lateral

layer W (:, :, k) with fiber block W c,d,: induced by the vertex parts V H
c of Πpx(φ1)

and V F
d of Πpy(φ2). That is,

wc,d(vLk ) = |W (:, :, k) ∩W c,d,:|

Alternatively, in matrix view,

wc,d(vLk ) = |{C(i, j) | vHi ∈ V H
c ∧ vFj ∈ V F

d

∧ k ∈ cols(A(i, :)) ∧ k ∈ rows(B(:, j))}|

For a partition Πpz(φ3) = {V L
1 , V

L
2 , . . . , V

L
pz} of H(φ3), the weight of part
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V L
z ∈ Πpz(φ3) is equal to the number of voxels in the cuboid W c,d,z That is,

W c,d(V F
z ) =

∑
vLk ∈V L

z

wc,d(vLk )

=
∑
vLk ∈V L

z

|W (:, :, k) ∩W c,d,:|

= |W :,:,z ∩W c,d,:| = |W c,d,z|.

So, maintaining balance on the (c, d)th weights of the parts corresponds to main-

taining balance on the voxel counts of the cuboids in the horizontal fiber block

W c,d,:. Recall that (Π(φ1),Π(φ2)) obtained in the first two phases already pro-

duces fiber blocks having roughly equal number of voxels. Hence, the single

partitioning constraint in φ1 and px partitioning constraints in φ2 together with

the px×py partitioning constraints in φ3 ensures a balanced distribution on the

voxel counts of the cuboids. The proposed multi-constraint partitioning model

encodes the load balance between processors as each cuboid is computed by a

distinct processor.

For a cut-net nZi,j with connectivity set Λ(nZi,j), each part V L
z ∈Λ(nZi,j) corre-

sponds to a lateral processor-layer P:,:,z and P:,:,z that is assigned lateral layers of

W whose intersection with fiber W (i, j, :) is nonempty. Hence, each processor-

layer P:,:,z corresponding to a part V L
z ∈Λ(nZi,j) produces partial results for C(i, j).

A C-matrix nonzero distribution is consistent with task partition Π(φ3), if one

of the processor-layers in Λ(nZi,j) stores and accumulates all partial results for

C(i, j).

Assume that the responsibility of storing the final value of C(i, j) is given

to processor-layer P:,:,z in Λ(nZi,j). Moreover, horizontal and frontal layers W (i, :

, :) and W (:, j, :) are respectively assigned to horizontal and frontal processor-

layers Px,:,: and P:,y,: by partition (Π(φ1),Π(φ2)). These assumptions induce the

assignment of horizontal fiber W (i, j, :) to processor-fiber Px,y,:. Then, processor

Px,y,z in processor-fiber Px,y,: will receive partial results for C(i, j) from processors

in Px,y,:∩{Λ(nZi,j)−{P:,:,z}}. Note that if a processor has multiple partial products

for C(i, j) assigned to another processor, a single partial result will be calculated

by summation and sent to that processor. Hence, that cut-net nZi,j will incur
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Figure 5.6: Split-3D-SpGEMM algorithm (3D) algorithm. Partitioning of the
workcube on a 3×4×4 3D grid.(
|Λ(nZi,j)| − 1

)
words. So, the total communication volume associated with C-

matrix nonzeros is

FoldVol(C) =
∑

nZ
i,j∈Ne

(
|Λ(nZi,j)| − 1

)
Therefore, minimizing the cut size according to Eq. (2.3) corresponds to mini-

mizing the total communication volume during the fold type communications on

C-matrix nonzeros.

Consistency of the distribution of nonzeros of C-matrix is defined earlier. Con-

sistency of A-matrix columns andB-matrix rows with the overall task partitioning

(Π(φ1),Π(φ2),Π(φ3)) is an extension to the 2D discussion as follows: If a ver-

tex vLk is assigned to V L
z ∈Π(φ3), processor-layer P:,:,z stores column A(:, k) and

row B(k, :). By utilizing Π(φ1), assume that row B(k, :) is assigned to a vertex

part V H
x ∈ Λ(nLk ) and correspondingly to processor-layer Px,:,:. So, if vFj ∈V F

y in

Π(φ2), processor Px,y,z stores nonzero B(k, j) of row B(k, :). That is, row B(k, :)

is stored by processors in processor-fiber Px,:,z and expanding B-matrix nonzero

row segment(s) is performed along processor-fibers P:,y′,z. Similarly, assume that

column A(:, k) is assigned to a vertex part V F
y ∈ Λ(nLk ) and correspondingly

processor-layer P:,y,: by utilizing Π(φ2). So, if vHi ∈V H
x in Π(φ1), processor Px,y,z
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stores nonzero A(i, k) of column A(:, k). That is, processor-fiber P:,y,z stores col-

umn A(:, k) and expanding A-matrix nonzero column segment(s) is performed

along processor-fibers Px′,:,z of the grid.

The proposed partitioning model is depicted in Figure 5.6. In phase φ1, cut-net

nLk has Λ(nLk )={P1,:,:, P2,:,:, P3,:,:}. Hence, nonzero row segments of B(k, :) can be

stored by processors in one of the processor-layers in Λ(nLk ) and processors expand

these row segments along their respective processor-fibers. For instance, since

processor-layer P:,:,3 is assigned lateral layer W (:, :, k), processors P1,2,3 and P1,4,3

in processor-layer P1,:,: ∈ Λ(nLk ) may store nonzero row segments of row B(k, :)

and these row segments are expanded along processor-fibers P:,2,3 and P:,4,3, re-

spectively. In phase φ2, cut-net nLk has Λ(nLk ) = {P:,:,2, P:,:,4}. Hence, nonzero

column segments of A(:, k) can be stored by processors in one of the processor-

layers in Λ(nLk ) and processors expand these row segments along their respective

processor-fibers. For instance, processors P1,2,3, P2,2,3 and P3,2,3 in processor-layer

P:,2,: ∈Λ(nLk ) may store nonzero column segments of column A(:, k) and expand

these column segments along processor-fibers P1,:,3, P2,:,3 and P3,:,3, respectively.

In phase φ3, the cut-net nZi,j representing fiber W (i, j, :) and nonzero C(i, j) has

the connectivity set Λ(nLk ) = {P:,:,2, P:,:,3}, since intersections of fiber W (i, j, :)

with lateral blocks W :,:,2 and W :,:,3 are nonempty. The task of accumulating and

storing nonzero C(i, j) can be given to a processor in one of the processor-layers

in Λ(nLk ). For instance, the responsibility of storing the final C(i, j) can be given

to processor P1,2,3. Hence, processor P1,2,2 locally sums its two partial products

and send a single partial result to processor P1,2,3.

The proposed hypergraph H(φ3) consists of nnz(C) nets and |W | pins Hence,

for some SpGEMM instances, it may considerably increase the preprocessing

overhead of the partitioning. To alleviate this problem, we represent a row C(i, :)

by a single net nZi instead of introducing a net nZi,j for each nonzero entry C(i, j).

Then, we add vLk as a pin to net nZi if k ∈ cols(A(i, :)). This modifications lead

to a hypergraph with m nets and nnz(A) pins. In this way, C-matrix entries

are accumulated in row-basis rather than nonzero-basis since the accumulation of

entries in the same row is performed by the processors in the same processor-layer

without considering individual consistency conditions of nonzero entries. That is,
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a nonzero C(i, j) can be assigned to a processor-layer P:,:,z 6∈Λ(nZi,j) even though

P:,:,z ∈ Λ(nZi ). This approach drastically reduces the size of the hypergraph;

however, the total volume of communication in the fold phase is overestimated

the hypergraph model. This is because, even though a processor Px,y,z does not

have a partial product for C(i, j), this processor can accumulate partial results

for C(i, j) due to the assignment of row C(i, :) to processor-layer P:,:,z. In our

experimental evaluation, we used this modified version of 3D partitioning scheme.

109



Table 5.1: Dataset Properties

Number of Max degree of

Matrix Rows/Cols Nonzeros Row Col

C = AA

crankseg 2 63,838 14,148,858 3,423 3,423

net4-1 88,343 2,441,727 4,791 4,791

Ge99H100 112,985 8,451,395 469 469

Ge87H76 112,985 7,892,195 469 469

Ga10As10H30 113,081 6,115,633 698 698

torso1 116,158 8,516,500 3,263 1,224

Ga19As19H42 133,123 8,884,839 697 697

bmwcra 1 148,770 10,644,002 351 351

para-10 155,924 5,416,358 6,931 6,931

mono 500Hz 169,410 5,036,288 719 719

ohne2 181,343 11,063,545 3,441 3,441

Si41Ge41H72 185,639 15,011,265 662 662

Si87H76 240,369 10,661,631 361 361

Ga41As41H72 268,096 18,488,476 702 702

coPapersCiteseer 434,102 32,073,440 1,188 1,188

coPapersDBLP 540,486 30,491,458 3,299 3,299

pre2 659,033 5,959,282 628 745

3Dspectralwave 680,943 33,650,589 117 117

Stanford Berkeley 683,446 7,583,376 83,448 249

StocF-1465 1,465,137 21,005,389 189 189

C = AB

rmat (scale=20) 1,048,576 8,259,994 1,181 1,158

rmat (scale=21) 2,097,152 16,570,170 1,576 1,555
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5.4 Experiments

5.4.1 Experimental Setup

We test the performance of 2D- and 3D-parallel SpGEMM algorithms against

the 1D row-by-row parallel algorithm [30], because it is reported to be the best

performing 1D algorithm in general.

We implemented all parallel SpGEMM algorithms in C++ and handled inter-

process communication operations by OpenMPI version 3.0.1. For a fair com-

parison of partitioning algorithms, we iplemented local SpGEMM computations

by utilizing row-by-row product formulation [23] for all parallel SpGEMM imple-

mentations. The sequential SpGEMM implementation, which is used to obtain

the speedups of the parallel algorithms, also uses row-by-row product formula-

tion. Instead of using the sequential implementation of Comblas library [20], we

used our own sequential SpGEMM implementation, since our 2D- and 3D-parallel

SpGEMM algorithms run faster on the SpGEMM instances utilized in the paper.

We utilized random partitioning both for our parallel SpGEMM implementations

and the one provided in Comblas library for experimental comparison.

We use PaToH [15], which supports multi-constraint hypergraph partitioning,

to partition the proposed the hypergraph models. We set the allowed imbalance

ratio to ε=0.01 in each phase of the proposed partitioning models. Since PaToH

contains randomized algorithms, the averages of three partitioning runs, each

randomly seeded, are reported.

We perfoemd our experiments on UHEMS’s Sariyer system [114]. In this

system, each node contains an Intel(R) Xeon(R) CPU E5-2680 v4 @2.40GHz

processor, consisting of 28 cores, and 128GB main memory. Each MPI job is

submitted to the system by allocating the number of cores as required by each

job, since the tested algorithms does not utilize shared memory parallelism.
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We evaluate partitioning algorithms for parallel SpGEMM algorithms on p=

25, 100, 225, 400, 625 and 900 processors. We select these processor counts in order

to configure 2D virtual processor grids as perfect squares 5×5, 10×10, 15×15,

20×20, 25×25 and 30×30, respectively. We select the 3D virtual grid sizes in

such a way that lateral layers of processor grids are perfect squares, where we

select the size of the third (i.e., z) dimension accordingly. So, 3D virtual girds of

sizes of 5×5×4, 5×5×9, 10×10×4 and 10×10×9, are used for p=100, 225, 400

and 900, whereas the numbers of processors in the remaining two 3D virtual grids

3×3×3 = 27 and 9×9×8 = 648 are slightly larger than the p values 25 and 625,

respectively.

5.4.2 Datasets

We select SpGEMM instances under two categories, C=AA and C=AB, where

we choose the input matrices as squares for the sake of fairness of the tested

algorithms. For C=AA, we collected matrices from SuiteSparse Matrix Col-

lection (UFL) [95]. The properties of 20 matrices used under this category

are displayed in Table 5.1. For C=AB, we use the recursive matrix generator

R-MAT [115] to generate two SSCA matrices (HPCS Scalable Synthetic Com-

pact Applications graph analysis benchmark [116]) as input matrices A and B.

Matrices are generated for parameters scale= 20 and scale= 21, where for each

value of scale, the tool produces a matrix of size 2scale×2scale. Additionally, we

choose parameters a= 0.55, b= 0.1, c= 0.1 and d= 0.25, which are the default

settings in the tool.

5.4.3 Experimental Results

We use the following abbreviations for the algorithms: We use 1D, 2D and 3D

to denote the row-by-row parallel [30], sparse SUMMA (Sections 5.2.2) and split-

3D SPGEMM (Sections 5.2.3) algorithms. For 1D, we use the prefix “H” to
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Table 5.2: Performance comparisons of H2D over R2D and H3D over R3D

Volume Messages Volume Messages

p Avg Max Avg Max S Avg Max Avg Max S

25

R2D 3128 3180 8 8 11 R3D 7231 7909 6 6 9
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

H2D 0.11 0.16 0.81 0.96 1.27 H3D 0.24 0.38 0.84 0.97 1.39

100

R2D 1654 1714 18 18 31 R3D 3060 3468 11 11 26
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

H2D 0.12 0.19 0.76 0.93 1.48 H3D 0.29 0.55 0.78 0.95 1.40

225

R2D 1072 1136 28 28 54 R3D 1572 1843 16 16 44
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

H2D 0.13 0.22 0.71 0.90 1.53 H3D 0.34 0.66 0.76 0.95 1.45

400

R2D 769 837 38 38 76 R3D 1154 1456 21 21 72
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

H2D 0.13 0.25 0.65 0.86 1.52 H3D 0.34 0.72 0.72 0.92 1.32

625

R2D 586 645 48 48 85 R3D 731 919 23 23 86
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

H2D 0.14 0.27 0.63 0.83 1.43 H3D 0.37 0.88 0.73 0.93 1.34

900

R2D 466 603 58 58 63 R3D 564 726 26 26 92
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

H2D 0.15 0.31 0.58 0.81 1.63 H3D 0.38 0.95 0.69 0.92 1.31

For each p, the first row displays the actual values, whereas the
second and third rows display normalized values for the resective
algorithm.

indicate that we use the hypergraph partitioning model described in [30] for row-

by-row parallel SpGEMM algorithm. For 2D and 3D, we use the prefix “H” to

indicate that we use the hypergraph partitioning models proposed in Section 5.3

for the respective parallel SpGEMM algorithms. We use the prefix “R” to indicate

that we use random partitioning.

Comparison of the relative performance of parallel SpGEMM algorithms in

terms of multiple communication cost metrics as well as speedup values attained

on the parallel system are provided in Tables 5.2 and 5.3. We categorized com-

munication cost metrics under communication volume and message counts met-

rics. These metrics respectively relate to bandwidth and latency overheads of the

parallel SpGEMM implementations. For both metrics, average and maximum

volume/number of messages sent by a processor are displayed, since for a fixed p,
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average message volume/count values also refer to total message volume/count

values. Additionally, average message volume/count values are preferred to be

displayed instead of total volume/count values to better see the deviation of max-

imum values from the average values. In Tables 5.2 and 5.3, for each p, results

are displayed as averages (geometric means) over 20 C=AA instances.

Comparisons of H2D against R2D as well as H3D against R3D are given in Ta-

ble 5.2 to show the improvements of the proposed hypergraph partitioning models

instead of random partitioning. As seen in the table, H2D and H3D respectively

achieve 85%–89% and 62%–76% less average volume than R2D and R3D over all p

values. H2D and H3D respectively achieve 69%–84% and 5%–62% less maximum

message volume than R2D and R3D. H2D and H3D respectively achieve 19%–

42% and 16%–31% smaller message counts than R2D and R3D. H2D and H3D

respectively achieve 4%–19% and 3%–8% smaller maximum message counts than

R2D and R3D. The improvement gap between hypergraph and random partition-

ing models decreases in both maximum message volume and maximum message

count values which can be attributed to better message volume and count bal-

ancing achieved by the random partitioning. H2D and H3D respectively achieve

27%–63% and 31%–40% larger speedup values than R2D and R3D.

We compare the performance of hypergraph partitioning models on 1D-, 2D-

and 3D-parallel SpGEMM algorithms in Table 5.3. In the table, we display the

average imbalance ratios in the third column. The average imbalance ratios com-

puted as the ratio of the computational load (voxel count) of the maximally loaded

processor to the average processor load (|W |/p). In terms of computational load

balance, H1D and H2D display comparable performances, whereas H3D displays

considerably worse. The relative performance of H3D against H1D/H2D de-

grades with increasing number of processors. This is because, the third partition-

ing phase of H3D necessitates increased number of constraints, which adversely

affects the load-balancing quality of PaToH [117], as the number of processors

increases.
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Table 5.3: Average performance comparison of H1D, H2D and H3D algorithms

Message (Actual) Message (Norm.)

Volume Count Volume Count

p imb Avg Max Avg Max S Avg Max Avg Max S

25

H1D 1.01 330 601 11 18 14 1.00 1.00 1.00 1.00 1.00

H2D 1.01 357 519 7 8 13 1.08 0.86 0.60 0.43 0.97

H3D 1.05 1719 2987 5 6 12 5.21 4.97 0.46 0.33 0.90

100

H1D 1.01 183 463 24 49 45 1.00 1.00 1.00 1.00 1.00

H2D 1.01 193 331 14 17 46 1.06 0.71 0.57 0.34 1.02

H3D 1.12 889 1897 9 10 36 4.87 4.09 0.36 0.21 0.80

225

H1D 1.04 131 430 35 84 65 1.00 1.00 1.00 1.00 1.00

H2D 1.03 134 249 20 25 83 1.03 0.58 0.56 0.30 1.29

H3D 1.24 529 1212 12 15 64 4.03 2.82 0.34 0.18 0.98

400

H1D 1.06 102 417 45 123 70 1.00 1.00 1.00 1.00 1.00

H2D 1.04 100 210 25 33 115 0.98 0.50 0.56 0.27 1.65

H3D 1.37 388 1052 15 19 96 3.81 2.52 0.34 0.16 1.38

625

H1D 1.10 86 394 52 161 62 1.00 1.00 1.00 1.00 1.00

H2D 1.10 81 171 30 40 122 0.94 0.43 0.59 0.25 1.96

H3D 1.54 272 807 17 21 116 3.16 2.05 0.33 0.13 1.86

900

H1D 1.13 75 415 55 196 56 1.00 1.00 1.00 1.00 1.00

H2D 1.10 68 190 34 47 103 0.91 0.46 0.61 0.24 1.85

H3D 1.61 214 688 18 24 121 2.84 1.66 0.33 0.12 2.17

As seen in Table 5.3, H3D performs worse than both H1D and H2D in terms

of both communication volume cost metrics. Two factors that explain this ex-

perimental findings are: First, many partial products are communicated among

processors in the fold phase. Second, the cut-size quality of PaToH [117] is ad-

versely affected by the increased number of constraints. On the other hand, we

observe a decrease in the performance difference between H1D and H3D as the

number of processors increases, since H3D incurs 5.21x more volume than H1D

on p=25 processors, whereas it incurs 2.81x more volume on p=900 processors.

In terms of average message volume, performance of H2D is worse than H1D

on small processor counts (p = 25, 100 and 225). However, on larger processor

counts (p = 400, 625 and 900) performance of H2D becomes better than H1D.
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Figure 5.7: Average speedup curves for 20 C=AA instances

In terms of maximum message volume, performance of H2D is significantly bet-

ter than H1D on all processor counts and the performance difference increases

in favor of H2D with increasing p in general. Moreover, the performance im-

provement of H2D over H1D is much higher in maximum message volume than

its improvement in average message volume. For example, for p = 900, on av-

erage, H2D incurs 54% less maximum message volume than H1D, whereas H2D

incurs only 9% less average message volume than H1D. This is because, dense

rows/columns of input matrices incur large communication volume for processors

storing these rows/columns. However, H2D largely resolves this issue, since the

dense rows/columns of matrices are partitioned among multiple processors.

H3D performs the best in terms of both message count metrics, whereas H2D

is the second best. With increasing number of processors, the performance differ-

ence of H2D over H1D and H3D over both H2D and H1D increase. For instance,

on p = 900 processors, H2D provides improvements of 39% and 76% over H1D

in average and maximum message count metrics, respectively. For p = 900, on

average, H3D performs approximately 2x better than H2D in both average and

maximum message count metrics. These experimental results are due to the

upper bounds established by 2D and 3D algorithms where the number of mes-

sages handled by a processor is O( 2
√
p) and O( 3

√
p) in 2D and 3D algorithms,

respectively. This upper bound is O(p) in the 1D algorithm.
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Figure 5.8: Speedup curves for R-MAT C=AB instances

Table 5.3 shows that comparable average speedup values are obtained by H1D

and H2D on small processor counts p=25 and 100, whereas H3D performs worse.

On the larger processors counts p=225, 400 and 625, H2D performs the best and

with increasing p, the performance difference between H2D and H1D increases in

favor of H2D, whereas the performance gap between H2D and H3D closes. H3D

performs the best on the largest processor count p = 900. These experimental

findings on speedup values are consistent with the relative performance variation

of H1D, H2D and H3D in various cost metrics of communication as mentioned

above. On smaller number of processors, parallel SpGEMM algorithms are band-

width bound, whereas they become latency bound on larger number of processor.

Hence, H3D becomes the clear winner on p=900 processor even tough incurring

more communication volume than both H1D and H2D.

The average speedup curves (averaged over all 20 C = AA instances) are

displayed in Figure 5.7 for the tested algorithms. As seen in the figure, the

best speedup performance is attained by H2D until p = 625 whereas it scales

down on p = 900. On the other hand, H3D consistently scale until p = 900

and finally achieves higher speedup than H2D on p= 900. Observe that better

speedup performances are attained by both R2D and R3D than H1D for larger

processor counts p ≥ 400. The speedup curves for two R-MAT matrices with

scale= 20 and 21 are shown in Figure 5.8. The discussion given for the average

speedup curves also apply for those of the two R-MAT matrices. Finally, speedup
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Figure 5.9: Speedup curves attained by each algorithm on all 20 C = AA
SpGEMM instances.
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performances of the tested algorithms on each individual SPGEMM instance in

the category C=AA are displayed in Figure 5.9

For a more comprehensive comparison, the performance profiles [118] for par-

allel SpGEMM times of all tested algorithms are displayed in Figure 5.10. the

running time obtained by an algorithm for a matrix on a given number of pro-

cessors corresponds to a test instance. A point (x, y) for an algorithm in a profile

denotes that performance of the algorithm is within x factor of the best perfor-

mance attained in y fraction of the test instances. Performances of algorithms

are compared under three different processor count groups: small (p∈{25, 100}),
medium (p∈{225, 400}) and large (p∈{625, 900}). If the profile of an algorithm

is closer to the y-axis, its performance is considered to be better.

As shown in Figure 5.10, H1D achieves the best results on approximately 70%

of the instances for p∈{25, 100} and its performance is within a factor of 1.6 of the

best performances achieved in this category. On the other hand, H2D performs

the best in 54% of the instances and its performance is within a factor of 1.2 of

the best results in all instances. For p ∈ {225, 400}, H2D performs the best in

approximately 75% of the instances and its performance is within a factor of 1.2

of the best results in all instances. The second best performance is achieved by

H3D and H1D performs significantly worse in this processor group. Performances

of H3D and H2D are respectively the best in 54% and 44% of the instances for

p∈ {625, 900} and performance of both algorithms are within a factor of 1.5 of

the best results in all instances.

As mentioned earlier, communication operations are performed in multiple

stages by both 2D [1] and 3D [2] parallel SpGEMM algorithms through utilizing

blocking factors to reduce processors’ local memory requirements. The partition-

ing objective corresponding to minimizing the total communication volume also

corresponds to minimizing the total sizes of the local communication buffers used

for send and receive operations in the proposed hypergraph models. In other

words, the proposed hypergrah models already address minimizing the increase

in the processors’ local memory requirements due to communication buffers. For

example, for H2D on p = 400, a single-stage communication scheme incurs an
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average increase of 84% (between 25%–200%) in processors’ local memory re-

quirements. This justifies the use of single-stage communications in H2D and

H3D implementations as multi-stage communication significantly increases la-

tency overheads.

5.5 Conclusion

We proposed two new Hypergraph models that address both bandwidth and

latency costs of the communication requirements of 2D and 3D SpGEMM al-

gorithms. Different from the previously proposed 1D partitioning models, our

methods regard the multidimensional arrangement of processors and therefore;

can significantly reduce the number of messages exchanged among processors. In

this way, our partitioning models provide much better optimizations in the la-

tency costs. However, the optimization achieved on communication volume costs

by the proposed models are less than those by 1D counterparts. This is due to

the multi-constraint hypergraph partitioning employed in our models; but the

relative performance difference in the communication volumes decrease as the

number of processors increases.
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Our experimental analysis demonstrates that the proposed partitioning

schemes provide significant improvements for scalability of 2D and 3D SpGEMM

algorithms. We observed that as the number of processors increases, the latency

overheads become more pronounced than the communication volume costs in the

overall cost of communication. Therefore; our proposed models performs signifi-

cantly better than 1D partitioning schemes on higher number of processors even

though our models necessitate higher communication volume costs. Additionally,

improvements of the proposed models significantly higher especially when the

SpGEMM instances comprises of input matrices that contain dense rows. This is

due to the fact that dense rows induce higher communication costs and these rows

are handled by multiple processors in 2D and 3D algorithms and thus reducing

the upper-bound on the communication cost induced on processors.

Lastly, sizes of the proposed hypergraph models are significantly smaller than

the fine-grain model [31], which makes the partitioning of our proposed models

more practical in many cases. Additionally, hypergraph partitioning costs are ex-

pected to amortize in applications that require repeated SpGEMMs which involve

input matrices having the same sparsity patterns.
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Chapter 6

Conclusion

In this thesis, we proposed graph/hypergraph partitioning models to improve the

scalability of parallel graph computations on distributed-memory systems. The

proposed models aim at reducing the total number of messages in case of com-

putations that involve cascading operations. Moreover, our models also aim at

reducing bandwidth- and latency-related overheads of the parallel graph com-

putations through parallelizing SpGEMM algorithms efficiently on distributed-

memory systems.

We studied the cascade-aware graph partitioning problem and developed a

sampling-based method to partition users across servers. The user-to-server map-

ping obtained through the proposed partitioning scheme considerably minimizes

the communication traffic among servers during cascade processes. The parti-

tioning approach integrates the graph structure and propagation processes by

estimating a probability distribution that associates each edge with a probability

of being involved in a random propagation process. We derived theoretical results

showing how the proposed solution achieves the stated goals. Under the widely

used IC model, we conducted experiments and evaluated the effectiveness of the

proposed solution in terms of partitioning objectives. We also tested the solution

over a social network where the real logs of propagation traces among users are

available. Experiments show the effectiveness of the proposed solution both in

the existence and lack of real propagation traces.
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We proposed an SpGEMM algorithm for the Accumulo database that utilizes

row-by-row parallel SpGEMM to achieve write-locality during ingestion of the

output matrix. The proposed algorithm requires multiple batch-scanning opera-

tions which incur latency overheads. By performing local SpGEMM operations

via multiple batches and using multi-threaded parallelism, these overheads are

alleviated. We also proposed a matrix partitioning scheme that reduces the to-

tal communication volume and provides a workload-balance among servers. We

conducted extensive experiments on both realistic and synthetic SpGEMM in-

stances. Experimental results showed that the proposed algorithm, without us-

ing the proposed matrix partitioning scheme, outperforms the Graphulo library’s

outer-product algorithm by a large margin. The results also showed that the

proposed matrix partitioning scheme provides further improvements.

We proposed hypergraph graph partitioning models that attain multidimen-

sional partitioning on SpGEMM’s workload. The proposed models encode the

communication and computational requirements of processors that are logically

arranged as multidimensional grids and utilize the natural upper bound pro-

vided by 2D and 3D SpGEMM algorithms on the communication requirements

of processors. Our experimental analysis showed that the proposed partitioning

models provide significant improvements for scalability of 2D and 3D SpGEMM

algorithms. The number of messages handled by processors significantly decreases

and the latency-related costs of the overall communication overheads are reduced.

We observed that the latency costs become more pronounced in the overall cost

of communication as the number of processors increases. Therefore, the proposed

partitioning models provide better scalability even though incurring higher total

communication volumes.
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[22] Ariful Azad, Aydin Buluç, and John Gilbert. Parallel triangle counting and

enumeration using matrix algebra. In 2015 IEEE International Parallel and

Distributed Processing Symposium Workshop, pages 804–811. IEEE, 2015.

[23] Jeremy Kepner and John Gilbert. Graph algorithms in the language of

linear algebra. SIAM, 2011.

[24] Vijay Gadepally, Jake Bolewski, Dan Hook, Dylan Hutchison, Ben Miller,

and Jeremy Kepner. Graphulo: Linear algebra graph kernels for nosql

databases. In Parallel and Distributed Processing Symposium Workshop

(IPDPSW), 2015 IEEE International, pages 822–830. IEEE, 2015.
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