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ABSTRACT

SYNTHESIS AND CHARACTERIZATION OF
CUCURBITURIL BASED PHOTOACTIVE
MULTIFUNCTIONAL ASSEMBLIES

Ahmet KOC
Ph.D. in Chemistry
Advisor: Déniig TUNCEL
January 2019

Preparation of cucurbituril based functional materials and their use in various
applications ranging from biomedicine to optoelectronics have been studied
intensely over the last decade. Supramolecular assemblies, networks and
nanostructures constructed through noncovalent interactions of cucurbiturils
with m-conjugated, photoactive compounds have also been investigated and
potential applications in the areas of theranostics, imaging, sensing and
catalysis have been shown. In these cucurbituril based architectures, however,
cucurbituril is disabled to act as a molecular receptor since they do not involve
the covalent conjugation of cucurbituril directly to chromophore. The main
motivation of this study is to synthesize multifunctional assemblies and
nanostructures in which cucurbituril is covalently attached to various
conjugated compounds including porphyrin, conjugated oligomers and

polymers.

A new multifunctional porphyrin-cucurbituril conjugate based on a
photoactive mannosylated porphyrin and monoporpargyloxycucurbit[7]uril was
synthesized. Azido-functionalized tetraphenylporphyrin (TPP) was used as a
building block. TPP was first mannosylated by copper-catalyzed azide-alkyne
cycloaddition (CuAAC), then a monoporpargyloxycucurbit|[7]uril was
covalently attached to the mannosylated TPP with a second CuAAC reaction.
Singlet oxygen generation efficiency of the supramolecular assembly was
measured and found to be significantly higher than that of unfunctionalized

TPP. 'H NMR experiments were performed using a suitable guest,
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bisimidazolium, to prove the availability of CB7 in the assembly as a host.
Bisimidazolium guest was observed to form inclusion complex with CB7, which
is a promising result for the potential use of this supramolecular assembly as a

drug carrier in conjunction with photodynamic therapy.

Conjugated oligomers and polymers were synthesized from suitably-
functionalized monomers via Pd-catalyzed cross-coupling reactions and their
characterizations were performed. Their assemblies and nanostructures with
covalently attached functionalized cucurbiturils were investigated. Redox
sensitive crosslinked conjugated oligomer nanoparticles (CONs) were
synthesized from a conjugated oligomer, OFVBt-N; and a disulfide bond-
containing crosslinker via ultrasound-assisted copper-free click reaction in THF'.
These spherical and approximately 50 nm-sized CONs preserved their stability
and size (~60 nm) after dispersing them in water. The behavior of the CONs
in the presence of glutathione (GSH) was studied in aqueous medium. It was
observed that the CONs are rapidly disrupted by GSH, which is an effective S-
S bond cleaving biomolecule that is overexpressed in cancer cells. These results
imply that when nanoparticles are loaded with an anticancer drug, targeted
delivery of the drug to cancer cells can be achieved by cooperative action of
enhanced permeability and retention (EPR) effect and S-S bond cleavage by
GSH.

Keywords: cucurbituril, porphyrin, click reaction, cross-coupling, photodynamic

therapy, singlet oxygen, conjugated oligomer, nanoparticle, crosslinker.
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OZET

KUKURBITURIL TABANLI COK ISLEVLI
FOTOAKTIF YAPILARIN SENTEZI VE
KARAKTERIZASYONU

Ahmet KOC
Kimya, Doktora
Tez Damgmani: Doniis TUNCEL
Ocak 2019

Kiikiirbitiiril tabanlh iglevsel malzemelerin hazirlanmasi1 ve biyomedikalden
optoelektronige uzanan farkhh uygulamalarda kullanimi son yillarda yogun
sekilde calsilmaktadir. Kiikiirbitiirillerin konjuge mn-bagi igeren fotoaktif
maddelerle kovalent olmayan etkilesimler aracihgiyla olusturduklar:
supramolekiiler yapilar, aglar ve nanomalzemeler de aragtirilmakta ve
teranostik, gorintilleme, molekiiler algilama ve kataliz alanlarindaki olasi
uygulamalar: gosterilmektedir. Fakat, kukurbitiril tabanli bu mimarilerde,
kiikiirbitiiril dogrudan kovalent baglarla kromofora baglanmadigindan, bir
molekiiler reseptor olarak islev gosterememektedir. Bu calismanin temel
motivasyonu ise kiikiirbitiirilin kovalent baglarla porfirine, konjuge oligomere

ve polimere baglandigi ¢ok iglevli platformlarin ve nanoyapilarin sentezidir.

Fotoaktif mannozlanmig porfirin ve monoproparjiloksikiikiirbit[7]iril
tabanli yeni bir ¢ok islevli porfirin-kiikurbitiiril konjugesi sentezlendi. Azido-
fonksiyonlu tetrafenilporfirin (TPP) yap1 tasi olarak kullamldi. Oncelikle, TPP,
bakir katalizorlii azit-alkin siklokatilma (CuAAC) tepkimesi ile mannozlandi.
Sonrasmda, monoproparjiloksikiikiirbit[7]tril, ikinci bir CuAAC tepkimesi ile
mannozlu TPP’ye kovalent bagla baglandi. Elde edilen supramolekiiler
platformun singlet oksijen iiretme verimliligi olgiildii ve iglevsellestirilmemis
TPP’ninkinden 6nemli derecede yiksek oldugu kamtlandi. Supramolekiiler
platformun yapisinda bulunan kiikiirbit[7]irilin - konak molekiil olarak

elverigliliginin ~ kanitlanmas1  amaciyla uygun bir konuk  molekiil,



bisimidazolyum, kullanarak 'H NMR deneyleri yapildi. Bisimidazolyumun
kiitkiirbit[7]iril ile kugatan kompleks olugturdugu gozlemlendi ki bu sentezlenen
supramolekiiler platformun, fotodinamik tedavinin yaninda ila¢ tasiyict olarak

da kullanilma potansiyelini gosteren umut verici bir sonugtur.

Uygun gekilde fonksiyonel gruplarla donatilmis monomerler arasinda Pd
katalizli capraz eglesme reaksiyonlari ile farkli yapidaki konjuge oligomer ve
polimerler sentezlendi ve karakterize edildi. Bu konjuge malzemelerin kovalent
baglanmig kiikiirbitiiril ile olugturduklar1 platformlar ve nanoyapilar ¢aligildi.
Bir konjuge oligomer, OFVBt-Ns, ve bir distlfit bag iceren ¢apraz baglayici
kullanarak THF icinde ultrason yardimh bakirsiz ¢it-cit tepkimesi ile redoks
duyarl konjuge oligomer nanopargaciklart (CONs) sentezlendi. Ortalama 50
nm boyutlu ve kiiresel yapidaki bu nanoparcaciklar suda dagildiktan sonra da
boyut (60 nm) ve kararlilbklarim korudular. Nanoparcaciklarin sulu ortamda,
glutatiyon (GSH) varhigindaki davramglar gahgildi ve kanser hiicrelerinde agiri
iretilen bir biyomolekiil ve etkili bir S-S bagi kiricisi olan GSH tarafindan
nanoparc¢aciklarin bozuldugu goriildi. Dolayisiyla, bu nanoparcaciklar bir
kanser ilaciyla yiiklendiginde, ilacin kanser hiicrelerine hedeflenmis iletimi,
artmig gegirgenlik ve alikonma (EPR) etkisi ve S-S bagmin GSH tarafindan

kirilmasinin igbirligi ile bagarilabilir.

Anahtar sozcikler: kiukurbitiril, porfirin, cit-¢it tepkimesi, capraz eslesme,
fotodinamik terapi, singlet oksijen, konjuge oligomer, nanopargacik, capraz
baglayici.
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CHAPTER 1

Introduction

1.1. Supramolecular Chemistry

Supramolecular chemistry is a field of chemistry that encompasses the
formation of new chemical entities by noncovalent interactions between
molecules and investigates molecular recognition properties. Because it deals
with high-order frameworks, it is also described as “chemistry beyond the
molecule”. The emergence of supramolecular chemistry as a well-established
field of chemistry dates back to 1987 when the Nobel Prize in Chemistry was
awarded to Donald James Cram, Jean-Marie Lehn and Charles John Pedersen
“for their development and use of molecules with structure-specific interactions

of high selectivity”. W

Molecular chemistry and supramolecular chemistry cannot be thought
as independent from each other. The building blocks of a supramolecule,
conventionally named as ‘host’ and ‘guest’, are individually molecules and their
structural, chemical and physical properties are within the scope of molecular
chemistry. Supramolecule acquires specific characteristics, functions and
properties once the host and the guest come together via noncovalent

interactions as illustrated in Figure 1.1.
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1.1.1. Host-Guest Chemistry

As mentioned in the previous section, host-guest chemistry is a branch of
supramolecular chemistry which studies inclusion complexes constituted by
large ‘host” molecules and small ‘guest’ molecules via noncovalent interactions
summarized in Table 1.1. Host molecules possess converging binding sites while
guest molecules have diverging binding sites. Host-guest complexes are
typically divided into two based on their stabilities in solution: cavitates and
clathrates. A cavitate is a host-guest aggregate formed by a host (cavitand)
that has an intrinsic molecular cavity with particular guest binding sites.
Cavitates are most likely to preserve their complex structures in solution and
solid states since cavitands act as a host in both solution and solid phases.?
Clathrates are comprised of a host (clathrand) that is stable only in the solid
form due to the formation of extended crystal lattice. The empty sites in the
crystal lattice can accomodate suitably-sized guest molecules. However, the
whole lattice structure of a clathrate disrupts in the solution phase,
extramolecular cavities vanish and no host-guest complexation could be
possible between the clathrate and the guest.” The term ‘clathrate’ was
introduced in 1948 by H. M. Powell, suggesting that there are such compounds
where one molecule is firmly enclosed by the other without any strong

attractive forces, i.e., covalent bonds.!"

Host-guest systems are also classified based on which type of attractive
forces acting between host and guest. If the major forces that keep host and
guest together are electrostatic interactions like ion-dipole, dipole-dipole or H-
bonding, the host-guest aggregate is called complez. In the case of weaker and
non-directional interactions (including van der Waals, hydrophobic or crystal
close-packing forces), the aggregates are named clathrates or cavitates.
However, these subclasses are not sharply separated and most frequently the

term ‘complex’ is preferred for all of them.

The discussion of interaction between host and guest can now be moved
to a different ground: ‘selectivity’ of the host. The concept of selectivity can be
discussed with three important subconcepts: cooperativity, complementarity

and preorganization.



Cooperativity: In supramolecular chemistry, cooperativity means that a
host molecule with two or more binding sites form a more stable complex
than a host molecule with only one binding site. This is an extended version

of chelate effect in coordination chemistry. Consider the example below:

As logarithm of the binding constant (log K) indicates, nickel complex with
bidentate ethylenediamine ligand is 10® times more stable than that with
unidentate ammonia ligand. The greater stability of chelate arises from a
decrease in enthalpy (AH®) and increase in entropy (AS°) during the above
reaction, which finally gives a lower total free energy of complexation (AG®)
1++2$0,"7 2 -2442.,"7 5#1 2'E ab aH TAS®H

Complementarity: Structural and chemical complementarity between the
binding sites of host and guest is needed to achieve a stable supramolecular
complex. The host must possess binding sites that are of the correct size
and shape to have sterical fit with the binding sites of the guest. In addition
to steric fit, the binding sites of the host must also be of the proper
electronic (chemical) character to complement those of the guest. The host
molecule can undergo conformational changes to achieve the best
complementary state towards the guest as in the case of enzyme-substrate

complexation via induced-fit model (Figure 1.3).

" # #$
%

Figure 1.3 Enzyme-substrate complexation via induced-fit model. The binding site

of the enzyme undergoes conformational change to attain a better steric match to the

binding site of the substrate.

f

Preorganization: Exceptional stability of most of the supramolecular host-
guest complexes stems from the presence of preorganized hosts. In such
hosts, the binding sites are organized in such a way that no significant

conformational change is required to bind to a guest in the most stable

P



manner.” The hosts are generally in macrocyclic form and have well-defined
binding sites. Overall, the preorganization of the host in macrocylic
structure results in an enhanced guest binding due to both enthalpic and
entropic effects.” This discussion is limited here, but further discussions are

presented in ref. 2.

The degree of selectivity of a host towards a guest is described by to
what extent the host is able to recognize the target guest from a pool of various
guests. Two sorts of selectivity are taken into account when evaluating the
overall selectivity of a host: (1) Thermodynamic selectivity is given by the ratio:
Selectivity = Kauestt / Kaueszand it can be related to the total Gibbs free energy
change of the system by AG = -RT In K. Hosts can be rationally designed as
thermodynamically selective for certain guests.? (2) Kinetic selectivity is
defined by the transformation rate of competing guests (substrates) through a
reaction path. To make it clear, a host (enzyme) would be selective for a
substrate with higher transformation rate rather than a substrate with stronger

binding constant."

1.1.1.1. Common Host Molecules in Host-Guest Chemistry

In solution host-guest chemistry, the nature of a guest molecule is an important
factor in determining what kind of host molecule should be designed in order
to form a stable host-guest complex. As it is discussed in Section 1.1.1, chemical
(electronic) complementarity between host and guest is one of the key elements
for good selectivity. The electronic nature of the guests can be defined as
cationic, anionic or neutral and therefore the hosts can be evaluated in three

different groups: cation-binding, anion-binding and neutral guest-binding.

Plenty of cation binding hosts have been designed including crown
ethers, cryptands, lariat ethers and podands, spherends, hemispherends,
cryptaspherends, heterocrowns, heterocryptands, calixarenes and cucurbiturils.
Structures of some of them are given in Figure 1.4. The complexation of these
hosts with cationic guests occurs generally via hydrogen bonding, ion-dipole,

cation-1 or 7-7 interactions.?
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1.1.1.1.3. Cucurbiturils

The robust macrocyclic structures that are synthesized from the condensation
reaction of glycoluril with formaldehyde in the presence of an acid catalyst are
called ‘cucurbiturils’, abbreviated as ‘CB’. This interesting name is given since
the shape of this particular macrocycle resembles to a pumpkin, which is under
cucurbitaceae botanic family. In 1905, a German chemist named Robert
Behrend and his coworkers were for the first time able to synthesize the
molecule, investigate its complexation properties with various metal salts and
organic molecules, and identify its water solubility in the presence of cationic
species. Despite these initial findings, no further development has been made
in CB chemistry until 1980s because its molecular structure was an unknown
for scientists through many decades. In 1981, Mock and his coworkers finally
came up with the unique pumpkin-shaped macrocyclic hexameric structure of
cucurbit[6]uril (CB6), that is composed of two hydrophilic portals decorated
with carbonyls and a hydrophobic cavity.*” In the beginning of 2000s,
independent studies of Kimoon Kim and Anthony Day resulted in the discovery
of new CB[n] homologues, that are CB5, CB7, CBS8, and CB10, comtaining 5,
7, 8 and 10 glycoluril units, respectively.'%!" All these CB homologues having
differences in their cavity size, guest binding affinity, size selectivity and water
solubility have drawn interest by chemists in recent years.'®?? Scientists are
now trying to employ CBs in various applications such as drug delivery?7,
catalysis®*, molecular switchesP! rotaxanes and polyrotaxanes®* and

molecular sensing6-37,

1.1.1.1.3.1. Synthesis of Cucurbiturii Homologues and Their

Derivatives

Procedures used today for the synthesis of CB homologues have been developed
in previous decade by Kimoon Kim® Anthony Day!'” and Lyle Isaacs®. The
general procedure involves heating a mixture of glycoluril and formaldehyde
(or paraformaldehyde) in the presence of HCI or HoSO, to 80-100 °C for 10-100
hours (Scheme 1.2).0% The reaction yields a mixture of CB[n]s (n = 5-8 and 10,
CB6 with the highest amount) and other noncyclic oligomers. The protocols

for the isolation and purification of different homologues are designed based on
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their differential solubility in water, methanol and HCl. CB7, the most water
soluble CB[n] homologue, is simply separated from a mixture of CB[n]s by

1739 Scherman et al.

solubilizing it in a hot 20% aqueous glycerol solution.
proposed an alternative approach for the isolation of CB5 and CB7, which
involves complexation of CB7 with a suitably sized guest (1l-ethyl-3-

methylimidazolium bromide) followed by anion exchange.

6, 7&
+ #

Scheme 1.2 Synthesis of CB[n] homologues.

Chemists have studied a lot on the synthesis of new CB[n] derivatives
to increase their solubility or to render them more versatile in various
applications. The first example dates back to a study by Fraser Stoddart et al.
in 1992, in which they prepared equatorially permethylated CB5 (Me;,CB5).1*!
Then, in 2001, Kim et al. successfully synthesized cyclohexaneCB5 and —CB6
through the reaction of cyclohexaneglycoluril with formaldehyde using HCI as
catalyst. Parent CB[nJs are insoluble in all organic solvents, but these
derivatives decorated with cyclohexane have high solubility in organic solvents
such as DMSO and methanol, as well as their water solubility is 170 times
increased.®” These sort of alkylations on CB[n]s have been useful to obtain more
soluble compounds and to achieve better host-guest complexations. In 2003,
Kim et al. were first to achive the facile synthesis of functionalized CBl[n]s.
They succeeded in replacing the equatorial protons with hydroxyl groups using
KsS:05 as an oxidizing agent at elevated temperature. Afterwards, they easily
converted the hydroxyl groups into desired functional groups, generally

resulting in an increased organic solvent solubility.*

Monofunctionalized CB[n| derivatives have also been synthesized in
order to have well-defined and controlled structures on nanoscale. In 2012, Oren
Scherman et al. came up with monohydroxyCB6 synthesis via controlled
oxidation of CB6 in the presence of a suitably-sized bisimidazolium guest and

it was further functionalized with propargyl group.*! One year later, Kim et al.

%



showed the direct synthesis of monohydroxy- and monoallyloxyCB7 that is

used in a supramolecular velcro application.*”
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Another method for monofunctionalizing the equatorial position on CB7

has been proposed by Isaacs et al. in which they react a six-membered glycoluril
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oligomer with a glycoluril bis(cyclic ether) with one chloropropyl group
attached on the equatorial position. The resulting chloropropyl-attached
monofunctionalized CB7 was converted to azide functionalized one, which

enables conjugation with other molecules through azide-alkyne click reaction.

The third way of synthesizing functionalized CBn]s is to react a
prefunctionalized aldehyde with glycoluril, yielding a monofunctionalized CBJ[n]
on the methylene bridge. In 2014, Sindelar ef al. reported the synthesis of CB6

47)

that is substituted with phenyl on the methylene brigde. |

There have been various other derivatives of CB[n]s including inverted
CB6 and CB7H hemiCB6Y, bis-nor-sec-CB10FY the chiral ( +)-bis-nor-sec-
CB6EY and bambus[6]urilt?] but they are not within the scope of this thesis.

1.1.1.1.3.2. Structural, Physical and Recognitive Properties of

Cucurbit[n]urils

As previously mentioned, the structural information on CB6 was first revealed
by the study of Mock et al. in 1981. They first noticed the presence of intense
carbonyl absorption at 1720 cm in the infrared spectrum of the product,
suggesting glycoluril nucleus is retained. 'H NMR spectrum showed 3 sets of
equally intense signals: a singlet at 5.75 ppm was assigned to glycoluril methines
and two doublets at 4.43 and 5.97 were assigned to methylene hydrogens that
are magnetically nonequivalent due to endo- and exocyclic orientations.!* Thus,
they concluded the unique pumpkin-shaped rigid macrocyclic structure of CB6
with two upper and lower negatively-charged carbonyl portals and a

hydrophobic inner cavity.

CBJ[n] molecules have quite rigid skeletons unlike other macrocycles as
confirmed by crystallographic studies. X-Ray crystal structures of the most
common CB[n] homologues are illustrated in Figure 1.7. As summarized in
Table 1.3, all CB[n] homologues have the same height (9.1 A), but their outer
diameters, inner cavity sizes and volumes vary with different number of

glycolurils in the structure.?">!
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Figure 1.7 X-ray crystal structures of main CB[n| homologues. (Reprinted with
permission from ref. 53. Copyright, 2005 John Wiley & Sons, Ltd.)

M, alA] b[A]  c[A] d[A] VA3
CB5
CB6
CB7
CBS
CB10
iCB6
iCB7

-CD
-CD

Table 1.3 Structural parameters of uncomplexed CB[n], iCB[n] and CD
homologues.!'

Vast majority of CB[n] homologues and derivatives discovered so far
have much less water solubility than other macrocyclic hosts such as

++420J3 $,"18 *! $ 124#F,4, 2-200 "#F$0 K'M 22427#16 N !"O

2.1$6 ,$ 124#F,4, ["+$!111 1$>"74 " +2"+" $! 0 I5# 2#1

$1411F 4, 1#+ | $1#4112.0"2 0+2 321, 2" #' 4 WHh& a
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