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Workingmemory abilitymatures throughpuberty and early adulthood. Deficits inworkingmemory are linked to
the risk of onset of neurodevelopmental disorders such as schizophrenia, and there is a significant temporal over-
lap between the peak of first episodepsychosis risk andworkingmemorymaturation. In order to characterize the
normal working memory functional maturation process through this critical phase of cognitive development we
conducted a systematic review and coordinate based meta-analyses of all the available primary functional mag-
netic resonance imaging studies (n= 382) that mappedWM function in healthy adolescents (10–17 years) and
young adults (18–30 years). Activation Likelihood Estimation analyses across allWMtasks revealed increased ac-
tivation with increasing subject age in the middle frontal gyrus (BA6) bilaterally, the left middle frontal gyrus
(BA10), the left precuneus and left inferior parietal gyri (BA7; 40). Decreased activation with increasing age
was found in the right superior frontal (BA8), left junction of postcentral and inferior parietal (BA3/40), and
left limbic cingulate gyrus (BA31). These results suggest that brain activation during adolescence increased
with age principally in higher order cortices, part of the core working memory network, while reductions were
detected in more diffuse and potentially more immature neural networks. Understanding the process by
which the brain and its cognitive functions mature through healthy adulthood may provide us with new clues
to understanding the vulnerability to neurodevelopmental disorders.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

1.1. Rationale

Adolescence represents a time of both dynamic cognitive develop-
ment and a period when neurodevelopmental disorders such as schizo-
phrenia often first emerge clinically (Brenhouse and Andersen, 2011;
Paus et al., 2008). Late adolescence and early adulthood are periods of
active neuronal maturation in higher order integrative cortices such as
the superior temporal, posterior parietal, and prefrontal regions
(Schweinsburg et al., 2005) that may underpin age related improve-
ments in cognitive performance (Olesen et al., 2003). One such cogni-
tive ability is working memory (WM). WM is a temporary holding
store for information no longer available in the external environment.
Healthy WM functioning is critical for a variety of executive functions
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(Baddeley, 1998), while WM deficits are linked to disorders such as
schizophrenia (Mark and Toulopoulou, 2016; Park and Gooding, 2014;
Toulopoulou et al., 2007), andmeet endophenotypic criteria for that dis-
order (Mark and Toulopoulou, 2016). These links with schizophrenia
may be particularly relevant given that thematuration ofWM coincides
so closely with the timewhenmany patients first develop symptoms of
schizophrenia (Catts et al., 2013).

To understand the possible links between WM functional matura-
tion in late adolescence and early adulthood and the emergence of
neurodevelopmental disorders it is important to first establish the
basis for healthy WM development. This has the advantage of
circumventing the potentially confounding effects of ill-related factors
(e.g. treatment) that make it difficult to interpret results in patients
alone. WM performance improves throughout adolescence as subjects
employ better executive and rehearsal strategies and improve process-
ing speed (Kwon et al., 2002; Luciana et al., 2005).

There is a body of work that relates to executive functioning, specif-
ically WM in healthy children and the transition period from childhood
to adolescence (Garon et al., 2008). Furthermore, a meta-analysis of
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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fMRI responses across a range ofWM tasks in healthy adults leads to the
proposal of a core network, that includes the dorsolateral prefrontal and
the inferior and superior parietal cortices (Rottschy et al., 2012; Thomas
et al., 1999). Subcortical structures include anterior insula (Rottschy
et al., 2012), basal ganglia (Olesen et al., 2003), hippocampus (Finn
et al., 2010), and the cerebellum (Ciesielski et al., 2006). However, the
transition period of WM development between adolescence and adult-
hood remainsunder-researched and it is not currentlywellmapped. Re-
garding WM development, much of the ‘mature’ circuitry is
‘functionally’ in place by middle childhood but continues to refine as
the child gets older (Brahmbhatt et al., 2010), though this process re-
mains unclear. Evidence shows that WM development is linked to a
shift from visuospatial or motor network activation toward executive
network activation with increasing age (Ciesielski et al., 2006;
Klingberg et al., 2002; Scherf et al., 2006). However, more contradictory
results have been found for executive network activation and task-
related responses. For example, WM development has been linked
both to increased (Durston et al., 2006) and decreased executive net-
work activation and continued refinement of fronto-parietal regions
with age (Geier et al., 2009; Klingberg, 2006; Schweinsburg et al.,
2005). Similarly, it has been associatedwith enhanced sustained and di-
minished task-related response (Velanova et al., 2009), but also the op-
posite (Brahmbhatt et al., 2010; Burgund et al., 2006). One review
proposed that WM development first involved an integration of child-
hood compensatory network with the more mature performance en-
hancing regions, and then a greater degree of localisation within those
regions (Bunge and Wright, 2007).

1.2. Objectives

Taken together, these data suggest that WM related neural activa-
tion patterns change through adolescence although the timing, site,
and manner of those changes remain unclear. To address these ques-
tions we performed a coordinate based meta-analysis that integrated
the results of all available fMRI neuroimaging studies that investigated
WM function with age in healthy adolescents and young adults from a
systematic review of the literature.We decided to adopt a broad and in-
clusive rather than overly focused agewindow for the analyses, because
the timing of normal development and cortical maturation is itself in-
distinct. This strategy allowed us to map activity across a broad range
of ages and developmental time frames. Due to a lack of longitudinal
studies, we solely included studies containing a cross sectional design
that mapsWM as a function of increasing age. Pooling data frommulti-
ple studies provides an opportunity to address some of neuroimaging's
traditional problems such as small sample size and study-specific
‘noise’. We chose the Activation Likelihood Estimation (ALE) method
that offers a well-established process for quantitative voxel wise ran-
dom effects meta-analysis (Eickhoff et al., 2012; Turkeltaub et al.,
2002, 2012). Based on the available literature, we hypothesized that
the meta-analysis would primarily reveal an increase of activation in
higher order integrative cortices, or association areas linked to the
fullymatured coreWMnetwork and a decrease in activation in ancillary
brain regions, that might serve a less mature WM network.

2. Methods

2.1. Protocol and registration

We followed the Preferred Reporting Items for Systematic Reviews
and Meta Analyses (Moher et al., 2009) method.

2.2. Information source and search

We first searched peer-reviewed papers published in English
throughMEDLINE, PubMed, PsychINFO and Cochrane Library, including
all potential articles from inception to July 2014. The following search
terms were used: ‘Working Memory’ and ‘healthy adolescence/adoles-
cents/developmental trajectories’ and “neuroimaging/fMRI”. The search
was conductedwithout any language restrictions. Other reviews and ar-
ticles were hand searched for relevant studies not identified from the
computerized literature search. Authors were contacted for further co-
ordinate information where necessary.

2.3. Eligibility criteria

The following inclusion criteria were used: (a) Participants were
healthy adolescents (age: 10–17 years) and adults (age: 18–30 years)
(b) participants' age was provided as either an independent continuous
or categorical variable (c)WMstudies used awithin or between-subject
design (d) WM performance was indexed by a quantitative, well vali-
dated and reliable WM measurement, respectively a form of n-back
task (Owen et al., 2005) or delayed matching to sample task
(Rodriguez and Paule, 2009) (e) WM studies contrasted the WM task
with a resting baseline (passive) or a sensory-motor (active) control
condition that did not include a WM component (f) used fMRI with a
voxel based approach, and (h) reported results as stereotactic coordi-
nates in Talairach or Montreal Neurological Institute space.

2.4. Data collection process

Two reviewers (JAA, RZ) screened and assessed the studies returned
from the search using the above criteria. Both reviewers independently
extracted and analyzed the data from the included papers.

2.5. Publication Bias and coordinate-based meta-analysis

Publication-trends and biases in neuroimaging literature can affect
ALE-analysis as the inclusion of a particular coordinate is conditioned
on the fact that significant findings are prioritized for publication
(Jennings andVanHorn, 2012). However, coordinate-based neuroimag-
ing meta-analysis differs from most other forms of meta-analyses by
assessing the spatial convergence between reported coordinates rather
than quantifying the pooled effect sizes, which may be biased by non-
published small effects and published type I error in small samples.
Thus including an estimated number of unpublished results would not
have any impact on the assessment of spatial convergence performed
by ALE. The result is that a coordinate based rather than effect size,
meta-analysis should be less susceptible to publication bias, while still
acknowledging them as a quantitative integration of the available data
(Rottschy et al., 2012).

2.6. Outcome measures

We categorized the WM tasks on the basis of the experimental par-
adigm used. We focused on two commonly used tasks the n-back and
delayed matching-to-sample task. In the n-back, stimuli are presented
consecutively, at each stimulus the participant is asked to identify
whether the current stimulus is the same as the previous (1-back) or
the second to last (2-back) etc. In delayed matching-to-sample task a
single stimulus (the sample) is presented, after a variable delay the par-
ticipant has to identify the sample from a set of distractors. Examples of
this task include the “Sternberg task” (Sternberg, 1969) and the oculo-
motor delayed-response task (Funahashi and Takeda, 2002). Within
these two major experimental paradigms, tasks differed in a number
of ways, but principally by the means of presentation, usually aural or
visual, the nature of the stimuli e.g. letters, numbers, words or the prop-
erty to be remembered e.g. location or identity.

2.7. Meta-analytic approach

ALE is a robust method of quantitative meta-analysis of fMRI data
implemented in “GingerALE 2.3.2” (http://www.brainmap.org/ale/).

http://www.brainmap.org/ale/
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Coordinates, reported in, either Talairach or MNI standard space of each
significant peak for all eligible subjects constituted the input to the
meta-analyses (Eickhoff et al., 2012). Montreal Neurological Institute
coordinates were converted to Talairach space using the validated
icbm2tal transformation (Lancaster et al., 2007). Only one contrast
was reported per study to ensure statistical independence.

Foci were restricted to the reported contrast between the experi-
mental WM task with either resting baseline or a sensory-motor con-
trol. Age was coded as an independent variable. Two principle-
analyses were conducted; firstly we looked at overall WM performance
(visuospatial and verbalWM tasks together) as the dependent variable.
Secondly we repeated the analyses but separately for visuospatial and
verbal WM. Thus, in total six separate meta-analyses were conducted;
three that identified areas where activation increased with increasing
subject age and three where activation decreased with increasing age
for each of overall WM, visuospatial WM, and verbal WM. Each activa-
tion focus from each studywasmodeled as the centre of Gaussian prob-
ability distribution with full width half-maxima of 10 mm3. These were
subsequently summed to create a statistical map that estimated the
likelihood of activation for each voxel from the entire set of studies.
After combining the probabilities, a critical significant ALE score thresh-
old was determined; the ALE maps were thresholded at p b 0.05 using
a non-parametric False Discovery Rate (FDR) correction with a thresh-
old of pN b 0.05. Statistical significance was determined using a permu-
tation test (=5000) of randomly created foci and clusters below a
volume of 100 mm3 were excluded. ALE results were overlaid onto an
optimized individual anatomical T1-template (www.brainmap.og/ale/
Colin1.1.nii) and cluster centers were anatomically located in Mango
(http://ric.uthscsa.edu/mango) (Lancaster et al., 2010).

3. Results

3.1. Search

After removing duplicates, the initial search returned 173 articles
that were screened by title and abstract and 130 articles were immedi-
ately excluded. After more detailed screening of the remaining 43 arti-
cles, 20 met inclusion criteria. A full-text assessment excluded a
further ten because (1) ALE compatible coordinates were not available
despite efforts to contact the authors directly; or (2) used region of in-
terest analyses; or (3) did not provide age as an independent continu-
ous or dichotomous variable, or (4) contained only load rather than
task effects. There were no available studies with within-subject design.
Thus only studies with between-subject design were included. In total
ten articles fulfilled all the inclusion criteria and proceeded to the
meta-analysis. See Fig. 1.

3.2. Study and sample characteristics

Of the ten studies included in the meta-analysis, six assessed visuo-
spatial WM, one focused on visual WM only, one on verbal WM only,
and two on both visuospatial WM and verbal WM. Five of the studies
treated age as a continuous variable. The remaining studies as categori-
cal variable with arbitrarily defined ranges (e.g. 13–17 and 18–30;
11–15 and 20–28; 9–13 and 18–23). Nine of the ten studies that includ-
ed data from 218 subjects, identified 60 foci of increased brain activa-
tion, while six studies, that included data on 164 subjects reported 22
foci that showed decreased brain activation (See Table 1).

3.3. Regions of increased brain activation with age

Nine studies of overall WM function identified increased brain acti-
vation in 60 foci that were restricted to five distinct brain regions
when minimum cluster size criteria were applied, during WM tasks
with increasing age. These were the middle frontal cortex bilaterally
(Brodmann area: BA6); left precuneus (BA7); left parieto-temporal
cortex, the inferior parietal gyrus (BA40); and left middle frontal cortex
(BA10).

Seven studies reported on visuospatialWM and identified 39 foci, of
which two, the right middle frontal cortex (BA6) and the left precuneus
(BA7), exceeded minimum cluster volume. No cluster for verbal WM
exceeded the minimum volume of N100 mm3 (See Table 2 and Fig. 2).

3.4. Regions of decreased brain activation with age

Six experiments identified decreased brain activation with increas-
ing age in overall WM performance in 22 foci in three distinct brain re-
gions; the right superior frontal gyrus including the frontal eye field
(BA8), the left junction of the postcentral gyrus and inferior parietal
(BA3/40), and left cingulate gyrus (BA31).

When restricted to visuospatial WM, five experiments of 110 sub-
jects identified 17 foci. Only one region exceeded the minimum cluster
size; the right inferior parietal lobe (BA40). No cluster for verbal WM
exceeded the minimum volume. See Table 3 and Fig. 3 for detailed
information.

4. Discussion

In this meta-analysis of all the available fMRI data we set out to as-
sess the developmental changes that take place in WM functional cir-
cuits during adolescence and early adulthood. We found that there
were no suitable longitudinal studies available and that within cross
sectional designs, cognitive development appeared to be supported by
increases in brain activation in key WM nodes and activation decreases
in others. This is in line with previous developmental work that found
both hypo- and hyper activation in adolescents relative to adults in re-
gions significantly important in executive functioning and, therefore,
providing evidence for the varied nature of not yet fully developed pro-
cesses. Age-related increases in activation are interpreted as enhanced
maturity in accessing performance-enhancing regions, whereas de-
creases in responseswith age are viewed as indicating that a specific cir-
cuitry is no longer neededwith age (Geier et al., 2009; Luna et al., 2001;
Scherf et al., 2006).

4.1. Increased brain activation with age

4.1.1. Fronto-parietal network
Within the frontal lobes, the middle frontal gyrus bilaterally (BA6)

showed increased activation with increasing subject age. This is consis-
tent with earlier meta-analyses that identified this area as a region in
the core WM network in healthy adults (Owen et al., 2005; Rottschy
et al., 2012;Wager and Smith, 2003). Themiddle frontal gyrus has a crit-
ical role to the execution of complex motor responses (Nachev et al.,
2008) and though frequently implicated, its role inmore overt cognitive
tasks is lesswell understood (Picard and Strick, 2001; Schubotz and von
Cramon, 2003). Specifically, during cognitive tasks BA6 involvement has
often been conceptualized as a concomitant latent motor process
(Haxby et al., 2000). It may be that the middle frontal gyrus is involved
in higher-level control processes critical to motor self-control (Seitz
et al., 2009). The majority of WM tasks in this meta-analysis required
the participants to make a motor response, typically a button push.
That process required planning and response inhibition of motor activ-
ity that may develop in line with increased activation in BA6 with in-
creasing subject age.

Activation in the left anterior middle prefrontal cortex (BA10) in-
creased with increasing subject age. This region is linked to a monitor-
ing and control function. The BA10 may support cognitive shifting
betweenmaintenance or updating and selection,manipulation, ormon-
itoring functions, optimizing efficiency and task performance. This brain
region may thus play a role in goal or process learning and selection
rather than data processing in memory per se (Fletcher and Henson,
2001). A complimentary view is that the anterior middle prefrontal

http://www.brainmap.og/ale/Colin1.1.nii
http://www.brainmap.og/ale/Colin1.1.nii
http://ric.uthscsa.edu/mango


Fig. 1. PRISMA flow chart of literature search. PRISMA= Preferred Reporting Items for Systematic Reviews and Meta-Analyses (Moher et al., 2009).

Table 1
Overview of Study Characteristics.

Study N f/m
ratio

Age-range Age
variable*

WM-material Activation profile

WM-typea WM
taskb

Control
taskc

Stimulus-type Operation # of Foci
increased

# of Foci
decreasee

Nagel et al. (2013) 67 f 10–16 Cont. VS & verbal N-Back Active Letters Location & identity verification 1 (n = 45) 3 (n = 56)
Brahmbhatt et al. (2010) 35 f 9–13

18–23
Categ. VS N-Back Active Letters Order verification 3 (n = 17) 4 (n = 17)

Thomason et al. (2009) 27 / 7–12
20–30

Categ. VS & verbal DMTS Active Letters/
Shapes

Location &
Identity verification

27 (n = 14) 6 (n = 14)

Geier et al. (2009) 46 f 13–17
18–30

Categ. VS DMTS Active Shapes Location verification 4 (n = 15)

O'Hare et al. (2008) 18 11–15
20–28

Categ. Verbal DMTS Passive Letters Identity verification 6 (n = 8)

Olesen et al. (2007) 24 / 12–25 Cont. VS DMTS Active Shapes Location verification 3 (n = 11)
Ciesielski et al. (2006) 27 m 10

12–28
Categ. Visual N-Back Passive Shapes Object verification 5 (n = 27)

Schweinsburg et al. (2005) 49 25/24 12–17 Cont. VS N-Back Active Abstract Lines Identity verification 5 (n = 49) 4 (n = 49)
Kwon et al. (2002) 23 14/9 7–22 Cont. VS N-Back Active Letters Location verification 4 (n = 34)
Klingberg et al. (2002) 13 4/9 9–18 Cont. VS DMTS Active Shapes Location verification 6 (n = 13) 1 (n = 13)

*Conti. = Continuous variable; categ. = Categorical variable.
a WM-Type: Visuospatial (VS) WM and verbal WM.
b WM Task: N-back task and delayed matching-to-sample (DMTS) task.
c Control task: active = sensory-motor control; passive = baseline.
d Number of foci and corresponding sample size.
e Number of foci and corresponding sample size.
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Table 2
Regions of increased brain activation for differentWM categories with age (Cluster-level inference= 0.05; FDR pN= 0.05, permutation threshold= 5000, cluster included N 100mm3).

Hemisphere Lobe Gyrus BA Volume (mm3) ALE Centera

x y z

Total WM Right Frontal Middle frontal 6 480 0.0129 32 2 52
Left Parietal Precuneus 7 424 0.0109 −24 −62 36
Left Parietal inferior parietal 40 400 0.0107 −46 −32 40
Left Frontal Middle frontal 6 368 0.0107 −26 6 58
Left Frontal Middle frontal 10 304 0.0101 −38 54 10

VSWM Right Frontal Middle frontal 6 432 0.0132 32 2 52
Left Parietal Precuneus 7 424 0.0109 −24 −62 36

a Center of mass in Talairach coordinates.
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cortex supports the coordination of information processing and transfer
between the multiple cognitive operations within WM (Ramnani and
Owen, 2004). Based on this view we propose that the increased activa-
tion in the BA10 with age is linked in broad terms to the maturation of
strategic processing.

Activation in the left inferior parietal lobe (BA40) and left precuneus
(BA7) increased with increasing age. Both regions are frequently impli-
cated inWM studies (Owen et al., 2005) and in rule-guided conditional
reasoning operations, that require the application of a wide range of
cognitive resources to the maintenance of WM (Liu et al., 2012;
Reverberi et al., 2010). Furthermore, the BA7 might be related to the
representation and manipulation of spatial relations among different
object features. (Cavanna and Trimble, 2006). In addition, consistent
with the complex nature of the WM tasks in this meta-analysis, in-
creased activation in parietal areas (BA40, BA7) with increasing age
might be explained by the fact that the inferior parietal cortex also
plays an important role in enhanced domain-general executive process-
es such as rapid switching of attention (Ravizza et al., 2004). This is in
linewith a review that suggests that shifting attentionmay be a compo-
nent of many executive processes involved in the control of WM. Thus,
maintaining information in WM while processing other information,
manipulating information in WM, and selecting which information
among several sources should be stored in WM are all relatively com-
plex processes that require shifting among both perceptual items and
those stored in WM (Wager et al., 2004).

Complimentary data suggest links between improving WM perfor-
mance and structural indices in the fronto-parietal cortex. For example
greater white matter integrity in superior fronto-parietal regions, adja-
cent to cortical regions implicated in WM have been associated with
better WM performance (Klingberg, 2006; Nagy et al., 2004). Similarly,
a multi-modal diffusion tensor imaging and fMRI study found that the
degree of white matter maturation is positively correlated with brain
activity in superior fronto and intraparietal cortex, which contribute to
the WM functional network (Olesen et al., 2003).

Our meta-analysis identified regions in the core adult WM network
where activation increased with age from adolescence to adulthood
(Owen et al., 2005). It is likely that the increased activation with age
in the middle frontal cortex (BA6), anterior prefrontal cortex (BA10),
and left inferior parietal lobe and left precuneus (BA40+ BA7) is indic-
ative of the progressive recruitment of these task related frontal and pa-
rietal regions that underpin the functional maturation of the adult WM
Table 3
Regions of decreased brain activation for differentWM categories with age (Cluster-level infere

Hemisphere Lobe Gyrus

Total WM Right Frontal Superior frontal
Left Parietal Postcentral/inferior parietal

VSWM Left Limbic Cingulate
Right Parietal Inferior parietal

a Center of mass in Talairach coordinates.
network (Bunge and Wright, 2007; Klingberg, 2006; Schweinsburg
et al., 2005).

4.2. Decreased brain activation with age

4.2.1. Fronto-parietal network and limbic lobe
Besides its role in eye movement, the posterior dorsolateral pre-

frontal gyrus (BA8) contributes to the conditional allocation of attention
to competing environmental stimuli (Petrides, 2005). Related to the
maintenance of visuospatial attention duringWM, it has been suggested
that the activity in this region particularly plays an important role were
delays are imposed between a stimulus and a response to that stimulus
(Owen, 2000). One possible explanation for the reduced brain activation
in BA8 with increasing participant age might be that this region is
strongly associated with maintenance. For it has been suggested that
younger participantsmight bemore sensitive in the delay phase relying
more on BA8 compared to older participants (Geier et al., 2009).

The left junction of the postcentral and inferior parietal gyrus
(BA3/40) supports complex linguistic processes, especially attention to
phonological relations (Hirshorn and Thompson-Schill, 2006; Small and
Burton, 2002). Many of the WM paradigms included in these meta-
analyses used letters and the participants might have used active verbal
rehearsal strategies to follow rules and keep the information active in
the WM store to enhance optimal task performance (Smith and Jonides,
1998). Furthermore, the decrease in activation as subjects aged, and as
cognitive strategiesmatured, could be interpreted as that participants be-
came less reliant on visual analysis processing (Kwon et al., 2009).

Activation in the left posterior cingulate gyrus (BA31) was reduced
with age. While the region is highly functionally connected there is no
consensus about its cognitive role (Leech and Sharp, 2014) and it is
not implicated in the core WM network in healthy adults (Owen et al.,
2005; Rottschy et al., 2012). One possible explanation is that the poste-
rior cingulate is active in the default mode network. The default net-
work mode is rapidly deactivated during a variety of externally
directed tasks and when attention is focussed in for example a WM
task (Leech and Sharp, 2014). Its role has been linked to monitoring
change and facilitating shifts in behavior, where low activity is linked
to continued operation with the prevailing cognitive set, and increases
with investigation, exploration, flexibility and new learning (Pearson
et al., 2011). Itmight be that younger subjects experience greater novel-
ty with WM tasks compared to older subjects.
nce= 0.05; FDR pN=0.05; permutation threshold= 5000; cluster included N 100mm3).

BA Volume (mm3) ALE Centera

x y z

8 392 0.0118 16 32 46
3/40 112 0.0097 −50 −24 14
31 104 0.0095 −2 −52 26
40 160 0.0095 44 −43 52



Fig. 2. Activation increases with increasing age for respectively overall WM and VSWM. Inf = Inferior; Mid=Middle; Sup= Superior; G=Gyrus. Brackets = cluster size did not exceed
100 mm3.
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The significance of local reductions in brain activation with increas-
ing age remains a subject of conjecture. The three regions identified by
this meta-analysis, the caudal dorsolateral prefrontal cortex (BA8), the
junction of the postcentral and inferior parietal gyrus (BA3/40), and
the posterior cingulate gyrus (BA31) are not implicated in the core
WM network in healthy adults (Owen et al., 2005; Rottschy et al.,
2012). It is possible that these regions form part of a compensatory net-
work that supports the still maturingWMnetwork.With increasing age
WM performance increases, the underpinning WM network becomes
more refined and there is less need to activate the compensatory net-
work (Bunge andWright, 2007). Supporting evidence comes from a re-
gion of interest study that investigated the cross-sectional changes in
functional WM brain circuitry from childhood to adulthood. Its results
support the hypothesis that younger subjects rely primarily on a more
ventromedial network including the caudate nucleus and anterior
insula and less on the core adult WM regions such as the dorsal lateral
prefrontal cortex and inferior parietal region (i.e. supramarginal
gyrus). As subjects age the WM network matures by integrating
premotor response preparation and executive circuitry into a special-
ized refined core WM network (Scherf et al., 2006).

4.3. Methodological considerations

Our meta-analysis has a number of limitations. The first and most
important was the lack of suitable within-subject longitudinal studies.
Therefore, we solely included studies with a between-subject design.
In order to speak about true maturational processes, there is an imme-
diate need for future research to deploy longitudinal designs in
neurodevelopmental informative healthy and high-risk populations, to
address this research gap. Secondly, we included data from two classes
of experimental paradigm; the n-back task and delayed matching-to-
sample tasks. These differed according to task subtype, control task,
memorymodality and stimulus types. By including data from such a di-
verse group of experiments theremight be confoundingbrain activation
related to dissimilar underlying processes and strategies involved dur-
ing the separateWM tasks. Future meta-analyses with access to greater
number of studies over time should focus both on single experimental
paradigms that specify the underlying WM processes such as encoding,
maintenance or manipulation of stimuli. To eliminate performance re-
lated variation in brain activity, some cross-sectional studies used sim-
ple tasks or grouped subjects based on individual performance.
However, this approach leaves certain critical cognitive operations un-
tapped, which might lead to biases in the investigation of the true
higher order cortices development. Indeed, a recent paper suggested
that chronological age might be too limited an index to measure
relevant developmental changes in brain function and suggested “func-
tional age” as an alternative (Satterthwaite et al., 2013). The fourth lim-
itationwas linked to how subjects' chronological age was characterized.
Some studies treated age as a continuous and others as a categorical var-
iable, e.g. “children”, “adolescents”. This creates several problems. Firstly
the definition of age categories often differed between studies, with no
commonality of definition. Secondly, by collapsing into categories, re-
searchers lose data richness and the ability to precisely track develop-
mental changes over time. Finally using age as a continuous variable
facilitates comparisons between studies Thus, we conclude that age
should be dealt with as a continuous variable in future studies. Another
limitation is related to the gender-ratios of the included studies. A re-
cent coordinate based meta-analysis explored the effects of gender on

Image of Fig. 2


Fig. 3. Activation decreases with increasing age for respectively overallWM and VSWM. Inf= Inferior;Mid=Middle; Sup= Superior; G=Gyrus. Brackets= cluster size did not exceed
100 mm3.
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the functional WM network and found common elements but also dif-
ferences between the genders. Specifically, females tended to activate
more limbic (amygdala and hippocampus) and prefrontal structures
(right inferior frontal gyrus), while males activated a distributed net-
work including more parietal components (Hill et al., 2014). Future
work needs to pay attention to this effect and incorporate it at the
study design and analytic stage. Lastly, based on our exploratory ap-
proach, we only included between-subject voxel-based studies to
avoid a user bias in defining the regions of interest and therefore exclud-
ed studies that used region of interest methods. The next step will be a
confirmation of brain regions that showed an increase and decrease in
activation based on the voxel based design. This should preferably be
done in a longitudinal study using the region of interest method.

4.4. Implications for neurodevelopmental disorders

Adolescence is a time of substantial concomitant refinement of cog-
nitive processes and physical maturation of neural circuitry underlying
cognitions, such as WM. These changes are usually beneficial and opti-
mize the brain for the challenges ahead, but they can also confer a vul-
nerability to certain types of psychopathology, such as schizophrenia
(Paus et al., 2008). Overall, WM deficit is a trait characteristic of schizo-
phrenia present across a range of clinical stages, notably from initial vul-
nerability to the chronic state (Park and Gooding, 2014). Understanding
the basis of schizophrenia therefore requires a comprehensive knowl-
edge of how the brain is put together. Since the adolescent brain is in
a state of flux it may be possible to stabilize the adolescent brain of
those at risks so that any disruption is only transitory and so that chron-
ic schizophrenia does not emerge (Paus et al., 2008). Specifically,
neuroimaging data can help in the development of neuroanatomical
models of, for example, cognitive processes that are based on findings
from developmental psychology. Therefore, imaging studies of healthy
adolescents are very important to help us construct age appropriate
structural and functional brain templates. Because both common genet-
ic and environmental risk factors affect healthy subjects as well
as patients, studies using healthy participants can often avoid the
confounders associatedwithmanifest illness and offer the hope to iden-
tify mechanisms that lie before the emergence of illness (Meyer-
Lindenberg, 2010).

5. Conclusion

The current meta-analysis of healthy children and adolescents con-
firmed late maturational changes in activation in WM-associated re-
gions. Evidence of activation increases was found in performance-
enhancing fronto-parietal higher order cortices part of the core WM
network. Furthermore, decreases in compensatory or supportive brain
regions were also seen. Given that adolescence is a vulnerable period
in which the initial symptoms of neurodevelopmental disorders tend
to manifest, it is paramount to establish a robust understanding of the
healthy functional development of WM. On the basis of this, abnormal-
ities could be detected both faster and with greater certainty. Ideally,
this paper will kindle further scientific inquiry into healthy neural cir-
cuitry development, explored through key cognitive paradigms such
as WM, and thus, move a step closer to the earlier detection of
neurodevelopmental disorders. Such detection is likely to contribute
to more effective intervention strategies and ultimately, better health
outcomes for our patients.

Image of Fig. 3
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