Semi-Analytical Source Method for Reaction–Diffusion Problems

Estimation of thermal properties, diffusion properties, or chemical–reaction rates from transient data requires that a model is available that is physically meaningful and suitably precise. The model must also produce numerical values rapidly enough to accommodate iterative regression, inverse methods, or other estimation procedures during which the model is evaluated again and again. Applications that motivate the present work include process control of microreactors, measurement of diffusion properties in microfluids, and measurement of reaction kinetics in biological systems. This study introduces a solution method for nonisothermal reaction–diffusion (RD) problems that provides numerical results at high precision and low computation time, especially for calculations of a repetitive nature. Here, the coupled heat and mass balance equations are solved by treating the coupling terms as source terms, so that the solution for concentration and temperature may be cast as integral equations using Green’s functions (GF). This new method requires far fewer discretization elements in space and time than fully numeric methods at comparable accuracy. The method is validated by comparison with a benchmark heat transfer solution and a commercial code. Results are presented for a first-order chemical reaction that represents synthesis of vinyl chloride.

[DOI: 10.1115/1.4038987]

Keywords: heat transfer, mass transfer, nonlinear partial differential equation, cross-dependence, exact Green’s function, piecewise-constant source

1 Introduction

Nonisothermal reaction–diffusion (RD) systems describe many transport and rate processes in physical, chemical, and biological systems [1]. Although the motivation is the RD problem, the primary thrust of this paper is to introduce the semi-analytical source (SAS) method for such problems. In this approach, the cross-dependence and nonlinear terms in the differential equations describing the RD problem are treated as source terms, and the boundary value problem is recast into an integral equation using Green’s functions (GF) for diffusion. There are several distinct advantages to this approach. GF are analytical expressions that exactly satisfy the boundary conditions for concentration and temperature. These GF then serve as physics-based spline functions that exactly fit the problem of interest. In this way, results of comparable accuracy may be attained with far fewer discretization elements in time and space than with a fully numeric solution (such as finite difference (FD) and finite element). As the computation cost for fully numeric solutions scales as the cube of the spatial mesh (order M3), the potential for computational savings is substantial. The GF may be computed ahead of time and stored for rapid retrieval, a particular advantage for computations of a repetitive nature, for example in control of industrial processes and for inverse problems associated with indirect measurements.

Next, the pertinent literature will be discussed in two parts—first that of reaction–diffusion problems in general and then that of semi-analytical methods for solving such problems. Much has been published on mathematically coupled nonlinear differential equations of chemical reaction and diffusion systems by neglecting the possible thermodynamic couplings among heat and mass fluxes, and reaction velocities. Here, thermodynamic coupling refers to induced effects of Soret and Dufour [1–5] that may be considerable in small scale systems due to the presence of large gradients of temperature and concentration. A coupled RD system may require a thorough analysis that takes into account the induced cross effects especially in small-scale structures [4–6]. One of the approaches to describe such a thermodynamically coupled RD system is the nonequilibrium thermodynamic model, which does not require the detailed mechanism of coupling [7].

Some of the well-known RD systems include spread of an epidemic, Lotka–Volterra type of competition-diffusion, Belousov–Zhabotinski reaction, and three-component models of quadratic reactions [8]. As Turing [9] showed, a RD system with appropriate nonlinear kinetics can generate stable concentration patterns. Serna et al. [10] studied Turing patterns under nonisothermal RD conditions using the Gray–Scott model. Such patterns may be stationary or oscillatory and may have potential applications in biological morphogenesis; for example, blood clotting can be considered as the formation of localized patterns [11,12]. The respiratory electron transport chain in the inner membrane of mitochondria creates a proton motive force across the membrane, which is used in the endothermic reaction synthesis of adenosine triphosphate. Consequently, the hydrolysis of adenosine triphosphate releases energy used in osmotic work of primary active transport and other mechanical work [13–15].

Modeling the evolution dynamics of infectious diseases requires the mechanism of transmission of the contagion. Mathematical modeling can describe a finite number of subpopulations with spatial densities, whose evolution in time requires nonlinear partial differential equations of RD systems [16]. Elias and Clairambault [17] solved the nonlinear partial differential equations of RD systems for spatio-temporal intracellular protein networks by using semi-implicit Rothe method with the Kedem-Katchalsky boundary conditions. Some exact solution for RD systems also exist [8,18]. Tuncer et al. [19] used finite element method to solve RD systems on stationary spheroidal surfaces with possible applications such as in wound healing, tissue regeneration, and cell mobility.

The literature of semi-analytical solutions applied to heat transfer is discussed next. The concept of treating nonlinear terms in the differential equation as source terms is not new, as it was mentioned in 1979 by Stakgold [20]. Taigbenu [21] used the steady-spatial GF as the spatial shape function for a finite element
solution to a transient heat transfer problem, and the nonlinear portion of the equation was treated as a source term. Jones and Solovjov [22] studied the transient response of a radiation thermometer in which the radiation boundary was modeled as a nonlinear source in their Green’s function formulation of the problem. Flint et al. [23] used a GF formulation for a moving volumetric meter in which the radiation boundary was modeled as a non-source points and the boundary. Dong [25] extended the method and the level of ill-posedness depends on the distance between the source points and the boundary. A weakness of the method is that the results are sensitive to the source-point locations, and the source strength calculation is ill-posed, requiring regularization for numerical stability. Yan et al. [26] extended this method to the three dimensional parallelepiped. Tikhonov regularization was used in the inverse problem for finding the source strengths.

There has been some work involving finite-body diffusion GF that satisfy boundary conditions. Axelsson et al. [27] solved a steady convection–diffusion problem in a rectangular domain using GF which satisfy Dirichlet boundary conditions and have the form of a series. The series coefficients for the GF are found using a Galerkin scheme with matching carried out at grid locations in the domain. Mandaliya et al. [28] treated rectangular and cylindrical geometries for a steady reaction–diffusion problem using GF that satisfy type 3 boundary conditions. In contrast, the present work addresses transient problems.

Lugo-Mendez et al. [29] used effective properties to describe the microscale contribution of pores to mesoscale nonlinear diffusion. The problem formulation involves nonlinear terms in the differential equation which are simulated by treating them as source terms. Using commercial software, computational results are given for the method applied to unit-cell geometries in two and three dimensions. The authors also formulate the problem with GF that satisfy Dirichlet boundary conditions; however, no computations are carried out with this. The authors anticipate that this approach carries a computational burden if the GF is computed fully numerically.

In contrast to Lugo-Mendez et al. [29], in the present work the GF are computed analytically from algorithms that have been verified for high accuracy and optimized for computational efficiency [30]. Nonlinear terms in the differential equation are treated as source terms distributed throughout the domain. Because the boundary conditions are exactly satisfied, no matrix solution is needed for determining source strengths.

A brief outline of the paper is given next. Section 2 describes the mass and energy balances for the reaction–diffusion problem with thermodynamic coupling. Section 3 introduces the semi-analytical source method. Section 4 describes a comparison with an available analytic solution to validate the new method. Section 5 gives numerical results for a specific reaction–diffusion problem. Section 6 discusses the scope of additional problems to which the semi-analytical source method may apply, and Sec. 7 contains the summary and conclusions.

2 Problem Statement

Assuming that the RD problem is not far from global equilibrium, the following relations for mass flux \(J \) and heat flux \(J_q \) include the effect of thermodynamic coupling:

\[
-J = D_e \nabla C + D_s \nabla T \\
-J_q = D_D \nabla C + \lambda \nabla T
\]

(1)

Here, \(C \) is concentration and \(T \) is temperature. Quantities \(D_e \) and \(\lambda \) are the diffusivity and thermal conductivity, respectively. Thermodynamic coupling is represented by quantities \(D_D \) (Dufour effect) and \(D_s \) (Soret effect), which allow for additional mass flux associated with temperature gradient and additional heat flux associated with concentration gradient. The reaction–diffusion problem under discussion is found by combining the above flux expressions with mass and energy balances [31]

\[
\frac{\partial C}{\partial t} = D_e \frac{\partial^2 C}{\partial x^2} + D_s \frac{\partial^2 T}{\partial x^2} - A_0 C e^{-E/(RT)}
\]

(2)

\[
\rho c_p \frac{\partial T}{\partial t} = \lambda \frac{\partial^2 T}{\partial x^2} + \frac{\partial}{\partial x} \left(-D_D \frac{\partial C}{\partial x} e^{-E/(RT)} \right)
\]

(3)

on domain \(0 < x < L \). The boundary conditions for concentration and temperature are given by

\[
\text{at } x = 0, \quad \frac{\partial C}{\partial x} = 0; \quad \frac{\partial T}{\partial x} = 0
\]

(4)

\[
\text{at } x = L - D_e \frac{\partial C}{\partial x} = k(C - C_s); \quad -\lambda \frac{\partial T}{\partial x} = h(T - T_s)
\]

Here, the boundary at \(\xi = 0 \) is a no-flux boundary (type 2) and the boundary at \(\xi = L \) is a convection boundary (type 3). It is convenient to create a nondimensional form of the above equations, using the following dimensionless variables:

\[
\theta = \frac{C - C_s}{C_i}; \quad \phi = \frac{T - T_s}{T_i}
\]

\[
t = \frac{D_e \tau}{L^2}; \quad z = \frac{x}{L}; \quad \xi = \frac{\lambda}{\rho c_p D_e}
\]

\[
\beta = \frac{C_i D_e}{k} \left(-A_0 \right) \frac{e^{-E/(RT)}}{D_s}; \quad \psi = \frac{L^2 A_0}{D_s} e^{-E/(RT)}
\]

\[
\gamma = \frac{E/(RT)}{\omega}; \quad \epsilon = \frac{D_s T_i}{D_s C_i} \quad \omega = \frac{D_s C_i}{\lambda T_i}
\]

Here, \(\theta \) is (unitless) concentration and \(\phi \) is (unitless) temperature. Then, Eqs. (2) and (3) may be written

\[
\frac{\partial \theta}{\partial t} = \frac{\partial^2 \theta}{\partial z^2} + \epsilon \frac{\partial^2 \phi}{\partial z^2} + (1 + \epsilon) \exp \left[\gamma - \frac{\gamma}{1 + \phi} \right]
\]

(6)

\[
\frac{1}{\xi} \frac{\partial \phi}{\partial t} = \frac{\partial^2 \phi}{\partial z^2} + \epsilon \frac{\partial^2 \theta}{\partial z^2} + \beta \psi (1 + \phi) \exp \left[\gamma - \frac{\gamma}{1 + \phi} \right]
\]

(7)

The cross coefficient \(\epsilon \) controls the induced mass fluxes that occur due to a temperature gradient without a corresponding concentration gradient. The cross coefficient \(\omega \) controls the induced heat flux by chemical potential gradient of substance without temperature gradient. The induced effects controlled by \(\epsilon \) and \(\omega \) show the impact of thermodynamic coupling on the transient heat and mass transfer. The boundary conditions and initial conditions are given by

\[
\text{at } z = 0, \quad \frac{\partial \theta}{\partial z} = 0; \quad \frac{\partial \phi}{\partial z} = 0
\]

\[
\text{at } z = 1, \quad \frac{\partial \theta}{\partial z} = B_c \theta = 0; \quad \frac{\partial \phi}{\partial z} + B_f \phi = 0
\]

(8)

The purpose of this normalization is to simplify the initial conditions by setting them to zero and to make the boundary conditions homogeneous. At the \(z = 1 \) boundary, \(B_c = kL/D_e \) is the mass-transfer Biot number and \(B_f = hL/\lambda \) is thermal Biot number. We
view the boundary condition at \(z = 1 \) as a generalized boundary condition, because it can provide boundaries of type 1 \((B_1 \rightarrow \infty \) and \(B_2 \rightarrow \infty \) produces \(\theta = \phi = 0 \) there) or type 2 \((B_1 = 0 \) and \(B_2 = 0 \) produces the zero-flux boundary) or type 3 (Biot numbers neither infinite nor zero). See Ref. [32] for further discussion of the generalized boundary condition.

3 Semi-Analytical Source Method

The solution method introduced in this paper treats the cross-dependent terms in the above differential equations as source terms. That is, Eqs. (6) and (7) may be written

\[
\frac{\partial \theta}{\partial t} = \frac{\partial^2 \theta}{\partial z^2} + g^1
\]

\[
1 \frac{\partial \phi}{\partial t} = \frac{\partial^2 \phi}{\partial z^2} + g^2
\]

Quantities \(g^1 \) and \(g^2 \) are source terms, the full details of which will be discussed presently. But for the moment, the above equations appear to have the form of linear diffusion equations, driven by source terms. If this were true, and further, if the source terms were known, then classic analytic methods, such as the method of GF, would apply to this problem. The GF method would allow the problem to be cast as integrals of the product of Green’s function and (the assumed known) source terms, as follows [33]:

\[
\theta(z,t) = \int_{t_0}^{t} \int_{z_0}^{z} g^1(z',t') G^1(z,t;z',t') dz' dt'
\]

\[
\phi(z,t) = \int_{t_0}^{t} \int_{z_0}^{z} g^2(z',t') G^2(z,t;z',t') dz' dt'
\]

The GF depends on observation location \((z,t)\) and source location \((z',t')\), while the source functions \(g^1 \) and \(g^2 \) depend only on source location \((z',t')\). The above integral statement of the solution is not formally correct, as the source terms are not actually known; however, it suggests an algorithm for a solution if the source terms can be found approximately.

The source terms are given by

\[
g^1 = \epsilon \frac{\partial^2 \phi}{\partial z^2} - \psi(1 + \theta) \exp \left(- \frac{\gamma}{1 + \phi} \right)
\]

\[
g^2 = \alpha \frac{\partial^2 \phi}{\partial z^2} + \beta \phi(1 + \theta) \exp \left(- \frac{\gamma}{1 + \phi} \right)
\]

We treat parameters \(\psi, \beta, \gamma, Le, \epsilon \), and \(\alpha, \omega \) as known values. The source terms depend directly on concentration \(\theta \) and temperature \(\phi \), both of which are functions of space and time, and they also contain a nonlinear reaction-kinetics term.

The solution algorithm based on the above integral expressions involves stepping through time, starting by constructing the first value of each source \(g^1 \) and \(g^2 \) from the initial condition. At each successive timestep, sources \(g^1 \) and \(g^2 \) will be evaluated numerically from the previous timestep, and then values of \(\theta \) and \(\phi \) at the next timestep will be found from the above integral description. The level of approximation for this approach depends upon the size of the time steps and on the rate at which the source terms change over time.

3.1 Discretization Into Subintervals

As part of the solution method, time is discretized into \(N \) equal-spaced intervals \((t_1, t_2, \ldots, t_N)\), and space is discretized into \(M \) equal-sized intervals of size \(\Delta z \). The source terms are approximated as piecewise constant in each time interval and in each spatial interval. The concentration and temperature functions are evaluated at the end of each time interval and in the center of each spatial interval. By this procedure, each integral in Eqs. (11) and (12) may be replaced by a sum of smaller integrals, where each smaller integral covers one subinterval in time or space, as follows:

\[
\theta(z_i, t_k) = \sum_{l=1}^{M} \sum_{j=1}^{N} g^1_{ij} \int_{t_{i-1}}^{t_i} \int_{z_{j-\Delta z/2}}^{z_j+\Delta z/2} G^1(z, t_k|z', t') dz' dt'
\]

(15)

\[
\phi(z_i, t_k) = \sum_{l=1}^{M} \sum_{j=1}^{N} g^2_{ij} \int_{t_{i-1}}^{t_i} \int_{z_{j-\Delta z/2}}^{z_j+\Delta z/2} G^2(z, t_k|z', t') dz' dt'
\]

(16)

Because source terms \(g^1 \) and \(g^2 \) are piecewise constant in each subinterval, these have been moved outside the integrals. The remaining integrals over the subregions involve only Green’s function. The required integrals can be tabulated beforehand in the form

\[
\Delta g^p(z, t_k|z, t_0) = \int_{t_{i-1}}^{t_i} \int_{z_{j-\Delta z/2}}^{z_j+\Delta z/2} G^p(z, t_k|z', t') dz' dt'
\]

(17)

where \(p = 1 \) or \(2 \) indicates concentration or temperature. Influence function \(\Delta g^p \) is the response at \((z, t_0)\) to an internal source of unit size occurring over time interval \(t_{k-1} < t < t_k \) and over spatial interval of size \(\Delta z \) centered at location \(z_j \). More information on how influence function \(\Delta g^p \) is evaluated is given in the Appendix.

Then the concentration and temperature may be written as

\[
\theta(z_i, t_k) = \sum_{l=1}^{M} \sum_{j=1}^{N} g^1_{ij} \Delta g^1(z_i, t_k|z_j, t_k)
\]

(18)

\[
\phi(z_i, t_k) = \sum_{l=1}^{M} \sum_{j=1}^{N} g^2_{ij} \Delta g^2(z_i, t_k|z_j, t_k)
\]

(19)

3.2 Construction of Source Terms

One computational challenge in this problem is that the source terms depend on concentration \(\theta \) and temperature \(\phi \). In the present embodiment of the problem, this challenge is met by stepping through time and evaluating the source terms at the previous timestep, that is, when the values of \(\theta \) and \(\phi \) are known. Iteration can be used to improve the value of the source terms.

Another challenge is that the source terms contain spatial derivatives \(\partial^2 \theta / \partial z^2 \) and \(\partial^2 \phi / \partial z^2 \). Specifically, the needed spatial derivatives are given by:

\[
\frac{\partial^2 \theta}{\partial z^2}(z_i, t_k) = \sum_{l=1}^{M} \sum_{j=1}^{N} g^1_{ij} \Delta S^1(z_i, t_k|z_j, t_k)
\]

(20)

\[
\frac{\partial^2 \phi}{\partial z^2}(z_i, t_k) = \sum_{l=1}^{M} \sum_{j=1}^{N} g^2_{ij} \Delta S^2(z_i, t_k|z_j, t_k)
\]

(21)

where

\[
\Delta S^p(z_i, t_k|z_j, t_0) = \int_{t_{i-1}}^{t_i} \int_{z_{j-\Delta z/2}}^{z_j+\Delta z/2} \frac{\partial^2 g^p}{\partial z^2}(z, t_k|z', t') dz' dt'
\]

(22)

for \(p = 1 \) or \(2 \). It is important to note that because the derivative is carried out with respect to observation location \(z \), the derivative bypasses the source term and falls only on Green’s function. For this reason, influence function \(\Delta S^p \) may be evaluated beforehand to high precision and stored for rapid computation. More information on evaluating influence function \(\Delta S^p \) is given in the Appendix.
3.3 Timestepping Solution. In this section, the timestepping solution procedure is described. Briefly, the method involves evaluating the source terms at the present time, assuming the source terms are constant over the next timestep, and evaluating the concentration and temperature using Eqs. (18) and (19) at one timestep into the future. To demonstrate the method, the calculation will be explicitly written out for the first two timesteps.

At time \(t = 0 \), the initial conditions are \(\theta = 0 \) and \(\phi = 0 \) everywhere in the body. The source terms at the initial condition may be evaluated from Eqs. (13) and (14) to be

\[
g^1_{ij} = \epsilon \cdot 0 - \psi(1 + 0) \exp\left[\frac{-\gamma}{(1 + 0)}\right]
\]

\[
g^1_{ij} = \alpha \cdot 0 + \beta \psi(1 + 0) \exp\left[\frac{-\gamma}{(1 + 0)}\right]
\]

That is, initially the source terms are spatially uniform. Then, Eqs. (18) and (19) are evaluated at \(N = k = 1 \)

\[
\theta(z_i, t_1) = \sum_{j=1}^{M} g^1_{ij} \Delta I^1(z_i, t_1|z_j, t_j)
\]

\[
\phi(z_i, t_1) = \sum_{j=1}^{M} g^1_{ij} \Delta I^2(z_i, t_1|z_j, t_j)
\]

To carry out the next timestep, the source functions for the second timestep are evaluated using concentration and temperature at time \(t_1 \)

\[
g^2_{ij} = \epsilon \frac{\partial^2 \phi}{\partial z^2} \big|_{(z_i, t_1)} - \psi(1 + \theta(z_i, t_1)) \exp\left[\frac{-\gamma}{(1 + \phi(z_i, t_1))}\right]
\]

\[
g^2_{ij} = \alpha \frac{\partial^2 \theta}{\partial z^2} \big|_{(z_i, t_1)} + \beta \psi(1 + \theta(z_i, t_1)) \exp\left[\frac{-\gamma}{(1 + \phi(z_i, t_1))}\right]
\]

Then, Eqs. (18) and (19) are evaluated at \(N = 2 \) and \(k = 1, 2 \)

\[
\theta(z_i, t_2) = \sum_{j=1}^{M} g^1_{ij} \Delta I^1(z_i, t_2|z_j, t_1) + \sum_{j=2}^{M} g^2_{ij} \Delta I^1(z_i, t_2|z_j, t_2)
\]

\[
\phi(z_i, t_2) = \sum_{j=1}^{M} g^1_{ij} \Delta I^2(z_i, t_2|z_j, t_1) + \sum_{j=2}^{M} g^2_{ij} \Delta I^2(z_i, t_2|z_j, t_2)
\]

This procedure is repeated for all successive timesteps, with three spatial sums needed at \(N = 3 \), four spatial sums needed at \(N = 4 \), and so on as required by the \(k \)-summation in Eqs. (18) and (19). This behavior arises because the summation over time index \(k \) is a convolution sum. In the above description, no iterative improvement is applied to the source terms, which can be important in highly nonlinear problems. In Sec. 3.4, the incorporation of iterative improvement is described.

3.4 Iterative Improvement. Iterative improvement for the source terms at each timestep can be carried out with little additional computational cost. The reason is that the convolution sum, which is the computation-intensive part of the method, needs to be carried out only once per timestep. A detailed description of the iteration procedure is given next. At the start of a new timestep, in preparation for iteration, the convolution sums (one each for concentration and temperature) are truncated by computing over previous timesteps only, that is, over \(k = 1, 2, \ldots, N - 1 \). The truncated convolution sums do not include the effect of the present timestep. Also, the first guess for the source terms are computed using known values of concentration and temperature, from the previous timestep. Then the temperature and concentration are updated by adding the effect of the present timestep source terms \(g^k_{ij} \) to the truncated convolution sums as follows:

\[
\theta(z_i, t_N) = \sum_{k=1}^{N-1} \sum_{j=1}^{M} g^k_{ij} \Delta I^1(z_i, t_N|z_j, t_k) + \sum_{j=1}^{M} g^N_{ij} \Delta I^1(z_i, t_N|z_j, t_N)
\]

\[
\phi(z_i, t_N) = \sum_{k=1}^{N-1} \sum_{j=1}^{M} g^k_{ij} \Delta I^2(z_i, t_N|z_j, t_k) + \sum_{j=1}^{M} g^N_{ij} \Delta I^2(z_i, t_N|z_j, t_N)
\]

In the above expressions, the double sum is the truncated convolution sum which gives the effect of previous sources, and the single sum is the effect of the present timestep sources evaluated at \(t_N \). Note that only one matrix multiplication is required to update \(\theta \) and \(\phi \), and no matrix inversion is required. For the next iteration, the updated \(\theta \) and \(\phi \) values are used to update the source terms, and then \(\theta \) and \(\phi \) are themselves updated using the above expressions. Again, as sources at time \(t_N \) are updated, the convolution sum does not have to be recomputed. Iteration stops when the relative changes in both \(\theta \) and \(\phi \) are sufficiently small; specifically, if \(r \) is the index of iteration and \(\theta^r \) and \(\phi^r \) are the temperature and concentration values at spatial node \(i \) after \(r \) iterations, then iteration stops when

\[
\sum_{i=1}^{M} |(\theta_i^r - \theta_{i}^{r-1})/\theta_i^r| + \sum_{i=1}^{M} |(\phi_i^r - \phi_{i}^{r-1})/\phi_i^r| < \text{tol}
\]

When this condition is satisfied, the calculation proceeds to the next timestep. For numerical results presented in this paper, a relative change of less than \(\text{tol} = 0.001 \) is achieved after three iterations and a relative change of less than \(\text{tol} = 10^{-5} \) is achieved after six iterations.

4 Comparison With Benchmark Case

To quantify the utility and accuracy of the method, a comparison was made with a benchmark problem for which an exact solution could be found. Consider the transient heat transfer in a finite-length fin that satisfies the following boundary value problem:

\[
\frac{\partial T}{\partial t} = \frac{\partial^2 T}{\partial z^2} - m^2(T - T_s); \quad 0 < z < 1; \quad t > 0
\]

at \(z = 0 \), \(\frac{\partial T}{\partial z} = 0 \)

at \(z = 1 \), \(T = T_0 \)

at \(t = 0 \), \(T = T_0 \)

Here, \(T_s \) is the surrounding fluid temperature, \(T_0 \) is the initial temperature, and \(m \) is the dimensionless fin parameter. To apply the present method, the source term is set to

\[
g^2 = -m^2(T - T_s)
\]

and the temperature is normalized as \(\phi = T - T_0 \). The influence functions already discussed were used to produce numerical results by taking \(B_T = 10^{10} \) which provides the type 1 boundary condition at \(z = 1 \).

The exact solution of the above transient fin problem is found from a transformation [33] and Green’s function method. The solution is
\[
\frac{T(z, t) - T_0}{T_s - T_0} = 1 - \frac{\cosh z}{\cosh m}
+ 2 \sum_{n=1}^{\infty} (-1)^n \cos\left(\beta_n z\right) \left(\frac{1}{\beta_n^2 - \beta_n^2 + m^2}\right) e^{-\left(\beta_n^2 + m^2\right)t},
\]
where \(\beta_n = (n - 1/2)\pi\) (35)

A comparison of the exact solution with the present method is given in Fig. 1. Figure 1(a) shows the dimensionless fin temperature versus time at three locations, and Fig. 1(b) shows the relative error between the present method and the exact solution. Table 1 shows values of the relative error at \(x = 0\) at different values of the time, different values of the fin parameter \(m^2\), and different values of the discretization parameters \(M\) (spatial elements) and \(N\) (time-steps). Location \(x = 0\) was chosen because it has the largest error in the body at any instant. The relative error is computed as

\[
\text{error} = \frac{(T_{\text{exact}} - T_{\text{SAS}})}{T_{\text{exact}}}
\]

The purpose of Table 1 is to explore how the discretization parameters \(M\) and \(N\) affect the precision of the SAS method under different conditions, and also to determine the impact of iterative improvement in this benchmark case. Table 1 shows that the relative error is everywhere less than 0.0012 without iteration and is smaller when iteration is added. The error decreases as the number of spatial elements \(M\) increases, decreases as the number of time-steps \(N\) increases, is somewhat sensitive to time \(t_{\text{max}}\), and is somewhat sensitive to fin parameter \(m^2\). A unifying theme is that the error is larger when temperature changes rapidly (small time, small fin parameter) and is smaller when the temperature is steady or nearly steady (large time, large fin parameter).

5 Results

In this section, the results are given for the reaction–diffusion problem for a specific case to represent synthesis of vinyl chloride with parameter values taken from Demirel [31]. The parameter values used here are given in Table 2. Note that \(B_T = B_c = 10^{10}\), a floating-point version of infinity, produces a homogeneous type 1 boundary condition at \(z = 1\), that is, \(\phi = 0\) there. Although other boundary conditions (type 2 or 3) could be explored with other values of \(B_T\) and \(B_c\), we present a few results with one boundary condition as a brief demonstration of the SAS method. All of the SAS-method results presented in this section have been calculated with iterative improvement, which is needed to address the inherently nonlinear behavior in the chemical reaction term, that is, \(\text{term} e^{-E/(RT)}\) in Eqs. (2) and (3).

Numerical results for the reaction–diffusion problem were checked in two ways. First, a FD code was written using finite volume method of Patankar [34], and the results were compared with the present method. Some numerical values for this comparison are given in Table 3 for the SAS method, the FD method, and

Table 1 Verification of SAS method by comparison with an exact fin solution, Eq. (35). Each row gives the relative error for SAS method twice, once with and without iterative improvement, at several values of the time \(t\), fin parameter \(m^2\), spatial discretization \(M\) and time discretization \(N\). The fractional change between the two error columns is also listed.

<table>
<thead>
<tr>
<th>(t)</th>
<th>(m^2)</th>
<th>(M)</th>
<th>(N)</th>
<th>Error, no iteration</th>
<th>Error with iteration</th>
<th>Error change</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.001</td>
<td>10</td>
<td>10</td>
<td>0.0000008519823</td>
<td>0.000008122093</td>
<td>0.046862895</td>
</tr>
<tr>
<td>0.2</td>
<td>0.1</td>
<td>10</td>
<td>10</td>
<td>0.000844178999</td>
<td>0.00089265811</td>
<td>0.048824264</td>
</tr>
<tr>
<td>0.2</td>
<td>0.001</td>
<td>40</td>
<td>10</td>
<td>0.000843203749</td>
<td>0.0008208494</td>
<td>0.031727987</td>
</tr>
<tr>
<td>0.1</td>
<td>0.1</td>
<td>40</td>
<td>10</td>
<td>0.000839780999</td>
<td>0.00081177856</td>
<td>0.033825934</td>
</tr>
<tr>
<td>1.0</td>
<td>0.001</td>
<td>10</td>
<td>10</td>
<td>0.00013156311</td>
<td>0.00010575162</td>
<td>0.196190938</td>
</tr>
<tr>
<td>1.0</td>
<td>0.1</td>
<td>10</td>
<td>10</td>
<td>0.001231825174</td>
<td>0.000987102654</td>
<td>0.198666601</td>
</tr>
<tr>
<td>1.0</td>
<td>0.001</td>
<td>40</td>
<td>10</td>
<td>0.0002879672</td>
<td>0.00010888869</td>
<td>0.145448067</td>
</tr>
<tr>
<td>1.0</td>
<td>0.1</td>
<td>40</td>
<td>10</td>
<td>0.001204548950</td>
<td>0.00117607195</td>
<td>0.155144177</td>
</tr>
<tr>
<td>0.2</td>
<td>0.001</td>
<td>40</td>
<td>40</td>
<td>0.00002156944</td>
<td>0.00002003159</td>
<td>0.071297632</td>
</tr>
<tr>
<td>0.2</td>
<td>0.1</td>
<td>40</td>
<td>40</td>
<td>0.00021568274</td>
<td>0.00019162267</td>
<td>0.072156215</td>
</tr>
<tr>
<td>0.2</td>
<td>0.001</td>
<td>40</td>
<td>40</td>
<td>0.0002097093</td>
<td>0.0002027023</td>
<td>0.011868811</td>
</tr>
<tr>
<td>0.2</td>
<td>0.1</td>
<td>40</td>
<td>40</td>
<td>0.000207608323</td>
<td>0.000205027107</td>
<td>0.012433147</td>
</tr>
<tr>
<td>1.0</td>
<td>0.001</td>
<td>10</td>
<td>40</td>
<td>0.0000329616</td>
<td>0.00002575192</td>
<td>0.226579892</td>
</tr>
<tr>
<td>1.0</td>
<td>0.1</td>
<td>10</td>
<td>40</td>
<td>0.00031698854</td>
<td>0.000239309272</td>
<td>0.234696501</td>
</tr>
<tr>
<td>1.0</td>
<td>0.001</td>
<td>40</td>
<td>40</td>
<td>0.00003037638</td>
<td>0.00002876399</td>
<td>0.053080387</td>
</tr>
<tr>
<td>1.0</td>
<td>0.1</td>
<td>40</td>
<td>40</td>
<td>0.00028406776</td>
<td>0.000268766415</td>
<td>0.053841862</td>
</tr>
<tr>
<td>0.2</td>
<td>0.001</td>
<td>10</td>
<td>160</td>
<td>0.000005853273</td>
<td>0.00000450743</td>
<td>0.235062694</td>
</tr>
<tr>
<td>0.2</td>
<td>0.1</td>
<td>10</td>
<td>160</td>
<td>0.00058361167</td>
<td>0.00044574467</td>
<td>0.236207021</td>
</tr>
<tr>
<td>0.2</td>
<td>0.001</td>
<td>40</td>
<td>160</td>
<td>0.00000525984</td>
<td>0.00000516331</td>
<td>0.018352269</td>
</tr>
<tr>
<td>0.2</td>
<td>0.1</td>
<td>40</td>
<td>160</td>
<td>0.00052062587</td>
<td>0.00051099301</td>
<td>0.018502461</td>
</tr>
<tr>
<td>1.0</td>
<td>0.001</td>
<td>10</td>
<td>160</td>
<td>0.000001058215</td>
<td>0.00000417535</td>
<td>0.605436243</td>
</tr>
<tr>
<td>1.0</td>
<td>0.1</td>
<td>10</td>
<td>160</td>
<td>0.000007628041</td>
<td>0.00000715365</td>
<td>0.062051342</td>
</tr>
<tr>
<td>1.0</td>
<td>0.001</td>
<td>40</td>
<td>160</td>
<td>0.00000762691</td>
<td>0.00000715365</td>
<td>0.062051342</td>
</tr>
<tr>
<td>1.0</td>
<td>0.1</td>
<td>40</td>
<td>160</td>
<td>0.000071384407</td>
<td>0.000066785421</td>
<td>0.064425639</td>
</tr>
</tbody>
</table>
the fractional error between them. The values in this table were computed for specific case $\epsilon = \alpha_0 = 0$ for verification purposes. That is, the cross-dependency terms associated with the Dufour and Soret effects are not present in Table 3. The SAS methods given were carried out with discretization at 20 timesteps and 20 spatial nodes, and the finite difference method was carried out with discretization at 1000 timesteps and 100 spatial nodes. The results in Table 3 show that the two solution methods agree very closely, with fractional error everywhere less than 0.0001 in concentration and less than 0.000028 in temperature. The error in concentration between the two methods decreases slightly with time and location, but the difference in temperature has trends that are less clear. This comparison demonstrates verification of the SAS method because it agrees within one part in ten thousand with an independent numerical method carried out with many more timesteps and more spatial nodes.

A second method of checking the results was a comparison with a commercial finite element software COMSOL MULTIPHYSICS. Some numerical values at dimensionless time $t = 1.0$ are given in Table 4. The results shown in Table 4 are carried out with $\epsilon = \alpha_0 = 0.001$, that is, for nonzero cross dependency of the concentration and temperature associated the Dufour effect and the Soret effect, at levels suggested by Demirer [30]. For this comparison, the present method was carried out with discretization values $N = M = 20$ and the COMSOL code used 100 quadratic elements and 1000 timesteps. Table 3 shows values for concentration $(\theta + 1)$ and temperature $(\phi + 1) = T/T_s$ and the relative error between the two methods. The relative error is defined in a manner similar to Eq. (36). The results agree within 0.5% for concentration and within 0.4% for temperature, that is, the present method agrees with an independent solution of the problem.

Figure 2 shows the spatial distribution of the solution at dimensionless times $t = 0.0, 0.25, 0.5, 1.0$. Figures 2(a) and 2(b) show concentration $(\theta + 1) = C/C_s$ and temperature $(\phi + 1) = T/T_s$. Figs. 2(c) and 2(d) show source terms g_1 and g_2 under the same conditions. Note that the C_s/T curves in Fig. 2(a) have a curved shape that quickly reaches a quasi-steady behavior, but that the T_s/T curves have a flat region at small z at early time. This shape difference indicates that the concentration quickly reaches a quasi-steady behavior, but that temperature is far from steady. This is a consequence of the value $L_s = 0.1$ which causes temperature to evolve more slowly than concentration.

Figure 3 shows the same information at later times, $t = 0.0, 0.75, 1.5, 3.0$. The concentration (C/C_s) in Fig. 3(a) is approaching steady-state (the curves are close together) while temperature (T/T_s) is still changing. However, the temperature curves are no longer flat near $z = 0$. The shape of the source terms in Figs. 3(c) and 3(d) contain inflection points at time $t = 3.0$, in contrast to earlier time when the source terms are monotonic. The inflection in the shape of the source terms is caused by the time evolution of the source terms—the source values near $x = 0$ first move away from the initial values during time $t = 0$ to about

Table 2 Parameters for numerical results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ψ</td>
<td>0.27</td>
</tr>
<tr>
<td>β</td>
<td>0.25</td>
</tr>
<tr>
<td>γ</td>
<td>6.50</td>
</tr>
</tbody>
</table>

Table 3 Temperature $(\phi+1)=T/T_s$ and concentration $(\theta+1)=C/C_s$ for the reaction–diffusion problem by the SAS method ($M = 20, N = 20$) and by a finite difference code (timestep 0.001, spatial step 0.01). The fractional error between them is also listed, as a verification of the SAS method. The parameters used in the calculation are given in Table 2, except here $\epsilon = \alpha_0 = 0$, that is, the cross-dependency terms are zero.

<table>
<thead>
<tr>
<th>t</th>
<th>x</th>
<th>T/T_s</th>
<th>C/C_s</th>
<th>T/T_s</th>
<th>C/C_s</th>
<th>Fractional error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SAS Method</td>
<td></td>
<td>FD Method</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>0.15</td>
<td>1.00323275</td>
<td>0.91136032</td>
<td>1.00322089</td>
<td>0.91144578</td>
<td>0.00000185</td>
</tr>
<tr>
<td>0.25</td>
<td>1.00323060</td>
<td>0.91460112</td>
<td>1.00322877</td>
<td>0.91468156</td>
<td>0.00000182</td>
<td></td>
</tr>
<tr>
<td>0.35</td>
<td>1.00321890</td>
<td>0.91952802</td>
<td>1.00321710</td>
<td>0.91960111</td>
<td>0.00000179</td>
<td></td>
</tr>
<tr>
<td>0.45</td>
<td>1.00318236</td>
<td>0.9262148</td>
<td>1.00318067</td>
<td>0.92622810</td>
<td>0.00000168</td>
<td></td>
</tr>
<tr>
<td>0.55</td>
<td>1.00309195</td>
<td>0.93477341</td>
<td>1.00309049</td>
<td>0.93482566</td>
<td>0.00000146</td>
<td></td>
</tr>
<tr>
<td>0.65</td>
<td>1.00289773</td>
<td>0.94531493</td>
<td>1.00289674</td>
<td>0.94535425</td>
<td>0.00000099</td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>1.00252206</td>
<td>0.95798348</td>
<td>1.00252189</td>
<td>0.95800861</td>
<td>0.00000017</td>
<td></td>
</tr>
<tr>
<td>0.85</td>
<td>1.00185568</td>
<td>0.97293399</td>
<td>1.00185669</td>
<td>0.97294405</td>
<td>0.00000101</td>
<td></td>
</tr>
<tr>
<td>0.95</td>
<td>1.00075925</td>
<td>0.99033115</td>
<td>1.00076174</td>
<td>0.99032561</td>
<td>0.00000059</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>1.00627105</td>
<td>0.88649332</td>
<td>1.00626905</td>
<td>0.88652411</td>
<td>0.00000199</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>1.00620866</td>
<td>0.89069515</td>
<td>1.00620496</td>
<td>0.89069369</td>
<td>0.00000189</td>
<td></td>
</tr>
<tr>
<td>0.35</td>
<td>1.00608375</td>
<td>0.89770285</td>
<td>1.00608204</td>
<td>0.89772810</td>
<td>0.00000170</td>
<td></td>
</tr>
<tr>
<td>0.45</td>
<td>1.00586717</td>
<td>0.90674157</td>
<td>1.00586577</td>
<td>0.90676257</td>
<td>0.00000139</td>
<td></td>
</tr>
<tr>
<td>0.55</td>
<td>1.00550785</td>
<td>0.91812675</td>
<td>1.00550691</td>
<td>0.91814265</td>
<td>0.00000093</td>
<td></td>
</tr>
<tr>
<td>0.65</td>
<td>1.00494035</td>
<td>0.93191283</td>
<td>1.00494007</td>
<td>0.93192294</td>
<td>0.00000028</td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>1.00407885</td>
<td>0.94817834</td>
<td>1.00407960</td>
<td>0.94817966</td>
<td>0.00000037</td>
<td></td>
</tr>
<tr>
<td>0.85</td>
<td>1.00283735</td>
<td>0.96693951</td>
<td>1.00283894</td>
<td>0.96693652</td>
<td>0.00000059</td>
<td></td>
</tr>
<tr>
<td>0.95</td>
<td>1.00109455</td>
<td>0.98831592</td>
<td>1.00109728</td>
<td>0.98830597</td>
<td>0.00000273</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 2 Results from SAS method at dimensionless times $t = 0.0, 0.25, 0.5, 1.0$: (a) concentration C/C_s, (b) temperature T/T_s, (c) source g_1, and (d) source g_2

Fig. 3 Results from SAS method at dimensionless times $t = 0.0, 0.75, 1.5, 3.0$: (a) concentration C/C_s, (b) temperature T/T_s, (c) source g_1, and (d) source g_2
A central motivation of this paper is to provide a solution method that can treat reaction–diffusion problems that include the cross dependency effects of Dufour effect and Soret effect, as discussed below.

A full exploration of this reaction–diffusion problem could include the sensitivity of the results to variations in the input values. Such an exploration has not been included because the operating conditions presented here are located in the vicinity of linear conditions where the behavior is nearly linear. Evidence for this viewpoint is visible in the source terms plotted in Figs. 2 and 3 which are spatially uniform at t = 0 and then evolve into nonuniform shapes that vary at most 9% from the initial values. In this near-linear regime, small variations in the operating conditions will produce only small variations in the output results. Future work will include exploration of strongly nonlinear regimes along with appropriate sensitivity studies.

Next, the scope of additional problems to which the SAS method may be applied is discussed. In the present paper, the SAS method is based on fundamental solutions constructed from exact Green’s functions. For an exact analytical solution to exist, one limitation is that the body surfaces must be simple shapes such as planes, cylinders, or spheres. For such body shapes, the exact Green’s functions are available for a variety of boundary conditions [35, 36]. Although exact Green’s functions are desirable for their precision and computational efficiency, they are not the only tool for constructing influence functions. Galerkin-based Green’s functions have been demonstrated for non-orthogonal bodies and heterogeneous bodies; see for example Ref. [37].

Another limitation for the SAS method is that the boundary conditions and the differential equation (diffusion equation) must be linear. Linearity is required for superposition, the principle that adding solutions produces new solutions, which is an essential element of the SAS method. Linear boundary conditions are those in which the diffusion variable (concentration or temperature) appear only to the first power. Linear boundary conditions include types 1, 2, or 3 as discussed in this paper. A counter-example in heat transfer is the radiation boundary condition, in which temperature appears to the fourth power. For the differential equation to be linear, the material properties in the differential equation must not be functions of the temperature (or concentration in the case of mass transfer). It is important to note, however, that the limitation of linearity may be surmountable, by the fact that the SAS method as presented here uses iteration to deal with the nonlinear reactive-source terms in Eqs. (2) and (3). From this example, there is reason to suppose that some level of nonlinear effects in the boundaries and in the material properties could also be treated through iteration.
7 Summary and Conclusions

In this paper, the semi-analytical source method is introduced for a reaction–diffusion problem with thermodynamic coupling between concentration and temperature. Potential applications include microreactors and microfuel cells. The method is based on exact solutions of the diffusion equation where the cross-dependent terms are treated as source terms which are evaluated numerically. Nonlinear effects inside the body may be treated with iterative improvement at small additional computational cost. The new method provides precise results as evidenced by comparison with fully numeric solutions. A very coarse grid is sufficient for precise values (six spatial elements provides accuracy within 0.4%), suggesting that the new method has great potential for saving computer time compared with fully numeric methods, especially for repetitive calculations. Although the method was demonstrated with a single geometry, other geometries and other boundary conditions may be treated using appropriate exact solutions which are widely available. Future work will extend the method to other boundary conditions, other geometries, and additional mass-diffusion constituents.

Acknowledgment

This work was supported by the University of Nebraska Foundation through the Global Faculty Associates program.

Nomenclature

\(a \) = heated region (m), Eqs. (A1) and (A8)
\(\alpha_0 \) = frequency factor (1/s)
\(B_t \) = \(kL/L_s \), mass-transfer Biot number
\(B_p \) = concentration-related Biot number
\(C \) = concentration (kmol/m3)
\(c_p \) = specific heat (J/kg/K)
\(D_D \) = coefficient related to Dufour effect (m2 J/(kmol s))
\(D_e \) = diffusivity (m2/s)
\(D_S \) = coefficient related to Soret effect (kmol/(m s K))
\(E \) = activation energy (kJ/kmol)
\(G^p \) = Green’s function, \(p = 1, 2 \)
\(h \) = heat transfer coefficient (W/m2 K)
\(J \) = mass flux (kmol/(m2 s))
\(J_x \) = heat flux (W/m2)
\(k \) = mass transfer coefficient (m/s)
\(L_p \) = Lewis number, Eq. (32)
\(L_s \) = number of spatial elements
\(m_x \) = fin parameter, Eqs. (A1) and (A8)
\(N \) = number of timesteps
\(R \) = gas constant (kJ/(kmol K))
\(t \) = time (unitless), Eq. (5)
\(T \) = temperature (K)
\(z \) = coordinate (unitless), Eq. (5)
\(\Delta H \) = enthalpy of reaction (kJ/kmol)
\(\Delta \) = influence function, Eq. (17)
\(\Delta S \) = influence function, Eq. (22)

Greek Symbols

\(\beta \) = defined in Eq. (5)
\(\beta_n \) = eigenvalue
\(\gamma \) = defined in Eq. (5)
\(\delta \) = Dirac delta in Eq. (A1)
\(\epsilon \) = defined in Eq. (5)
\(\theta \) = concentration \((C - C_0)/C_0\)
\(\xi \) = spatial coordinate (m)
\(\rho \) = density (kg/m3)
\(\lambda \) = thermal conductivity (W/m/K)
\(\tau \) = time (s)
\(\phi \) = temperature \((T - T_s)/T_s\)
\(\psi \) = defined in Eq. (5)
\(\omega \) = defined in Eq. (5)

Subscripts

\(i \) = observation location
\(j \) = heating location
\(k \) = heating time
\(N \) = observation time
\(s \) = ambient value
\(SAS \) = semi-analytic source method

0 = initial value, Eq. (33)

Appendix: Influence Functions

In this appendix, the influence functions \(\Delta P^p \) and \(\Delta \) are constructed using the method of GF. The GF for diffusion associated with Eq. (9) and (10) are defined by the following auxiliary problem:

\[
\frac{1}{L_p} \frac{\partial G_p}{\partial t} + \frac{1}{L_e} \delta(z - z') \delta(t - t') = 0 \quad 0 < z < 1; \quad t > t'
\]

at \(z = 0 \), \(\frac{\partial G_p}{\partial z} = 0 \)

at \(z = 1 \), \(\frac{\partial G_p}{\partial z} + B_p G_p = 0 \)

at \(t < t' \), \(G_p = 0 \) \hspace{1cm} (A1)

The boundary conditions for \(G_p \) are of the same type as the original problem, that is, type 2 at \(z = 0 \) and the generalized condition at \(z = 1 \) where \(B_p \) is the Biot number for concentration or temperature as appropriate. Using the heat conduction number system, this geometry is denoted X23 [33]. The unitless GF is given by [33]

\[
G_{X23}^p(z, t' | z', t') = \sum_{n=1}^{\infty} \cos(\beta_n z') \cos(\beta_n z) \frac{\beta_n^2 + B_p^2}{\beta_n^2 + B_p^2 + B_p} \exp(-\beta_n^2 L_p^2 (t-t'))
\]

(A2)

where \(\beta_n \) are roots of the eigencondition \(\beta_n \tan \beta_n = B_p \) and where coefficient \(L_p^2 \) modifies the time variable. If different boundary conditions at \(x = 0 \) and 1 were of interest for this problem, the appropriate GF is available with generalized boundary conditions at both boundaries [36] and the solution may be developed in a similar fashion.

Function \(\Delta P^p \): Influence function \(\Delta P^p \) is defined by

\[
\Delta P^p(z_i, t_i | z_j, t_k) = \int_{t_{k-1}}^{t_k} \int_{z_{j-1}}^{z_j} G_p^p(z_i, t_i | z', t') dz' dt' \quad (A3)
\]

To facilitate numerical computation, the above function can be constructed from a simpler function defined by

\[
P^p(z_i, t_i | a, t_k) = \int_{0}^{a} \int_{0}^{\infty} G_p^p(z_i, t_i | z', t') dz' dt' \quad (A4)
\]

Using the above function \(P^p \), four values can be superposed to construct function \(\Delta P^p \), as follows:

\[
\Delta P^p(z_i, t_i | z_j, t_k) = \left\{ P^p(z_i, t_i | z_j + \Delta z/2, t_k) - P^p(z_i, t_i | z_j - \Delta z/2, t_k) \right\} \\
- \left\{ P^p(z_i, t_i | z_j + \Delta z/2, t_k) - P^p(z_i, t_i | z_j - \Delta z/2, t_k) \right\} \quad (A5)
\]
Function ΔS^p: Influence function ΔS^p is needed for the spatial derivative of the concentration and temperature which appear in the source term. Function ΔS^p is defined by

$$\Delta S^p(z_1, t_1 | z_2, t_2) = \int_{0}^{t_{1}} \int_{z_{1} - \Delta z/2}^{z_{1} + \Delta z/2} \frac{\partial^2 G^p}{\partial z^2} |_{z=z_1} \, dz \, dt$$ \hspace{1cm} (A6)$$

As the spatial derivative falls only on the observation location z and not on integration variable z', function ΔS^p may be constructed by taking the spatial derivative of function ΔS^p. Then function ΔS^p is given by

$$\Delta S^p(z_1, t_1 | z_2, t_2) = \left\{ \begin{array}{ll} S^p(z_1, t_1 | z_2 + \Delta z/2, t_2) - S^p(z_1, t_1 | z_2 - \Delta z/2, t_2) \\ - S^p(z_1, t_1 | z_2 - \Delta z/2, t_2 - 1) + S^p(z_1, t_1 | z_2 + \Delta z/2, t_2 - 1) \end{array} \right. \hspace{1cm} (A7)$$

where

$$S^p(z_1, t_1 | a, t_2) = \int_{0}^{t_{1}} \int_{a}^{2} \frac{\partial^2 G^p}{\partial z^2} |_{z=z_1} \, dz \, dt$$ \hspace{1cm} (A8)$$

References

