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Abstract: The Viterbi algorithm is used to track a 
target in the presence of random interference, such 
as jamming. A nonlinear target motion and an 
observation which is modelled in a spherical co- 
ordinate system are considered. The observation 
model is a nonlinear function of interference. 
The components of the state vector are the 
range, bearing angle, and elevation angle of the 
target location. The state vector is estimated, 
component-by-component, by a parallel use of the 
Viterbi algorithm in blocks. Simulation results, 
some of which are presented, have shown that the 
proposed estimation scheme performs well, 
whereas classical estimation schemes, such as the 
extended Kalman filter, cannot, in general, handle 
target tracking in the presence of random inter- 
ference. 

model containing an arbitrary random interference and 
an observation noise, where the state vector is estimated 
as a vector. 

Recently, Demirbag [2] has used multiple hypothesis 
testing to track a manoeuvring target, using an observa- 
tion model which does not contain any random inter- 
ference, i.e. contains only an observation noise. The state 
vector (whose components represent the range, bearing 
angle, and elevation angle) is estimated component-by- 
component. The tracking scheme used avoids the errors 
in the state estimate which result from the model linear- 
isation [6] required by the use of the extended Kalman 
filter to track a target, since the scheme presented in Ref- 
erence 2 does not require any model linearisation. 

In this paper, the scheme for manoeuvring-target 
tracking, as proposed by Demirbag [2], is extended to the 
case where an observation contains an arbitrary nonlin- 
ear random interference as well as an observation noise. 

1 Introduction 

Manoeuvring-target tracking with the (extended) Kalman 
filter has been extensively considered in the literature. 
The use of the (extended) Kalman filter requires an obser- 
vation model containing only an additive white noise. If 
the noise is not additive, then the (extended) Kalman 
filter cannot be used for target tracking unless the obser- 
vation model is approximated by a model containing an 
additive white noise [4]. 

In target tracking in the presence of random inter- 
ference, an observation contains an observation noise 
and also a random interference, such as jamming, which 
can arbitrarily affect the observation. Hence, the observa- 
tion in the presence of interference may be modelled by a 
nonlinear function of the interference. In this case, clas- 
sical estimation techniques, such as the (extended) 
Kalman filter, may not be used to estimate the states of 
the target motion due to nonlinear interference contained 
in the observation [4]. If the classical estimation schemes 
were used by assuming zero interference, the state esti- 
mates would diverge from the actual state values [l]. 

State estimation with an observation model containing 
an additive white observation noise and a Markov chain, 
which may represent the interference, has been con- 
sidered in the literature [lo, 111. Moreover, Demirbag 
[ 11 has considered state estimation with an observation 
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2 Statement of the problem 

In this paper, the motion of a manoeuvring target is 
assumed to be described by the nonlinear models for 
range, bearing angle, and elevation angle which are 
derived in Reference 2 and stated in Section 7.1. 

Let x(k)T = [x,(k), x,(k), x3(k)] be the transpose of the 
state vector whose components x,(k), x2(k)  and x3(k)  rep- 
resent the range, bearing angle and elevation angle of the 
target location at time k, respectively. Throughout this 
paper, the superscript T indicates the transpose, and 
boldface letters denote vectors. The model of each state 
component, say the ith state component, is given by 

xXk + 1) 4 fiCU(k), xi(k), xLkL xXkL f(k), w(k)I (1) 
where i # j # 1 and i, j ,  1 E [l, 2, 31, and the subscript i 
denotes the component label; w(k)T = [w,(k), w,(k), 
w3(k)] is a zero-mean disturbance noise vector wlth 
known statistics; ~ ( k ) ~  = [u,(k), u,(k), U&)] is a known 
deterministic pilot command vector whose components 
u,(k), u2(k) and u3(k) affect the target motion at time k in 
the range, bearing angle, and elevation angle directions, 
respectively; f (k)  is the derivative of the state vector x(k) 
with respect to time;fi[. . .] is a nonlinear function whose 
explicit expression is given in Section 6.1. This function 
defines the ith state component at time k + 1 in terms of 
the pilot command vector, disturbance noise vector, state 
vector, and derivative of the state vector at time k. The 
function fi[. . .] is sometimes referred to as the ith state 
component defining-function or the ith state component 
model of the target motion in the spherical co-ordinate 
system. 

In target tracking in the presence of random inter- 
ference, observations (which are made by a radar in a 
spherical co-ordinate system) contain an observation 
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noise and also an arbitrary random interference. This 
interference can represent jamming or any other random 
phenomena (except for the observation noise) affecting 
the observation. If there were no interference, the obser- 
vation model for each state component would be a linear 
function of this state component and an observation 
noise [SI. However, in the presence of interference, the 
observation for each state component can be a nonlinear 
function of interference. This paper assumes that the 
observation for the ith state component is a nonlinear 
function of the ith state component, and of the inter- 
ference and observation noise affecting the observation. 
This is the case in practice. As an example, consider the 
observation taken by a radar for the range. This is a 
function of only the range, of the interference (e.g. 
jamming) affecting the range, and of the observation 
noise. Hence in this paper the observation model for the 
ith state component is assumed to be given by 

zXk) = giCxi(k), Zdk), ~i(k l l  i = 1,293 (2) 
where s i [  ...I is a given nonlinear function of xXk), Zdk) 
and oik) .  z,(k), z2(k) and z3(k) are the observations; Zl(k), 
Z2(k) and Z,(k) are interference vectors with known sta- 
tistics; and u,(k), u,(k) and U&) are the observation 
noises with known statistics in the range, bearing angle, 
and elevation angle directions, respectively. It is also 
assumed that the initial state vector and all samples of 
the interferences, and disturbance and observation noises 
are independent. 

It is of interest to estimate the state component 
sequences 

X i  = {xdo), xi(1), ..., xAk), ...} 
by using the observation sequence 

Zi = {zi(l), zi(2), ..., zi(k), ..} 

i = 1, 2, 3 

i = 1, 2, 3 
This is discussed next. 

3 Estimation scheme 

State vector x( .) is estimated in blocks. Without loss of 
generality, each block is assumed to have a length of B, 
except for the first block which has a length of B + 1. In 
a block, the implementation of the proposed scheme 
requires a memory increasing exponentially with time. 
Hence B is preselected, according to the desired estima- 
tion accuracy and the available memory. 

In each block, the estimation of the state vector is 
carried out sequentially, component-by-component, and 
in parallel. Models of each state component and observa- 
tion component are first approximated by a finite state 
model (or machine) and an approximate observation 
model, respectively. This finite state model is represented 
by a trellis diagram. The estimation of each state com- 
ponent is treated as multiple composite hypothesis 
testing [3], owing to the random interference in the 
observation model for the component. Then the state 
component is estimated by the Viterbi algorithm [ 7 , 9 ] .  

The finite state model for the ith state component is 
obtained from the model of eqn. 1 as follows. First the 
state vector at time zero, its derivative and the dis- 
turbance noise vector are replaced by discrete random 
vectors approximating to them. The jth and Ith state 
components and the derivative of the state vector at time 
k, where k > 0, are replaced by estimates of these state 
components and an approximate value of the derivative, 
respectively. This approximate value is expressed in terms 

of estimates of the state components. Then the ith state 
component is quantised. Furthermore, an estimate of the 
ith state component at the end of a block is used as the 
beginning of the next block. This process results in a 
finite state model for the ith state component which is 
defined by 

xiq(k i- 1) e Q{f;:Cu(k), aXk), %j(k I k) ,  2dk I k), E(k), W d ( k ) l }  

(3 )  
where i # j  # I and i, j ,  1 E [l, 2, 31; xiq(0) is a discrete 
random variable with iio possible values which approx- 
imates the ith state component at time zero, and its pos- 
sible values are denoted by xiql(0), xiq?(0), . . . , and xiqriO(O), 
which are called the initial quantisation levels of the ith 
state component or the quantisation levels at time zero of 
the ith state component; xiq(k), k > 0, is the quantised ith 
state component at time k, whose quantisation levels are 
indicated by xiq,(k), xiq2(k), ..., and xiqrik(k) (where the 
subscript q stands for the quantised state component and 
the subscript i i k  shows the number of possible quantisa- 
tion levels); Q{ - } is the quantiser defined by Demirba? 
[l]; and wdk) is a discrete disturbance noise vector with 
n k  possible values which approximates the disturbance 
noise vector w(k), and its possible values are denoted by 
wdl(k), wd?(k), . . . , and Wd,,,(k) (where the subscript d indi- 
cates a discrete random variable or vector). In the finite 
state model for the ith state component, ZXk) is defined 
by 

2,(k 1 k) if k = B, 2B, 3B, . . . 2dk) 
{xi#) otherwise 

where 2(k I k) is the estimate of the ith state component at 
time k given the observation sequence from time one to 
time k except for jzi(O(0) 4 xiq(0). i (k)T = [a,@), x2(k), 
5,(k)] is an approximation of the derivative of x(k), and 
its jth component is defined by 

[ n j ( k (  k) - 2,(k - 11 k)] /At  if k > 0 
i f k = O  I j ( k )  4 { ijAo) 

where j E [l, 2, 31; At is the observation interval; 
2,(k - 1 I k) is the estimate of the jth state component at 
time k - 1 given the observation sequence from time 1 to 
time k; and jcja(0) is a discrete random variable which 
approximates the derivative of the jth state component 
at time zero. Hence, idO)T = [kl&O), i2A0), i360)]  4 i(0)' 
is a discrete random vector with m, possible values 
which approximates the derivative of the state vector 
at time zero. Its possible values are denoted by i d I ( O ) ,  
Ed2(O), . . . , and xdmo(0). 

The observation model for the ith state component is 
approximated by 

(4) zdk) = SiCZXk), Zidk), oi(k)l i = 1, 2, 3 
where Zi&) is a discrete random vector with Sik possible 
values which approximates the interference Zdk), and 
these possible values are denoted by zidl(k), lid&), . . . , 
and zidsa(k). 

The finite state model for the ith state component, 
given by eqn. 3, has a diagram representation. This 
diagram is referred to as the trellis diagram of the ith 
state component (Fig. 1). The quantisation levels of the 
ith state component at time k are denoted by nodes at 
the (k + 1)th column of the trellis diagram, and tran- 
sitions between quantisation levels (or nodes) are indi- 
cated by directed lines, called branches. The trellis 
diagram in the nth block originates from the node 



jZd(n - l)Bl(n - l)B) except for the trellis diagram in the 
first block which originates from the initial quantisation 

-block 1 -block 2- 
t ime 0 t ime1 time B t ime B+1 t ime 2 8  

7 I L Y  

Fig. 1 

levels of the ith state component. The following metrics 
are assigned to each node, branch and path of the trellis 
diagram of the ith state component. The metric of a node 
(or quantisation level) is defined as zero except for an 
initial quantisation level whose metric is the natural 
logarithm of its occurrence probability. Let xi&) be a 
node at time k, where the first subscript i indicates the 
state component label, the second subscript q stands for a 
quantised state component, and the third subscript 1 
shows the quantisation level label. In other words, xiqdk) 
is the Ith quantisation level of the quantised ith state 
component at time k. Then the metric of the node xi&) 
can be written as 

Trellis diagram of ith state component 

In [Prob {xiq(0) = xiqdO)}] if k = 0 
i o  i f k > O  MCxiqdkII 4 

where In stands for the natural logarithm. Consider two 
nodes xiqm(k - 1) and xi,#). The transition probability 
from the node xi,& - 1) to the node x,,(k) is denoted by 
~ [ x ~ , , , ( k  - 1) + xi&)] and defined as the probability of 
x,(k) being equal to xi&) when xi,@ - 1) = xi,& - l), 
namely 

4xiqrn(k - 1) + xiqr(kl1 
4 Prob {xiq(k) = xi&) I x,(k - 1 )  = x,,(k - l)} 

This is the probability that xiqm(k - 1) is mapped to 
xiqr(k) through the finite state model of eqn. 3. In other 
words, it is the Occurrence probability of the possible 
values of the discrete random variables and vectors in 
eqn. 3 which map x,,(k - 1) to xi&). Hence, for k = 1, 
the transition probability from xiq,(k - 1) to x,(k), 
namely x[xiq,(0) -, xiqr( l)] is the occurrence probability 
of the possible values of the discrete random variables 
xjq(0) and x,,(O), and vectors 30) and wd(O), since in eqn. 3 
2x0 I 0) = xjq(0), and 
xiq(0) = xiqm(0). However, for k > 1, z[xiqm(k 
- l ) - ,x iq , (k) ]  is the occurrence probability of the pos- 

sible values of wdk) which map xiqm(k - 1) to x,,(k) since 
in eqn. 3 only wdk - 1) is random; jZXk - 1 I k - l), 2,(k 
- I l k -  l), and $(k- 1) are known at time k -  1; 

xiq(k) = xiqr(k); and x,(k - 1) = xiq,(k - 1). Thus the 
transition probability from xiqm(k - 1) to xi&) can be 
expressed as 

jZd0 I 0) = x,,(O), xb( 1) = xiqr( l), 

The metric of the branch connecting the node xiq,(k - 1) 
to the node xiqr(k) is denoted by M[xiq,(k - 1) +. xiqr(k)] 
and defined by 

MCxiqm(k - 1) + xiq,(k)] 

In {"Cxiqrn(k - 1) +. xiqr(k)I~CzAk) I xiq(k) = xiqr(k)~) 
where 

~Czdk) I xiq(k) = xiqr(k)I 
S i t  

= PCZi(k) I xiq(k) = xiqr(k)r ZiAk) = zidn(k)] 
n =  1 

x Prob {Zid(k) = Zid,,(k)} 

which is the conditional density function of the ith obser- 
vation component given that the quantised ith state com- 
ponent xi#) is equal to xqir(k), where the upper limit of 
the summation is the number of possible values of the 
discrete interference vector Zi,,(k), and p[zXk) I xi#). = 
xiqr(k), I&) = zid,,(k)] is the conditional density function 
of zdk) given that xiq(k) = Xi&) and Zid(k) = lid,,&); and 
Zidn(k) is the nth possible value of Zi,,(k). 

The metric of a path is the sum of metrics of the nodes 
and branches along the path. Let x z ( k )  denote the node 
at time k along the mth path, where the superscript m 
denotes the path label. The metric of the mth path in the 
nth block of the trellis diagram of the ith state com- 
ponent is denoted by MY" and is given by 

B 

M[xz(O)]  + C M[x%(k - 1) + xc(k) ]  if n = 1 

c M C x y (  - 1 )  -, x?p)l i f n > l  

The trellis diagram of the ith state component shows pos- 
sible paths along which the quantisation levels can be 
taken by the ith state component with time. Then the 
component estimation involves finding a path through 
this trellis diagram by using the observation sequence. 
The quantisation levels along this path are the estimates 
of the ith state component in time. Choosing a path 
through a trellis diagram is a multiple composite hypo- 
thesis testing problem since there exist multiple paths 
through the trellis diagram and the observation model 
for the ith component contains a random interference as 
well as an observation noise. It can be shown [l] that, in 
a block, the optimum rule which minimises the overall 
error probability is to choose the path with the greatest 
metric in the block (if there exist more paths than one 
with the same greatest metric, then to choose any one of 
these). In other words, choose the rnth path in the nth 
block if M:" > MYj for all j # m. 

In a block, the path with the greatest metric is chosen 
by the Viterbi algorithm (VA), which is explained in 
Section 7.2. The Viterbi algorithm searches all the paths 
through the trellis diagram and yields the path having 
the greatest metric [ l ] .  The nodes along this path are the 

k =  1 MY" A 1 k = ( n  - l ) B  + 1 
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estimates of the state component in the block. The esti- 
mates of three state components are obtained sequen- 
tially, component-by-component, and in parallel by using 
the Viterbi algorithm since the quantisation levels of a 
state component at time k + 1 depend upon the estimates 
of the other state components at time k. Fig. 2 shows a 

replace Y byYd 55 
quantiser Q{.} k4 

1 
elevation 
angle 

O l ( k + l )  0 2 ( k + l )  0 3 ( k + l )  

Fig. 2 
VA: Viterbi algorithm; TRD: trellis diagram 

State estimation in block n 

block diagram of the sequential state estimation of three 
state components (range, bearing angle, and elevation 
angle) in parallel in the nth block, where 

ei(k) a {%dl I k): 1 = k - 1, k} 
o J k +  1 ) P { 2 i ( l l k + 1 ) : ( n - 1 ) B < l < k + 1  

and (n - l)B < k -= nB} 
Y {w(k), Zi(k), x,(O), x2(0), x3(0), 

i l (O) ,  i2(0),  n3(0)1 

{ w A ~ ) ,  ZiAk), x,q(O), x2q(O), x3q(O), 

i i A O ) ,  i 2 A %  i 3 A O ) )  

5 

where i = 1,2, 3. The estimates of a state component in a 
desired interval are the union of the estimates of the com- 
ponent in preselected blocks of the interval. 

The performance of the proposed scheme is deter- 
mined by the performances of the Viterbi algorithms used 
in parallel to estimate three state components in blocks. 
The performance of a Viterbi algorithm may not be 
exactly determined, but can be quantified by a Gallager- 
type ensemble upper bound [l,  8,9], since the evaluation 
of the exact error probability or error probability bound 
for choosing the correct path through the trellis diagram 
of a state component is complex. Such an ensemble upper 
bound is presented in Reference 1. However, one should 
note that ensemble bounds do not exactly determine the 
performance of the new approach since they are bounds 
averaged over ensembles [ 13. 

4 Simulations 

The range, bearing angle and elevation angle models 
which are given by eqns. 5-7 of Section 7.1, and many 
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observation models containing white Gaussian inter- 
ferences and observation noises were simulated for differ- 
ent parameters on an IBM 3081 K main-frame computer. 
The states of these models were estimated by the pro- 
posed estimation scheme. They cannot, in general, be 
estimated by the extended Kalman filter, owing to non- 
linear interferences contained in the observation models; 
hence, the proposed scheme is superior to the extended 
Kalman filter. 

In target tracking in the presence of interference, if a 
tracker were to be employed which used the extended 
Kalman filter and which was designed for target tracking 
in a clear environment (i.e. no interference), the state esti- 
mates would diverge from the actual state values. This 
has been demonstrated by estimating the states of the 
models of eqns. 5-7 with eqn. 2 by using the extended 
Kalman filter (EKF) assuming zero interference. For 
state estimation with the (extended) Kalman filter 
assuming zero interference, the approximate spherical 
models of the range, bearing angle and elevation angle 
which are presented in Reference 5 were used. The 
resulting estimates are said to be the EKF estimates of 
the states. 

In state estimation with the proposed scheme, the dis- 
crete random variables given by Demirbas [l] were used 
to approximate the random variables in the state and 
observation models. These discrete random variables 
were assumed to be stationary. Two blocks with B = 4 
were used for state estimation. 

The simulation results of two example sets of observa- 
tion models containing white Gaussian interferences and 
observation noises are presented in Figs. 3 and 4. Set 1 
(Fig. 3) shows an example of the cases where only the 
state components are multiplied by nonlinear inter- 
ferences. Set 2 (Fig. 4) shows an example of the cases 
where both state components and observation noises are 
multiplied by nonlinear interferences. Figs. 3u-c present 
the actual values, EKF estimates, and the proposed esti- 
mation scheme estimates (SDSA) of the range, bearing 
angle, and elevation angle when the observation com- 
ponent models are given by 

z2(k) = x2(k){ 1 + 0.2 sin [12 (k ) ] }  + u2(k) 

z , (k)  = x,(k){l + 0.5 sin [Z , (k ) ] }  + o,(k)  

z J ~ )  = x3(k){  1 + 0.2 sin [ I , ( k ) ] }  + 4) 

where the variances of the observation noises, the dis- 
turbance noises, the interferences, the components of the 
known deterministic pilot command vector, and the 
expected values of the interferences in the range, bearing 
angle, and elevation angle directions are (5.5 km2, 
0.025 rad2, 0.025 rad2), (6.0 km2/s4, 2.5 km2/s4, 2.5 km2/ 
s4), (0.5, 0.3, 0.3), (1.5 kmz/s4, 0.06 km2/s4, 0.07 km2/s4), 
and (0.7, 0.4, 0.4), respectively. The variances, the deriv- 
atives, and the expected values of the initial range, 
bearing angle, and elevation angle are (5.0 km2, 0.02 rad2, 
0.02 rad2), (2.0 km/s, 0.15 rad/s, 0.15 rad/s), and (55.0 km, 
1.250 rad, 1.250 rad), respectively. The quantiser gate 
sizes for the range, bearing angle and elevation angle are 
0.01 km, 0.002 rad, 0.002 rad, respectively. The sampling 
interval is 0.1 s. The viscous drag coefficient is 0.5 s-'. 
The initial range, bearing angle, elevation angle, inter- 
ferences and disturbance noises were approximated by 
the random variables with three possible values [ 11. 

Fig. 4 shows the actual values, EKF estimates and 
SDSA estimates of the range, bearing angle and elevation 
angle when the observation component models are given 
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Fig. 3 
(c) elevation angle with set I observation component models 
0 actual; A EKF; x SDSA 

Actual and estimated values of (a) range, (b) bearing angle and 
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Fig. 4 
(c) elevation angle with set 2 observation component models 
0 actual; A EKF; x SDSA 

Actual and estimated values of (a) range, (b) bearing angle and 

266 IEE PROCEEDINGS, Vol. 136, Pt.  F ,  No. 6, DECEMBER 1989 



+ {exp C12(k)l)%(k) Set 2 1 Z 2 ( N  = x, (k) { l  + I 2 ( 4  sin CIZ(k)l) 

Z 3 ( k )  = x3(k){l + I J k )  COS CI,(k)I) 
+ (exP [13(k)l}h(k) 

where the variances of the observation noises, the dis- 
turbance noises, the interferences, the components of the 
known deterministic pilot command vector, and the 
expected values of the interferences in the range, bearing 
angle, and elevation angle directions are (9.8 km2, 
0.3 rad2, 0.3 rad2), (11.0 km2/s4, 1.9 km2/s4, 1.9 km2/s4), 
(0.15, 0.2, 0.2), (3.3 km2/s4, 0.09 km2/s4, 0.09 km2/s4), and 
(0.33,0.2,0.2), respectively. The variances, the derivatives, 
and the expected values of the initial range, bearing 
angle, and elevation angle are (3.0 km2, 0.01 rad2, 
0.01 rad2), (3.8 km/s, 0.02 rad/s, 0.02 rad/s), and (59.0 km, 
0.35 rad, 0.28 rad), respectively. The rest of parameters 
are the same as in Set 1. 

It should be noted that the observation models of Sets 
1 and 2 are nonlinear functions of white Gaussian inter- 
ferences. Hence, state estimation of the component 
models of eqns. 5-7 with these observation models 
cannot be done by using the extended Kalman filter, 
whereas the proposed scheme can be used for this estima- 
tion. The models of eqns. 5-7 and observation sets above 
are better approximated by the models of eqns. 3 and 4 
for smaller gate sizes, greater block lengths, or greater 
numbers of possible values of the discrete random vari- 
ables and vectors in eqns. 3 and 4. However, the imple- 
mentation complexity of the proposed scheme increases 
with these gate sizes, block lengths, or numbers. Thus, 
while preselecting these gate sizes, block lengths, and 
numbers a compromise has to be made between a desired 
estimation accuracy with available memory and the 
implementation complexity of the proposed scheme. 
Good state estimates can be obtained by the proposed 
scheme by choosing appropriate values for these gate 
sizes, block lengths and numbers. Simulation results 
showed that, when discrete random variables with three 
possible values were used in eqns. 3 and 4, good estimates 
of state components were obtained. In Figs. 3 and 4 the 
SDSA estimates closely follow the actual component 
values, whereas the divergence of the Kalman estimates 
are caused by the zero interference assumption and 
linearisation errors of the models of eqns. 5-7. 

5 Conclusions 

A new suboptimum estimation scheme has been present- 
ed. This can be used to track a target in the presence of 
an arbitrary random interference, whereas estimation 
schemes based upon the extended Kalman filter may not. 
The implementation of the proposed scheme requires 
much more memory and computation than does the 
implementation of the extended Kalman filter. In state 
estimation with the proposed scheme the state (or 
motion) and observation models are not limited to 
models which are linear functions of the disturbance and 
observation noise, whereas in state estimation with the 
extended Kalman filter these models must be linear func- 
tions of the disturbance noise and observation noise. The 
observation model for each state component for the pro- 
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posed scheme must be a function of this state component 
only. However, this model can be any function of inter- 
ference. The only assumption made with regards to the 
initial state, disturbance noise, observation noise and 
interference is independency from time to time. The 
implementation of the proposed scheme requires a 
memory which increases exponentially with time in a 
block, even though it is independent of the number of 
blocks used. Hence, an approximate block size should be 
chosen for a satisfactory estimation accuracy with avail- 
able memory. 

6 References 

1 DEMIRBAS, K.: ‘New smoothing algorithms for dynamic systems 
with or without interference’. The NATO AGARDOgraph advances 
in the techniques and technology of applications of nonlinear filters 
and Kalman filters, No. 256, AGARD, March 1982, pp. 19-1/66 

2 DEMf RBAS, K. : ‘Maneuvering target tracking with hypothesis 
testing’, IEEE Trans., 1987, AFS-23, (6), pp. 757-766 

3 WHALEN, A.D.: ‘Detection of signals in noise’ (Academic Press, 
New York, 1971) 

4 SAGE, A.P., and MELSA, J.L.: ‘Estimation theory with applica- 
tions to communications and control’ (McGraw-Hill, New York, 
197 1) 

5 GHOLSON, N.H., and MOOSE, R.L.: ‘Maneuvering target track- 
ing using adaptive state estimation’, ZEEE Trans., 1977, AES-13, (3), 
pp. 31&317 

6 MILLER, K.S., and LESKIW, D.M.: ‘Nonlinear estimation with 
radar observation’, IEEE Trans., 1982, AES18, (2), pp. 192-200 

7 FORNEY, JR., G.D.: ‘Convolution codes 11. Maximum likelihood 
decoding’, In$ & Control, 1974,25, pp. 222-266 

8 GALLAGER, R.G.: ‘A simple derivation of the coding theorem and 
some applications’, IEEE Trans., 1965, IT-11, (l), pp. 3-18 

9 VITERBI, A.J., and OMURA, J.K.: ‘Principles of digital communi- 
cation and coding’ (New York, McGraw-Hill, 1979) 

10 NAHL, N.E.: ‘Optimal recursive estimation with uncertain observa- 
tion’, IEEE Trans., 1969, IT-15, (4), pp. 457-642 

11 MONZINGO, R.A.: ‘Disease optimal linear smoothing for systems 
with uncertain observation’, ZEEE Trans., 1975, IT-21, (3), pp. 
271-275 

7 Appendix 

7.1 State component models 
This Section states the models for the range, bearing 
angle and elevation angle of the location of a manoeuv- 
ring target. These models are derived in Reference 2. Let 
the components x,(k) ,  x2(k)  and x3(k) of the state vector 
x(k) represent the range, bearing angle and elevation 
angle of the target location at time k, respectively. The 
models for these components are given by 

x,(k + 1) %CW, x,(k), XAk), X3(k), f(4, 441 
= ( { X l ( k )  + a 1 W d  + azCu,(k) + W1(k)N2 

+ {“1Xi(k)22(k) COS Cx3(k)I 

+ a2CUz(k) + w2(k)l)2 
+ {aiXi(k)23(k) + a2CUdk) + W3(k)I)2>1’2 ( 5 )  

which is the range model, 

x2(k + 1) + f 2 C W ,  x2(k), x,(k), X3(k), f(4 441 

(7) 
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which is the elevation angle model, where 

(1 - e-””? 

p At - 1 + e-”*‘ 

E l  - 
CL 

PZ 
a t  - 

In these equations p is the viscous drag coefficient; the 
overdot denotes the derivative with respect to time; At is 
the observation interval; w,(k), wZ(k), and w3(k) are the 
components of a zero-mean white Gaussian disturbance 
noise vector w(k); and u,(k), u,(k), and uj(k) are the com- 
ponents of a known deterministic pilot command vector 
u(k) affecting the target motion at time k in the range, 
bearing angle and elevation angle directions, respectively. 

time 0 time 1 time 2 time0 time1 time 2 time0 

The nonlinear functions fl[.], fz[.] and f3[.] (defined 
by eqns. 5-7) describe the components of the state vector 
at time k + 1 in terms of the disturbance noise vector, 
pilot command vector and state vector at time k. It 
should be noted that these models are nonlinear func- 
tions of the state vector x(k) and disturbance noise vector 
w(4. 

7.2 Viterbi algorithm 
This section describes the Viterbi algorithm which sys- 
tematically examines the metrics of all paths to find the 
path with the greatest metric through a trellis diagram, 
say from time zero to time L. Steps of the Viterbi algo- 
rithm are as follows : 

Step k (k = 1, 2,3 ,  . . . , L): Consider each node at time k. 
Find the metrics of all the paths terminating at this node. 
Choose the path with the greatest metric (if more than 
one paths with the same greatest metric exist, then 
choose anyone of these at random), and discard the rest 
of the paths terminating at the node at time k. This 
process yields a new trellis diagram, which has only one 
path terminating at each node at time k. This new trellis 
diagram is called the trellis diagram at step k. 

Final step (step L): Find the trellis diagram at step L. 
Then find the path with the greatest metric through this 
trellis diagram (if there are more than one paths with the 
same greatest metric, then choose anyone of these at 
random). This path is the one having the greatest metric 
through the trellis diagram from time zero to time L. 

As an example, consider the trellis diagram given in Fig. 
5a. In this diagram, for convenience, the quantisation 
levels are denoted by integers. Let the integer sequence 
u1a2a3, ..., a, and M [ a l a z u 3 ,  ..., aJ denote the path 
connecting the quantisation levels a,, u2 ,  . . . , a, and the 
metric of this path, respectively. At step 1, assume that 
M[23] 2 M[13] and M[14] 2 MC241. This result in the 
trellis diagram of Fig. 5b. At step 2, assume that 
M[257] 2 MC1471 and MC2371. This result in the trellis 
diagram of Fig. 5c. Finally assume that A411461 2 M[257]. 
Then the path 146 is the path with the greatest metric. 

time1 time 2 

e3 .,,e6 

Fig. 5 Trellis diagrams 
a Of state 
b At stem 1 

a b 
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C c At step 2 
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