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ABSTRACT

GENERATING EVENLY DISTRIBUTED EQUITABLY
EFFICIENT SOLUTIONS IN MULTI-OBJECTIVE

OPTIMIZATION PROBLEMS
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M.S. in Industrial Engineering

Advisor: Özlem Karsu

September 2018

We consider multi-objective optimization (MOP) problems where the decision

maker (DM) has equity concerns. We assume that the preference model of the

DM satisfies properties related to inequity-aversion, hence we focus on finding

efficient solutions in line with the properties of inequity-averse preferences, namely

the equitably efficient solutions.

We discuss two algorithms for finding good subsets of equitably efficient solu-

tions. In the first approach, we propose an algorithm that generates an evenly

distributed subset of the set of equitably efficient solutions to be considered fur-

ther by the DM. The second approach is an extension of an interactive approach

developed for finding efficient solutions in the rational dominance sense and finds

equitably efficient solutions in the preferred region of the DM.

We illustrate these algorithms on equitable multi-objective knapsack problems

that fund projects in different categories subject to a limited budget. We per-

form experiments to show and discuss the performances of the algorithms for

three and five criteria settings. The experiments show that the first algorithm

generates an evenly distributed subset in reasonable time, hence is advantageous

in terms of solution time, compared to an approach that aims to find the whole

set of equitably efficient solutions. The second approach is also shown to be a

computationally efficient one that could be used in settings where the DM is

willing to provide preference information.

Keywords: multi-objective knapsack problem, equitable preferences, equitable

efficiency, generalized Lorenz dominance.
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ÖZET

ÇOK AMAÇLI OPTİMİZASYON PROBLEMLERİNDE
EŞİT DAĞILIMLI EŞİTLİKÇİ VERİMLİ ÇÖZÜMLER

BULUNMASI

Bashir Abdullahi Bashir

Endüstri Mühendisliği, Yüksek Lisans

Tez Danışmanı: Özlem Karsu

Eylül 2018

Karar vericinin eşitlikçilik (adillik) kaygılarının olduğu durumlarda kullanılan çok

amaçlı optimizasyon problemleri (ÇAOP) ele alınmıştır. Karar vericinin ter-

cih modelinin eşitsizlikten kaçınma ile ilgili özellikler taşıdığı varsayılarak, bu

özellikler duğrultusunda verimli çözümler, yani eşitlikçi verimli çözümler bulmaya

odaklanılmıştır.

Eşitlikçi verimli çözüm kümesinden iyi alt kümeler bulunması için iki algo-

ritma tartışılmıştır. İlk yaklaşımda, eşitlikçi verimli çözümler kümesinde eşit

olarak dağıtılmış çözümler bulan bir algoritma önerilmektedir. İkinci yaklaşım,

rasyonel baskınlık anlamında verimli çözümler bulmak için geliştirilmiş interaktif

bir yaklaşımın bir uzantısıdır ve karar vericinin tercih ettiği bir bölgede eşitlikçi

verimli çözümler bulmaktadır.

Bu algoritmaların kullanımı, sınırlı bir bütçe dahilinde farklı kategorilerdeki

projeleri finanse eden eşitlikçi çok amaçlı sırt çantası problemleri üzerinde

örneklenmiştir. Algoritmaların, üç ve beş kriterli problemlerde performanslarını

gösterilmesi ve tartışılması için deneyler yapılmıştır. Önerilen ilk algoritmanın,

dengeli şekilde dağılmış eşitlikçi verimli çözümler bulduğu ve bütün eşitlikçi

verimli çözümleri bulan bir yaklaşıma göre süre açısından avantajlı olduğu

gösterilmiştir. İkinci yaklaşımın da, karar vericinin tercih bilgisi sağlayabileceği

durumlarda kullanılabilecek, çözüm süresi açısından verimli bir yaklaşım olduğu

gözlemlenmiştir.

Anahtar sözcükler : çok amaçlı sırt çantası problemi, eşitlikçi tercihler, eşitlikçi

verimlilik, genelleştirilmiş Lorenz baskınlığı.
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Karsu whose unwavering support, patience and guidance has been invaluable

throughout my masters programme. I have to say, I am most fortunate to have

been her student.

Also, I would like to thank Asst. Prof. Ceren Tuncer Şakar and Asst. Prof.
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Chapter 1

Introduction

Multi objective optimization (MOP) problems have been studied for many years.

Different techniques have been used to successfully solve and analyse these prob-

lems in a wide range of application areas such as engineering design, medical

treatments, logistics, resource allocation and facility location ([1],[2],[3]). In a

typical MOP, multiple objective functions that correspond to decision criteria

are simultaneously optimized over a feasible region. There are trade-offs between

the multiple objectives considered, hence, usually no single solution optimizes all

of the objective functions simultaneously. Due to these trade-offs, the concept of

optimality is replaced with the concept of Pareto optimality (nondominance).

Equity concerns arise in various real life problems and it is vital to handle

them for the recommended solutions to be admissible [4]. Addressing these con-

cerns is challenging. The motivation for these concerns and the decision maker

(DM)’s understanding of fairness may lead to different equity-related concerns

like equitability and balance. Moreover, equity is rarely the only concern. The

decision makers usually consider the trade-offs between equity and efficiency.

Researchers have started to consider extensions of several classical problems

like knapsack, assignment and location problems to incorporate equity concerns.

The notion of equity is usually studied in allocation settings where we try to
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attain a “fair” allocation of the resources or outcomes by treating the involved

entities in an impartial manner.

In general, any system serving multiple users where the service quality for every

individual user is taken into consideration can be assessed with equity concerns.

The users or entities involved can be departments of an organization, people of

different social classes, customers at different locations, etc. For example, public

service location models strive to provide equitable access to different demand

points (customers).

The need for inequity averseness naturally occurs in various operational re-

search (OR) applications, including but not limited to vehicle routing problems

during disaster relief [5], workload allocation, queuing systems, bandwidth al-

location and healthcare service provision (See [4] and the references therein).

Another application shown in [6] is that of partitioning physical electrical grids

into companies and incorporating equity concerns for the companies earnings.

We consider problem settings where equity concerns over multiple cate-

gories/entities are involved. Hence the problems we consider are different in

the sense that all objectives are of the same type (a single type of benefit), and it

is the concern of maximizing the benefit received by each category (entity) that

makes the problem a multi-objective one. We call this problem multi-objective

optimization problem with equity concerns (E-MOP). Unlike a classical MOP, in

E-MOP the values of the objective functions are comparable. Furthermore, the

criteria are considered impartially, which makes the distribution of the criteria

values more important than the assigned outcome to a specific criterion. For

example, in a setting with three entities, the decision maker would be indifferent

between (90, 100, 70) and (100, 70, 90).

Incorporating equity concerns into the preference model of the DM makes some

solutions which are non-dominated (in classical dominance sense) unattractive.

Therefore, rather than focusing on the Pareto efficient solutions, we focus on the

more relevant equitably efficient solutions. Equitable efficiency was defined in [7]

and an approach to find non-dominated points for MOP with equity concerns by
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aggregating the objective functions has been studied in [8]. A two-step method

to find equitable efficient solutions for MOP was developed in [9].

Motivated by the observation that it may be computationally too expensive to

find the whole set of equitably efficient solutions, we consider two algorithms that

find a subset of it. The algorithms we consider can be applied to find solutions

to any such MOP. We exemplify their use for project portfolio selection problems

where decision makers have fairness concerns.

One example is the investment decision problem, in which projects that will

provide different benefits to different beneficiary groups (different population

groups or different geographical zones) are considered. Each project is associ-

ated with an output vector, showing the amount of benefit it provides to these

different groups, which we call entities throughout the text. In such cases, a typi-

cal concern for decision makers is ensuring an equitable benefit allocation over the

multiple entities and a total benefit maximizing approach is usually considered

inapplicable as it may result in extreme inequity in the benefit distribution.

Another example occurs when project proposals that belong to different cat-

egories are evaluated and it is important to ensure a balanced funding over the

multiple categories involved. A total value maximizing approach may result in

imbalanced funding decisions in the sense that the majority of the funded pro-

posals might belong to a single category [10].

The rest of this thesis is structured as follows:

Chapter 2: We provide review of the related literature on MOP problems and

equity concerns in the literature.

Chapter 3: We discuss the concept of equitable efficiency, alongside the under-

lying assumptions on the decision maker’s preference model and provide mathe-

matical models that can be used to find the set of equitably efficient solutions.

Chapter 4: We propose a novel approach to generate evenly distributed equi-

table non-dominated points.
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Chapter 5: We utilize an interactive approach that generates highly preferred

equitable non-dominated points.

Chapter 6: We provide the summary of our computational experiments, in

which we demonstrate the performance of the algorithms using an equitable knap-

sack problem.

Chapter 7: We conclude our discussion and list some future research direc-

tions.

4



Chapter 2

Literature Review

In this thesis, we study MOP problems where the decision maker (DM) has equity

concerns. We consider two algorithms to solve these problems. We apply these

algorithms to project portfolio problems that are formulated as multi-objective

binary knapsack problems where the DM has fairness concerns. Hence our study

is mainly related to equity concerns and multi-objective optimization. In the first

section of this chapter, we discuss the solution methods used in solving multi-

objective optimization (MOP) problems. We focus mainly on the works in the

literature that consider generating exact efficient solutions for MOP problems

with more than two objectives. In the second section, we discuss equity concerns

in operational research.

2.1 Multi Objective Optimization Problems

Multi objective optimization or vector optimization problems are problems where

we consider optimizing a collection (at least two) of objective functions simulta-

neously. A general MOP with m objectives is formulated as follows:
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Max“z1(x), z2(x), · · ·, zm(x)”

s.t.x ∈ X (2.1)

x denotes the vector of decision variables and X is the feasible decision space.

(z1(x), z2(x), · · · , zm(x)), is the vector of the m objective functions considered.

The quotation marks in the objective function implies that the “max” operator

used in these settings is not well-defined. Due to the conflicting nature of the

objective functions there usually is not a single feasible point that maximizes all

the objectives. Therefore, solving these problems refers to finding the whole set

(or a subset) of the efficient solutions:

Definition 1 (Maximization setting) Let x′ ∈ X, be a feasible solution to the

generic MOP model above, x′ is efficient if @x ∈ X such that zk(x
′) ≤ zk(x) ∀k =

1, 2, · · ·m and zk(x
′) < zk(x) for at least one k. The image of x′ in the criteria

space z(x′) is non-dominated.

There is a vast literature on approaches to find efficient solutions for various

MOP problems. The solution methods can be classified into two groups according

to the type of solution generated, namely, exact and approximate (usually referred

to as heuristic or meta-heuristic) solution methods. The exact solution methods

are further classified into two; those that generate a representation of the whole

efficient frontier and those that generate a single efficient solution as shown in

Figure 2.1.

Heuristics are usually problem-dependent techniques that aim to generate near

optimal solutions (without guarantee of feasibility or optimality) at a reason-

able computational cost. On the other hand, meta-heuristics are stronger tech-

niques applicable to various problems. They are powerful algorithmic frameworks

providing sets of guidelines to develop other heuristics by combining different

concepts to explore the search region. [11] presents a survey on the heuristics
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and meta-heuristics methods used for multi objective combinatorial optimization

(MOCO) problems in the literature. In Figure 2.1, we show some examples of

these methods.

Approximate

Genetic Algorithms

SPEA

GRASP

Exact

Single solution

Lexicographic

approach

Goal Programming

Whole Pareto

Weighted

Sum Method

Epsilon Con-

straint method

Two Phases methods

Dynamic

Programming

Branch and Bound

Solution Methods

Figure 2.1: Classification of solution methodologies based on the types of solutions

generated

Typically, there are many efficient solutions in an MOP of which one is pre-

ferred at least as good as the rest by the decision maker (assuming the aim is

to find a single most preferred solution). When there are at least two efficient

solutions, more information (preference information) is needed from the decision

maker to further reduce the solution space and converge to the most preferred

solution. The information taken can be in the form of a predetermined goal for

each objective function, an explicit value function or pairwise comparisons of

the efficient solutions. Figure 2.2 shows the main classifications of the solution

methods in terms of the time the preference information is obtained[12].
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A Priori

Goal Pro-

gramming

Lexicographic

approach

Utility Func-

tion methods

Progressive

Interactive

Algorithms

A Posteriori

Feasible so-

lution space

Branch

and Bound

Dynamic Pro-

gramming

Criteria space

Weighted

Sum Method

Epsilon Con-

straint method

Two Phases

methods

Articulation of Preferences

Figure 2.2: Classification of solution methodologies based on the timing of the

articulation of preferences

The methods that employ a prior articulation of preferences require the deci-

sion maker to specify preferences (in terms of goals, relative importance of the

objectives, etc) before the optimization. To reflect the decision maker’s prefer-

ences, these methods incorporate parameters in terms of weights or constraint

bounds to optimize the decision maker’s value function. The optimization mod-

els in these methods are usually straight forward, however, the decision maker

may face challenges in determining the preference information needed.

Approaches based on the progressive articulation of preferences involve itera-

tively using the preference information obtained from the decision maker during

the optimization. At each iteration, the decision maker’s responses are used as

inputs in the next iterations to reduce the solution space until her best solution

is attained. Usually, the aim is finding one best solution in line with the decision
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maker’s preference information.

[13] presents a detailed review on the interactive methods used in handling

multi-objective integer (MOIP) and mixed integer programming (MOMIP) prob-

lems. Some interactive approaches assume the existence of a utility function that

represents the decision maker’s preferences and they work on finding the solution

that optimizes the utility function ([14], [15]). However, some other approaches

do not assume the existence of a utility functions [16]. Instead they pursue a

progressive approach where they help the decision maker avoid non-dominated

solutions she is not interested in. They do not necessarily try to find the best

solution but help in finding satisfactory solutions.

In general, these interactive methods help reduce the computational effort and

ease the decision maker’s decision process.

We propose an algorithm that finds a subset of the set of equitably efficient

solutions. Therefore, our study is most relevant to the posteriori approaches

discussed in the literature. We provide a detailed discussion on these approaches.

Approaches classified as posteriori aim to generate all the non-dominated

points (or a subset) and present these solutions to the decision maker for fur-

ther consideration. These methods are classified into two; those that work on

the feasible solution space and those that work on the criteria space as shown in

Figure 2.2. In general, when generating the non-dominated points, the only as-

sumption made about the decision maker value function is monotonicity (“more

is better”). Moreover, the decision maker is expected to choose a most preferred

solution among these points.

These methods are not without their challenges. In general, solving MOP prob-

lems using these methods is computationally intractable and expensive. More-

over, due to the cardinality of the set of the pareto solutions, it is strenuous for

the decision maker to compare or rank all the solutions (in an attempt to choose

a best solution). Our approach presented in Chapter 4 addresses these issues

by generating a well spread subset of the non-dominated points for the decision
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maker to consider.

Most studies in the literature deal with generating the Pareto solutions for

bi-objective programming problems. In this review, we consider papers that

generate exact solutions where more than two objectives are considered.

[18] presents a branch and bound algorithm to generate the efficient set in

MOMIP problems where the integer variables are binary. They extend the clas-

sical branch and bound algorithm to handle this problem. They use a depth

first search algorithm where vector comparisons instead of scalar ones are used

in the fathoming tests. To handle large problems, they implement interactive

approaches guided by the decision maker’s preferences.

[19] develops an approach for generating all non-dominated points of Multi ob-

jective integer linear programming problems. The algorithm starts with a selected

weighted vector used in linearising the multiple objectives and sequentially gener-

ates non-dominated solutions by adding more constraints at every iteration until

the model becomes infeasible. At any iteration l, the algorithm uses the solution

found in the previous iteration (l − 1) and adds m binary variables and m + 1

constraints to eliminate previously generated solutions, where m is the number

of objectives. Hence, for any iteration, the generation of the next non-dominated

point is computationally harder.

[20] develops an approach to generate all non-dominated points for MOIP

problems. This approach is an improvement over the classical epsilon constraint

method. For any MOIP problem with m objectives, they add one of the objectives

as a constraint bounded by its global upper bound value over all the feasible

solutions and solve the problem as MOIP with m− 1 objectives. They generate

all the non-dominate points by systematically decreasing the upper bound and

solving the models until the model becomes infeasible. [21] significantly improves

this approach by utilizing the set of already solved subproblems. As the algorithm

progresses, they reuse the solutions to problems solved in previous iterations. This

algorithms improves that of [20] both in terms of CPU time and the number of

models solved.
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[22] proposes two exact algorithms for MOIP problems. Like the algorithm

in [19], their first algorithm also generates non-dominated points by adding con-

straints and binary variables. At each iteration, the algorithms generate new

non-dominated points by eliminating the previously generated points and the re-

gions they dominate from the search space. Assuming there are n non-dominated

points and m objectives, the first algorithm reduces the number of binary vari-

ables added from nm to n(m−1) and constraints from n(m+1) to nm. However,

the model still grows large when there are a lot of non-dominated points. They

develop a second algorithm which improves the first where at any iteration to

find the nth point, the model is decomposed into (n+ 1) submodels. The second

algorithm outperforms the first algorithm and the algorithms of [19] and [20].

[23] considers the problem of generating all non-dominated points for multi

objective discrete optimization (MODO) problems. They propose an algorithm

which searches the feasible region over (m−1) dimensional rectangles where m is

the number of objectives. For each rectangle two-stage optimization problems are

solved to avoid generating weakly efficient solutions. This algorithm outperforms

those of [19] and [20] in terms of both the CPU time and the number of models

solved.

[24] presents an approach for generating the exact Pareto set in MOP problems.

They present AUGMECON2, an improvement on AUGMECON, an approach

previously developed by the authors. AUGMECON is an augmented epsilon con-

straint method where one of the objective functions is maximized and the other

objective functions are used as constraints. They use the surplus variables of the

constraints to form the augmented part. In AUGMECON2 the objective function

is modified in order to perform a lexicographic optimization on the augmented

part of the objective function. They also use the information from the surplus

or slack variables of the constrained objectives using a bypass coefficient to avoid

redundant iterations, reduce the number of subproblems solved and accelerate

the algorithm.

Another variation (SAUGMECON) of AUGMECON is studied in [25] which

is found to be more efficient. They accelerate the algorithm using bouncing
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steps and early exit strategies. They perform experiments on randomly gener-

ated MOIP problems and use the average number of integer programming models

solved as the criterion for performance comparisons with other works in the lit-

erature. Their approach outperforms those of [20] and [22].

2.2 Equity Concerns in Operational Research

In this section we present literature review on equity concerns in operational

research. Equity concerns have been studied and applied in various areas such

as postdisaster humanitarian relief [26],[27],[28] distribution of donated food [29],

food rescue and distribution [30], healthcare facility location and allocation [31]

and air traffic flow management [32]. The presence of equity concerns is perhaps

felt strongest in the public sector where different groups or classes of people are

to be treated in a fair manner. However, equity is seldom the only criterion

considered. Most applications consider efficiency concerns alongside these equity

concerns. Therefore, many researchers model these problems as multi criteria

decision making problems.

Equity being a relative and ethical concept is perceived differently among

decision makers. [33] presents an overview of the equality measures in location

problems and propose new properties that such measures should possess. [4]

discusses equitability and balance concerns; two notions related to equity concerns

in the literature. Equitability considers achieving an even allocation of resources

among indistinguishable entities or groups. In this case, the identity of the entities

are not relevant (anonymity holds). Whereas balance concerns arise when the

characteristics and needs of the entities are recognised and relevant in evaluating

different allocations. As mentioned earlier, we consider a problem setting where

anonymity holds.

In mathematical modelling, the three main approaches used in handling equi-

tability concerns are:
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- The Rawlsian approach: this approach incorporates equitability concerns by

focusing on the minimum amount allocated across the entities, i.e., the better the

worst-off entity the better the distribution.

- The inequality index based approaches: These approaches incorporate eq-

uitability concerns by using inequality indices. These indices evaluate and show

the level of inequality of a given distribution. The indices can be integrated into

the models either as an objective to be optimized or in a constraint.

- The inequity-averse aggregation function based approaches: In these ap-

proaches, an aggregation function of the distribution vector that encourages eq-

uitable distributions is used in the model. An inequity-averse function should

be symmetric (anonymity holds) and should emulate concerns with regards to

inequity-aversion.

[7] introduces the concept of equitable efficiency. They define a set of axioms

namely; reflexivity, transitivity, strict monotonicity, anonymity and Pigou-Dalton

principle of transfers on the decision makers’s preference model in defining eq-

uitable dominance. [8] calls an aggregation function in accordance with this set

of axioms an equitable aggregation function. Such functions must be strictly in-

creasing, symmetric and satisfy the principles of transfers (a strictly increasing

and strictly Schur-concave function). Any solution that maximizes an equitable

aggregation function is equitably efficient.

[8] presents aggregations for generating equitably efficient solutions to both

linear and nonlinear multi criteria optimization problems. [34] studies the ordered

weighted averaging (OWA) aggregation applied to multi criteria problems where

the criteria are considered to be uniform and the distribution of their values

are important. They analyse the solution procedures for linear programs with

OWA objective functions. [9] uses a cone based approach to study the equitable

preference structure. To find the equitably efficient solutions, they developed a

two step method. An epsilon constraint scalarization of the MOP is used to find

an efficient solution in the first step which is used in the second step to generate

an equitably efficient solution by solving a nonlinear problem.
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In this study, we propose a novel approach for generating evenly dispersed

equitably efficient solutions for E-MOPs. We also discuss an interactive approach

that extends the algorithm of [17] for equitable MOP. We perform experiments

and compare these approaches with an approach that finds the whole set of

equitably efficient solutions. Both algorithms are shown to be computationally

efficient. The first one indeed finds evenly spread equitably efficient solutions

and hence provides an informative subset of the Pareto frontier to the DM. The

second one can be used when there is access to preference information from the

DM.
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Chapter 3

Equitable Dominance and

Equitable Efficiency

Consider a generic multiobjective programming model with m objectives:

Model 1

Max“z1(x), z2(x), · · ·, zm(x)”

s.t.x ∈ X (3.1)

x denotes the vector of decision variables and X is the feasible decision space. In

the problems we consider, each objective function, zj(x), denotes the total output

received by entity j in a feasible solution x.

Note that the “max” operator used in these settings is not a well-defined

operator. Hence, solving these models refers to finding the most preferred solution

or a set of “good” solutions that are candidates to be the most preferred solution.

As mentioned in the previous chapter, the solution concepts applied in multiple

criteria decision making literature rely mainly on three ideas, namely: aggregating

the multiple objectives into one and maximizing this aggregate function; using

interactive methods that take preference information from the DM and reduce

the solution space based on her responses; and finding the non-dominated frontier

(or a subset of it) and presenting it to the DM for further consideration.
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Unlike a classical multiobjective programming setting, we assume that the

preference model of the DM reflects inequity-aversion, therefore we are interested

in finding the set of equitably efficient solutions. We now explain the equitable

dominance relation that we use in this study and define equitable efficiency.

The following dominance relation is used for a rational decision maker whose

preferences can be modeled with a weak preference relation, which is reflexive,

transitive and monotonic.

Definition 2 (Weak Classical (Rational) Dominance) Consider two solu-

tions to Model 1 with output vectors z, z′. z rationally dominates z′ (z′ 4r z) if

and only if z is preferred to z′ by all rational decision makers. i.e

z′ 4r z ⇐⇒ z′j ≤ zj for all j ∈M = {1, 2, ...,m}.

An output vector z is non-dominated if there is no z′ that dominates it. The

corresponding solution is called efficient. Note that any rational decision maker’s

preference relation is assumed to be in line with the classical dominance.

However, in our problem setting, we assume that the DM has equity concerns.

To reflect these concerns, we assume two more properties for the preference model,

namely: symmetry and Pigou-Dalton principle of transfers.

1. Symmetry: This property states that the decision maker is indifferent be-

tween a feasible solution with an output vector z and any other feasible

solution whose output vector is a permutation of the vector z. For exam-

ple, the DM is indifferent among (3, 5, 8), (5, 3, 8) and any other permutation

of these.

2. Pigou-Dalton principle of transfers: This property states that for any two

solutions that have same total output, if one solution is obtained by trans-

ferring output from a better-off entity to a worse-off one from the other

solution, then it is considered better. For example, the DM prefers (5, 5, 6)

to (3, 5, 8).
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A rational preference relation, which additionally satisfies symmetry and

Pigou-Dalton principle of transfers properties, is called an equitable preference

relation [7].

Definition 3 Consider two solutions to model 1 with output vectors z, z′. z

Equitably dominates z′ (z′ 4e z) if and only if z is preferred to z′ by all decision

makers with equitable preference relations.

A feasible solution with output vector z is equitably efficient if there is no z′ that

equitably dominates z. Note that equitable dominance is the generalized Lorenz

(GL) dominance discussed in the economics literature [35]. Hence we will refer

to z as equitably non-dominated (meaning nondominated in the GL sense).

Theorem 4 (Weak Equitable Dominance) z′ 4e z ⇐⇒
k∑
j=1

−→
z′ j ≤

k∑
j=1

−→z j

for all k ∈ M . The vector −→z is the ordered permutation of z with elements

ordered in a non-decreasing fashion, i.e, −→z j is a vector whose elements express

respectively: the minimum outcome, the second minimum outcome, the third min-

imum outcome, etc. of the outcome vector z.

Utilizing Theorem 4, finding equitably efficient solutions to Model 1 is equiv-

alent to finding efficient solutions to Model 2 below.

Model 2

Max “−→z 1,
−→z 1+

−→z 2, · · · ,
m∑
j=1

−→z j”

s.t. x ∈ X

zj = zj(x)

Model 2 above is not linear due to the use of the ordering operator
−→
(.). How-

ever, it has been shown in [34] that for any given output vector z, the cumulative
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ordered elements
k∑
j=1

−→z j for any k ∈M can be found by solving the model below:

Model 3

k∑
j=1

−→z j =Max k ∗ rk −
m∑
j=1

dkj

s.t rk−zj ≤ dkj ∀j ∈M (3.2)

dkj ≤ BM ∗ tkj ∀j ∈M (3.3)
m∑
j=1

tkj ≤k − 1 (3.4)

dkj ≥ 0 ∀j ∈M (3.5)

tkj ∈ {0,1} ∀j ∈M (3.6)

where BM is a sufficiently large constant and

tkj =

1, if −→z k > zj

0, otherwise

Moreover, it is shown in [34] that the optimization problem defining
k∑
j=1

−→z j above

can be greatly simplified since all the binary variables and their related constraints

can be eliminated without loss of generality as shown in the theorem below.

Theorem 5 For any given vector z ∈ <m, the cumulative ordered elements
k∑
j=1

−→z j for any k ∈M can be found by solving the problem below:

Model 4

k∑
j=1

−→z j =Max k ∗ rk −
m∑
j=1

dkj

s.t. ineq (3.2), (3.5)

It is noteworthy to state that model 4 has alternate optimal solutions (see
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[36]). An optimal solution is as follows; Let r∗k = −→z k and

d∗kj =


−→z k − zj, if −→z k ≥ zj

0, if −→z k < zj

Hence, we have the optimal value as kr∗k −
m∑
j=1

d∗kj = k−→z k −
∑

j:−→z k≥zj

(−→z k − zj) =

k∑
i=1

−→z i. Other alternative optimal solutions can be found by making r∗k = −→z k + c

where c is a positive constant. Consequently, we have d∗kj = −→z k + c − zj for

j : −→z k ≥ zj. Utilizing Theorem 5, Model 2 can be reformulated as follows:

Model 5

Max“y1, y2, · · · , ym”

s.t. yk −
(
k ∗ rk −

m∑
j=1

dkj

)
= 0 ∀k ∈M (3.7)

x ∈ X

zj = zj(x)

ineq. (3.2), (3.5)

Here, yk is the sum of the “k” smallest components of any output vector z.

For simplicity, let the feasible set of such y vectors in Model 5 be represented by

{y ∈ <m : y ∈ Y}. Model 5 above transforms the criteria space into cumulative

ordered criteria space. Finding the non-dominated solutions to this model is

equivalent to finding equitably efficient solutions to Model 1 (by Theorem 4).

Such a transformation is illustrated in Figure 3.1 below.

Figure 3.1a below shows eight non-dominated points in the classical dominance

sense plotted in the criteria space (in terms of the variables zk). These points

are Pareto optimal points in the rational dominance sense. However, we are in-

terested in finding the equitably efficient points among these. To achieve this,

we transform the space into the cumulative ordered criteria space (in terms of
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the variables yk) and find the non-dominated cumulative ordered vectors (y’s) as

shown in Figure 3.1b. It can be seen that the number of non-dominated points in

Figure 3.1b is less than that of Figure 3.1a (the set of equitable non-dominated

points is a subset of the set of non-dominated points (see [9]). This is a direct

result of the symmetry and Pigou-Dalton principle of transfers properties of the

equitable preference relation. The points (1, 15) and (15, 1) in Figure 3.1a corre-

spond to the point (1, 16) in Figure 3.1b. The points (5, 7) and (3, 10) in Figure

3.1a correspond to the points (5, 12) and (3, 13) respectively, in the cumulative

ordered space. These points are dominated by (6, 12) and (4, 13) respectively.

Moreover, it can be seen from Figure 3.1b that for the case when m = 2 (in 2D)

the transformed points lie in y2 ≥ 2y1 region of the space.
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Figure 3.1: Non-dom. points in criteria and cum. ordered criteria space

Note that the algorithms developed to find all Pareto optimal points for clas-

sical MOP can be used to find equitably efficient solutions. However, any such

algorithm should be modified so that one works on the cumulative space, leading

to the equitable MOP (Model 5). This modification is not always trivial due to

the ordering operator.

There are numerous efficient solutions (both in the classical and equitable

dominance sense) in large MOP problems and it may not be practical or useful

to generate them all. Therefore, approaches that generate a “good ” subset of
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the Pareto solutions are crucial.

One way of handling this computational challenge would be generating an

evenly distributed subset of the equitably efficient solutions and present them to

the DM. Another approach could be finding the solutions that are of interest to

the DM by incorporating her preferences into the solution procedure. We could

employ interactive approaches that take the DM’s preferences into account and

use the information to converge to a single most preferred non-dominated point.

In this paper, we discuss two such algorithms.

We first develop an algorithm that finds a set of evenly distributed equitably

efficient solutions to be presented to the DM. We then discuss the application of

another interactive algorithm that finds the set of equitably efficient solutions in

the preferred region of the DM. In both approaches, we work on the cumulative

ordered space since finding nondominated points in this space is equivalent to

finding equitably nondominated points in the original space.

In the next section we explain the algorithm we propose to generate evenly

distributed equitably non-dominated points.
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Chapter 4

Algorithm for Generating Evenly

Distributed Equitably

Non-Dominated Points (The

GEND Algorithm)

Our approach is based on fitting a hyperplane function that is close to the non-

dominated frontier in the cumulative ordered criteria space (hence nondominated

frontier in the Generalized Lorenz sense). We then select representative points

on the hyperplane, generate regions around those points and search those regions

for non-dominated points. This way, we generate a subset of the set of equitably

non-dominated solutions that is well spread.

The hyperplane could be placed at different positions relative to the non-

dominated frontier. Figure 4.1 below shows the hyperplane placed above the

non-dominated frontier for a maximization setting.
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Figure 4.1: Hyperplane fitted using point with maximum

total outcome value

In the next three subsections we explain the three main parts of the algo-

rithm, fitting the hyperplane, defining the regions to be explored and finding the

solutions within the specified regions.

4.1 Fitting the hyperplane

The hyperplane we fit is of the form
m∑
k=1

yk = p. We explore the strategy of fitting a

hyperplane that passes through the solution that has the maximum total outcome

value. Hence, we set p = {max
m∑
k=1

yk : y ∈ Y} to fit the hyperplane above the

frontier.

Alternatively, one could set p =
m∑
k=1

yck, where yc ∈ <m is the centrally located

equitably non-dominated point found by solving the equal-weighted Tchebycheff

program, Mch discussed in section 5.2.

4.2 Defining the regions

We define well spread regions in the cumulative ordered criteria space around

some selected representative points on the hyperplane fitted in section 4.1. As
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shown in Figure 3.1b, in <2, the non-dominated points in the cumulative ordered

criteria space are restricted to the region defined by the polyhedron Q = {y ∈ <2 :

y2 ≥ 2y1}. A similar analogy can be made for higher dimensional real spaces. For

example, in <3 the region is defined by Q = {y ∈ <3 : y2 ≥ 2y1, y3 ≥ 3y1, 2y3 ≥
3y2}. In general, we can state the proposition below:

Proposition 6 For any real space <m, let M = {1, 2, · · · ,m}. The non-

dominated points in the cumulative ordered criteria space are restricted to the

polyhedron Q = {y ∈ <m : jyk ≥ kyj forall j, k ∈M : k > j}.

The proof of Proposition 6 is provided in Appendix B. To define the regions,

we select a number of representative points yr, from the restricted polyhedron Q

that lie on the hyperplane defined in section 4.1, since proposition 6 implies that

there is no need to focus on the region outside Q.

Any representative point yr ∈ <m on the fitted surface will most likely be an

infeasible or dominated point. We define a region around it and find equitably

non-dominated points in the region. Note that the region defined around yr may

or may not contain any equitably non-dominated point in it. To assure obtaining

at least one such point, we generate the non-dominated point yrt ∈ <m, that is

at minimum Tchebycheff distance from the ideal point yIP in the direction of the

reference point yr by solving the problem below:

(Mchev)

Min ρmax + ε1 ∗
m∑
k=1

yk

s.t. ρmax ≥ λchvk (yIPk − yk) ∀k = 1, 2, · · · ,m. (4.1)

y ∈ Y

where ρmax measures the maximum component-wise weighted distance from the

ideal point yIP in the direction of the reference point yr and ε1 is a small enough

positive number.

The weight vector λchv ∈ <m, corresponds to the diagonal direction for the

reference point yr from the ideal point yIP . The general form of λchv given in

24



[37] (p.425) is as follows:

λchvk =



1
(yIPk −yrk)

[
m∑
j=1

1

(yIPj − yrj)

]−1
if yrk 6= yIPk ∀k ∈M

1 if yrk = yIPk

0 if yrk 6= yIPk but ∃j ∈M : yrj = yIPk

additionally, we also generate the Pareto optimal point yrl that is at minimum

equal weighted linear distance from the ideal point yIP by solving the problem

below:

(Mlinr)

Min
m∑
k=1

λlnrk (yIPk − yk)+ε1 ∗
m∑
k=1

yk

s.t. y ∈ Y

where λlnrk = 1
m

for all k = 1, 2, · · · ,m.

Note that for all k ∈ M , the element of the ideal point in the cumulative

ordered criteria space, yIPk , is found by solving max {yk : y ∈ Y}.

For any representative point yr, let yrt and yrl be the optimal solutions ob-

tained from solving Mchev and Mlinr respectively. We determine the region by

defining upper and lower bound as in [17]. We define the kth element of the

upper bound UBk to be max(yrtk, yrlk) and that of the lower bound LBk to be

min(yrtk, yrlk) as illustrated in Figure 4.2a below. Note that we have multiple

reference points, hence there is a possibility of generating intersecting regions as

shown in Figure 4.2b below. However, if the reference points are chosen in a nice

fashion (as shown in section 5), the size of the intersecting areas of the regions

can be mitigated. Furthermore, we could unify the intersecting regions in order

to eliminate the possibility of generating any solution from two or more generated

regions.
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Figure 4.2: Generating regions around reference points

In the next section, we explain the exact algorithm we used to generate the

equitably non-dominated points in the regions defined in section 4.2.

4.3 Finding the equitably non-dominated points

in the defined regions

The exact algorithm we use in this section is based on the epsilon-constraint

scalarization method (see [22]). The algorithm generates equitably non-

dominated points in evenly distributed subsets of the feasible set, i.e. the regions

generated in section 4.2. To explore each region, we solve scalarization models

with additional constraints LBk ≤ yk ≤ UBk k = 1, 2, · · · ,m, where LBk and

UBk are as explained in section 4.2.

We initialize the algorithm by arbitrarily choosing a region, r to begin with

and a criterion, n. Then we solve the model below (M0
n) to obtain the solution
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that maximizes the nth criterion in the region.

(M0
n)

Max yn + ε1 ∗
∑
k 6=n

yk

s.t.

yk ≥ LBk ∀k = 1, 2, · · · ,m (4.2)

yk ≤ UBk ∀k = 1, 2, · · · ,m (4.3)

y ∈ Y

where ε1 is as in section 4.1 and the augmented part of the objective function

(term with ε1) is used to make sure the model does not return a dominated

point in the region. The optimal solution to the model (M0
n) above, denoted by

ŷ0 ∈ <m, may or may not be dominated by a feasible point outside the region.

We solve the (MDω
n) model below with ω = 0 to check whether the point ŷ0 is

dominated or not.

(MDω
n)

Max yn + ε1 ∗
∑
k 6=n

yk

s.t.

yk ≥ ŷωk ∀k = 1, 2, · · · ,m (4.4)

y ∈ Y

Let the optimal solution to (MD0
n) be y0 ∈ <m. If y0k = ŷ0k for k = 1, 2, · · · ,m,

then ŷ0 is a non-dominated point. ŷ0 is then placed in Ωr; the set that contains all

the equitably non-dominated points in this region. We repeatedly generate new

points in this region and check whether every obtained point is non-dominated

or not. At every iteration ω, we use the epsilon constraint scalarization to find a

new point yω. To make sure that the scalarization model provides a new solution,

we utilize additional constraints that ensure that the new point is unique and not

dominated by already generated points, including the ones generated outside the

region.
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At every iteration ω of the algorithm (for ω > 0) a unique equitably non-

dominated point is generated by solving model the model below (Mω
n ), until it

becomes infeasible.

(Mω
n )

Max yn + ε1 ∗
∑
j 6=n

yj

s.t.

yk ≥ (ŷτk + 1)hτk −BM(1− hτk) ∀τ = 0, · · · , ω ∀k 6= n (4.5)∑
k 6=n

hτk = 1 ∀τ = 0, · · · , ω (4.6)

hτk ∈ {0, 1} ∀τ = 0, · · · , ω ∀k 6= n, (4.7)

y ∈ Y

ineq. (4.2), (4.3)

If (Mω
n ) is feasible, the solution found, ŷω is a non-dominated point in this

region and it is not identical to any of previously generated points in Ωr. This is

guaranteed by using auxiliary binary variables hτk and constraints 4.5 and 4.6,

which ensure that the solution is better than the previously found solutions in at

least one criterion. Then MDω
n is solved to see if ŷω is a non-dominated solution

of the original model and if so, it is added to Ωr.

We implement the algorithm in every region and find the equitably non-

dominated points in the regions. The set Ω = Ω1 ∪Ω2 ∪ · · · ∪Ωp is the collection

of generated equitably non-dominated points. Hence, we obtain subsets of the

non-dominated frontier that lie on different parts of the frontier.

In a nutshell, the GEND algorithm is as follows:

Step 1: Fit a hyperplane to the frontier as shown in section 4.1

Step 2: Select p reference points on the fitted surface as shown in section 4.2.

Step 3: Generate non-dominated solutions in the neighbourhood of the selected
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points. Find the points yrt and yrl and define a region with upper and

lower bounds as shown in section 4.2.

Step 4: Generate the equitably non-dominated points in the regions defined in

step 3 above.

a: (Initialization). Enumerate the p regions. Select the first region (set

r = 1) to explore and a criterion, n, to maximize. Set ω = 0,Ω = ∅
and Ω1 = ∅.

b: (Generating a new point). Solve the (Mω
n ) model. If (Mω

n ) is feasible,

denote the optimal point as ŷω ∈ <m and go to step 4c. Otherwise,

go to step 4d.

c: (Checking for dominance). Solve (MDω
n) to check whether ŷω is non-

dominated. Let the optimal solution be yω. If yωk = ŷωk for k =

1, 2 · · · ,m, then Ωr ∪ ŷω → Ωr. Go to step 4b.

d: Stop. Ωr contains all the equitably non-dominated points in region r.

e: If r = p, stop, Ω = Ω1 ∪Ω2 ∪ · · · ∪Ωp. Else, set r+ 1 −→ r, set ω = 0,

Ωr = ∅ and go to Step 4b.

In the next section, we use an interactive approach to determine a highly preferred

region containing attractive solutions for the DM. This approach is based on

the algorithm proposed in [17]. We modify the algorithm so as to work in the

cumulative ordered criteria space and obtain equitably efficient solutions to a

MOP problem. We find a highly preferred reference point close to the non-

dominated frontier in the cumulative ordered criteria space, define a region around

it and generate the equitably non-dominated points in the region.
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Chapter 5

Algorithm for generating the

equitably non-dominated points

in the preferred region (The

GNDPR Algorithm)

In this approach, the DM chooses a reference point from a surface that is close to

the real non-dominated set. The surface is obtained by fitting an Lq function, as

in [38]. We interact with the DM to inquire about a preferred region and find the

equitable Pareto optimal points lying in the region. This interactive algorithm

applies the approach proposed by [17] to E-MOP.

5.1 The Lq function

The Lq function happens to be a very good approximation for the non-dominated

set of multi-objective combinatorial optimization (MOCO) problems as shown in

[39]. The hyper-surface we fit is an Lq function defined by
m∑
k=1

(1− y′k)
q

= 1
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where q > 0 and y′ = (y′1, y
′
2, · · · , y′m) is the scaled non-dominated point with

y′k =
yIPk − yk
yIPk − yNPk

such that 0 ≤ y′k ≤ 1 for all k = 1, · · · ,m. Here, yIP and

yNP represent the ideal and nadir vectors, respectively. Let ND represents the

set containig all the equitable Pareto optimal points of model 5, then yNPk =

min {yk : y ∈ ND}. The nadir vector is easily computed in the biobjective case

but in general when m ≥ 2 it is laborious since one has to generate all the points

of the Pareto set for a given problem instance. In this study, we generated all

the equitable Pareto optimal points for our computational purposes, hence we

utilize the real nadir points. However, a practical approach to find exact nadir

points for biobjective and triobjective optimization problems was developed in

[40]. More recently, an efficient algorithm that finds the nadir points for MOIP

problems was developed in [41] and could be used for the related problem.

After scaling the criteria, the points (0, 0, · · · , 0) and (1, 1, · · · , 1) correspond

to the ideal and nadir points respectively and the transformed problem becomes

a minimization problem regardless of the form of the original model. The better

output vectors will have smaller values in the scaled output vectors; as the value

of yk approaches the value of yIPk , y′k approaches zero.

5.2 Fitting the Lq Surface

It is empirically shown in [39] that a good approximation of the Pareto frontier is

obtained by fitting the Lq surface using a middle-most non-dominated point. We

follow the same idea. We find a centrally located point in a Tchebycheff distance

manner. In our problem, we find the central point yc by solving Mch below.

(Mch)

Min α− ε1 ∗
m∑
k=1

yk

s.t. α ≥ yIPk − yk ∀k = 1, 2, · · · ,m. (5.1)

y ∈ Y
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where yIP ∈ <m is the ideal point whose kth component yk, is found by solving

max{yk : y ∈ Y}. It is well known that the augmented Tchebycheff program

above returns a non-dominated point as shown in [37] (p.420).

Once we find the centrally located point yc, we solve the non-linear equation
m∑
k=1

(1− yc′k)
q

= 1 for q. This assures that the Lq surface passes through the

scaled point yc′ ∈ <m, where yc′ = (
yIP1 − yc1
yIP1 − yNP1

,
yIP2 − yc2
yIP2 − yNP2

, · · · , y
IP
m − ycm
yIPm − yNPm

).

5.3 Defining the region and finding the pre-

ferred equitably non-dominating points

Having fitted the Lq surface as shown in section 5.2, we define the DM’s preferred

region. Here, we try to select a preferred point, yp′ ∈ <m on the surface. This

point is typically infeasible and we interact with the decision maker to select it.

Most likely, the point yp′ on the fitted surface will not be a feasible point,

so it is used only as a reference point. We use it to define the preferred region

from where we generate the equitably efficient solutions. Similar to the previous

algorithm, we find two equitably non-domintaed points ypt′ and ypl′ that are

closest to the scaled ideal point y′IP = (0, · · · , 0).

ypt′ is found by solving the (M ′
chev) model below:

(M ′
chev)

Min ρmax + ε2 ∗
m∑
k=1

y′k

s.t. ρmax ≥ λchvk y′k ∀k = 1, 2, · · · ,m. (5.2)

y′k = (yIPk − yk)/(yIPk − yNPk ) ∀k = 1, 2, · · · ,m. (5.3)

y ∈ Y

where ρmax measures the maximum component-wise weighted distance from the

ideal point in the direction of the reference point yp′.
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The weight vector λchv ∈ <m, is as in section 4.2. Since in our problem the

scaled ideal point y′IP is vector of zeros, the weight vector λchv reduces to the

following:

λchvk =


1
yp′k

[
m∑
k=1

1

yp′k

]−1
if yp′k 6= 0 ∀k ∈M

1 if yp′k = 0

0 if yp′k 6= 0 but ∃j ∈M : yp′j = 0

ypl′ is found by solving the (M ′
linr) model below:

(M ′
linr)

Min
m∑
k=1

λlnrk y′k + ε2 ∗
m∑
k=1

y′k

s.t.

y ∈ Y

ineq. (5.3)

as shown in [37] (page 168) the weight vector λlnr ∈ <m is formulated as follows:

λlnrk =
(1− yp′k)q−1
m∑
j=1

(1− yp′j)q−1
∀k = 1, 2, · · · ,m and q > 1

.
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Figure 5.1: Generating the preferred region when q > 1

Let ypt′ and ypl′ be the optimal solutions obtained from solving M ′
chev and

M ′
linr respectively. We determine the region by defining upper and lower bounds.

Let the kth element of the scaled upper bound UB′k be defined as max(ypt′k, ypl
′
k)

and that of the scaled lower bound LB′k be min(ypt′k, ypl
′
k). This is illustrated in

Figure 5.1 above.

In the rare case when we have q ≤ 1, we set the kth element of the upper bound

as UB′k = ypt′k, and the define the region as follows: y′k ≤ UB′k for k = 1, 2, · · · ,m
(see Figure 5.2 below).

34



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

yp′

ypt′ = UB′

y′1

y
′ 2

Figure 5.2: Region generated when q ≤ 1

To find the equitably efficient solutions in this region, we transform the region

to cumulative ordered space using UBk = yIPk − UB′k ∗ (yIPk − yNPk ) and LBk =

yIPk −LB′k∗(yIPk −yNPk ) and obtain the additional constraint LBk ≤ yk ≤ UBk for

k = 1, 2, · · · ,m. Now, we have a region similar to the ones generated in section

4.2. Hence, we can directly apply the algorithm in section 4.3 and generate the

highly preferred equitably efficient solutions.

In a nutshell, the GNDPR algorithm is as follows:

Step 1: Find the yIP and yNP of the E-MOP.

Step 2: Find a centrally located non-dominated point (yc) by solving the equal-

weighted Tchebycheff distance model, (Mch) and scale it as shown in

section 5.2.

Step 3: Fit an Lq function on the scaled centrally located point(yc′) and ask the

DM to choose a preferred point (yp).

Step 4: Find the non-dominated points ypt′ and ypl′. Then define a region with

upper bounds and lower bounds as shown in section 5.3

Step 5: Generate the equitably non-dominated points in the region defined in

step 4 above.

a: (Initialization).Transform the region defining bounds to the cumula-

tive criteria space and select a criterion, n, to be maximized. Set

ω = 0,Ω = ∅.
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b: (Generating a new point). Solve the (Mω
n ) model. If (Mω

n ) is feasible,

denote the optimal point as ŷω ∈ <m and go to step 5c. Otherwise,

go to step 5d.

c: (Checking for dominance). Solve (MDω
n) to check whether ŷω is non-

dominated. Let the optimal solution be yω. If yωk = ŷωk for k =

1, 2 · · · ,m, then Ω∪ ŷω → Ω and go to step 5b. Otherwise, go to step

5b.

d: Stop. Ω contains all the equitably non-dominated points in the pre-

ferred region.
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Chapter 6

Computational Experiments

In this section, we illustrate the two approaches on equitable multi-objective

knapsack problems. The classical multi-objective binary knapsack problem is

an extension of the single-objective binary knapsack problem where each item

is associated with a vector of outputs instead of a single output value. The

single objective knapsack problem is one of the classical problems studied in the

operational research literature ([42],[43]). There have been recent studies aiming

at developing fast and efficient exact solution algorithms to multi(bi)-objective

knapsack problems ([44],[45],[46],[47]).

[44] considers bi-objective binary knapsack problems and proposes a two-

phases method in generating the set of efficient solutions of these problems. The

supported efficient solutions are generated in the first phase using a weighted

sum scalarization approach. The second phase involves finding the unsupported

efficient solutions using branch and bound based approaches. [45] studies multi-

objective binary knapsack problems and proposes a dynamic programming based

approach to generate the efficient solutions of these problems. [46] and [47] present

improvements on the dynamic programming based approaches to solving multi-

objective binary knapsack problems. They compare their approaches with the

existing exact methods in the literature. Also, [46] performed experiments for

the tri-objective case.
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We will consider multi-objective binary knapsack problems where the decision

maker has equity concerns (E-MOBKP). We assume that the preference model

of the decision maker satisfies properties related to inequity-aversion and try to

find the set of equitably efficient portfolios that result in non-dominated output

vectors in the Generalized Lorenz sense.

Consider a setting where there are n project proposals that provide outputs to

m entities. Let M = {1, 2, · · · ,m} be the set of entities and N = {1, 2, · · · , n}
be the set of proposals. Every project i is expected to generate an output value

of oij for entity j and consumes ci units of resources. Assume that the decision

maker would like to select and fund a portfolio of these projects, which results

in an equitable distribution of outputs across the m entities. The total amount

of available resource is denoted by B, which is generally not enough to initiate

all the projects. The decision to be made here, is whether to initiate a project or

not, i.e. partial funding is not possible. The decision variables are as follows:

xi =

1, if project i is initiated

0, otherwise

The mathematical model of this problem is given below:

Max“y1, y2, · · · , ym”

s.t. yk −
(
k ∗ rk −

m∑
j=1

dkj

)
= 0 ∀k ∈M (6.1)

n∑
i=1

ci ∗ xi ≤ B (6.2)

zj −
n∑
i=1

oij ∗ xi = 0 ∀j ∈M (6.3)

rk − zj ≤ dkj ∀j, k ∈M (6.4)

dkj ≥ 0 ∀j ∈M (6.5)

xi ∈ {0, 1} ∀i ∈ N (6.6)

We performed experiments to see whether the proposed algorithms provide
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satisfactory results. The experiments were conducted on randomly generated

multi-objective knapsack problems with three and five objectives (entities (m)).

In these instances, the weights (costs) and the output values are generated ran-

domly using uniform distributions. We generate ci and oij in the range [1, 1000].

Different values are used for the total number of items n. For each combination

of m and n, 10 problem instances are generated. For every instance, the total

budget B is set as
n∑
i=1

ci/2.

The algorithms are coded in Visual C++ and solved by a computer with an

Intel Xeon E5 3.60 GHz processor and 32 GB RAM. The solution times are

expressed in central processing unit (CPU) seconds. All mathematical models

are solved with CPLEX 12.7.

As stated before, there is a rich literature and very fast solution approaches for

the two criteria setting. Unfortunately, this is not the case for problems with more

than two criteria. This motivates us to apply our algorithms to the three and five

criteria settings. We first performed experiments for the three criteria settings

(m = 3). We generated the whole equitably non-dominated frontier for these

problem instances using the epsilon constraint method [48] in the cumulative

ordered space. The computational effort increases significantly as the number

of projects (n) increases as shown in Table 6.1 below. Moreover, the average

number of solutions found is also increasing. In the case where n = 200, we

have a problem instance with 2143 solutions. Generating all the points may be

computationally inefficient. Moreover, it may not be practical to expect the DM

to make comparisons among such a large set of points to find the most preferred

one.

In an attempt to remedy this situation, we could put a time limit on the epsilon

constraint method, so as not to generate the whole Pareto set. However, this fails

to return solutions that represent different sections of the Pareto. To that end,

we apply the GEND algorithm.

For the GEND algorithm, we perform experiments for hyperplanes fitted using
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Table 6.1: Results of the epsilon-constraint method when m = 3

Solution times(secs) No of solutions
n Min Avg Max Min Avg Max

50 0.86 13.66 62.4 5 19.9 58
100 0.33 89.2 257.02 2 44.5 105
150 0.15 180.71 1222.12 1 47.6 205
200 6.25 44535.85 429475.14 9 363.9 2143

the point with maximum total benefit (
∑m

k=1 yk) as shown in section 4.1. Let the

maximum total be p. The hyperplane we fit is of the form
m∑
k=1

yk = p.

For every problem instance, we implemented the algorithm with a set of five

reference points. Due to Proposition 6, the reference points we select on the

hyperplanes are restricted to the polyhedron Q and should have a total benefit of

p. For the tri-objective case, we have the set {yr1, yr2, yr3 ∈ <+ : yr1+yr2+yr3 =

p, yr3 ≥ 3yr1, 2yr3 ≥ 3yr2, yr2 ≥ 2yr1}. Moreover, we can define each element

of the reference point yrk as a fraction of p, i.e, we define a weight vector µ ∈ <3

where yrk = µk ∗ p,
m∑
k=1

µk = 1 and µk ≥ 0 ∀k ∈M .

So in <3, the problem reduces to that of finding µ values that lie in the polyhe-

dron Qµ = {µ ∈ <3 :
3∑

k=1

µk = 1, µ3 ≥ 3µ1, 2µ3 ≥ 3µ2, µ2 ≥ 2µ1, µk ≥ 0 ∀k ∈M}.

We search the weight space to find weight values lying in the Qµ polyhedron.

Firstly, we solve min {s : µ3 ≥ 3µ1 + s, 2µ3 ≥ 3µ2 + s, µ2 ≥ 2µ1 + s,

3∑
k=1

µk =

1, µk ≥ 0 ∀k ∈M} to find a feasible weight vector in Qµ. Note that we have also

tried different versions of this model, e.g. one that maximizes s so as to find a mid-

dlemost feasible solution. However, the performances of the resulting weights were

inferior to those found by minimizing s. We obtain µ1 = (0.167, 0.333, 0.5) which

represents the weight that simultaneously maximizes yr1 and yr2 in Q. To gener-

ate points in other regions, we solve the first model with additional simple bounds

on the values of µ1 and µ2. The second weight vector µ2 = (0.158, 0.328, 0.514) is

generated by adding the constraints {0.158 ≤ µ1 ≤ 0.16, 0.328 ≤ µ2 ≤ 0.33}.

40



Similarly, we add the constraints {0.16 ≤ µ1 ≤ 0.167, 0.328 ≤ µ2 ≤ 0.33}
to generate the third weight vector µ3 = (0.16, 0.33, 0.51). Two more weights

µ4 = (0.1636, 0.3289, 0.5075) and µ5 = (0.165, 0.33, 0.505) are generated in a sim-

ilar fashion. Due to the structure of the weights, extreme weights like (1, 0, 0)

and (0, 1, 0) will result in the generation of reference points outside Q and hence

these weights are not in the feasible weight space Qµ.

Table 6.2: Performance of the GEND algorithm on instances with m = 3

Solution times(secs) No of Solutions found

n Min Avg Max Min Avg Max

50 0.48 1.35 2.11 2 (25.86%) 7.70 (42.93.3%) 15 (68.75%)

100 0.43 10.36 49.25 1 (19.05%) 23.70 (47.06%) 92 (87.62%)

150 0.70 34.29 233.74 1 (4.65%) 21.40 (35.98%) 121 (100%)

200 1.54 767.94 4261.84 1 (3.57%) 113.80 (29%) 446 (72.52%)

Table 6.2 reports the performance of the GEND algorithm on instances with

three entities. The solution times and number of equitably non-dominated solu-

tions found are reported. We also report what percentage of the whole equitably

non-dominated set is found by the GEND algorithm. The minimum (Min), aver-

age (Avg) and maximum (Max) of CPU times and solutions found are taken over

the ten random instances generated for every value of n. We also calculated the

percentages of solutions found for every problem instance solved and report the

minimum (Min), average (Avg) and maximum (Max) of these percentages over

the 10 problem instances for every n value (the percentages in the bracket). For

n = 200, the average solution time is very high due to the problem instance with

2143 solutions. Removing this instance will reduce the average solution times to

1764.82 seconds and 514.10 seconds for the epsilon constraint method and the

GEND algorithm respectively. We can observe that on average we generate a sig-

nificant portion of the equitably non-dominated set in a fraction of the average

time it takes to generate the whole set for different n values given in Table 6.1.

We also report the average time it takes to generate a non-dominated point in
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Table 6.3 below. We compare the average time it takes per solution in the GEND

algorithm and the epsilon constraint method. As we can see, it takes considerably

less time to generate a solution in the GEND algorithm compared to the epsilon

constraint method for all values of n.

Table 6.3: Average time to generate a solution(in seconds)

n Average time per solution (GEND) Average of time per solution (whole Pareto)

50 0.20 0.48
100 0.44 1.35
150 0.96 1.88
200 2.95 26.01

To check the spread of the solutions, we divided the cumulative criteria space

into 125 boxes of equal dimensions. As expected, only some of the boxes contain

real equitably non-dominated points. For these boxes, we report in Table 6.4,

the minimum (Min), average (Average) and maximum (Max) percentage of the

solutions found by the GEND algorithm. In a similar fashion, we report on

the percentage of the boxes that at least one solution is found by the GEND

algorithm. As seen in Table 6.4, the algorithm is able to find representative

solutions in 40% to 50% of the non empty boxes on average. Moreover, in each

box covered, a satisfactory percentage of the solutions in that box is generated

by the GEND algorithm. Also, the percentages tend to drop as the problem gets

larger (from 40.06% to 26.41%)

Table 6.4: Spread of solutions

% of solutions % of boxes that
in boxes contain solutions

n Min Avg Max Min Avg Max

50 16.67 40.06 61.54 16.67 42.97 61.54
100 18.46 44.50 78.52 23.08 51.58 81.82
150 2.63 32.29 100 10.53 41.18 100
200 1.91 26.41 65.63 5.56 39.51 81.82

Also, we performed initial experiments with the hyper-surface fitted using

a centrally located equitably efficient point. We observe that both strategies

perform similar in terms of the solution time and the number of solutions found.

This is due to the observation that the two surfaces are very close to each other.
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In an attempt to converge to a single or a few most preferred points given

preference information from the DM, we made experiments for the GNDPR algo-

rithm. We randomly select the preferred point on the Lq function but the DM’s

responses could also be simulated using different value functions like weighted lin-

ear, Euclidean, or Tchebycheff functions to find a point on the Lq that is closest

to the scaled ideal point (0, 0, · · · , 0). In practice, to determine such a preferred

point, one could select a set of points that cover different regions of the Lq surface

and ask the DM to select the best point among them. Table 6.5 below reports

the performance of the GNDPR algorithm on the same set of problem instances

used for the GEND and epsilon constraint algorithms. We report the average

solution times, average number of solutions found and average time per solution

for the different n values used. The percentages indicate these values as per-

centages of the solution time and the number of solutions in the whole equitably

non-dominated set.

Table 6.5: Performance of the GNDPR algorithm on instances with m = 3

n Avg solution time Avg number of solutions found Avg time per solution

50 1.05 (34.45%) 2.40 (15.58%) 0.53
100 0.61 (24.94%) 1.60 (11.30%) 0.42
150 1.01 (19.87%) 2.20 (16.13%) 0.49
200 12.91 (1.29%) 11.40 (4.36%) 0.68

Figure 6.1 shows the solutions returned by the epsilon-constraint method, the

GEND algorithm and the GNDPR algorithm for an example case (this is the

instance with the highest solution time). As seen in Figure 6.1b the GEND

algorithm returns solutions that represent different sections of the frontier. Also,

Figure 6.1c shows the most preferred solutions of the DM returned by the GNDPR

algorithm. In Figure 6.2 another example is shown. It is seen that the GEND

algorithm performs quite well in terms of the representativeness. It actually finds

more than 50% of the solutions in around 20% of the time it takes to generate

the whole set.
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Figure 6.1: Equitably non-dominated points for an example case
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Figure 6.2: Equitably non-dominated points for an example case

We also performed experiments for the five criteria setting. We use three

reference points. We use the weights (0, 0, 0, 0.22, 0.78), (0, 0, 0.33, 0.25, 0.42) and

(0.05, 0.1, 0.15, 0.2, 0.5) generated in a similar fashion to that of the tri-objective

case. Table 6.6 below reports the performance of this algorithm on the instances

with five criteria. The minimum (Min), average (Avg), and maximum (Max) of

computational times and number of solutions are reported.
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Table 6.6: Performance of the GEND algorithm on instances with m = 5

Solution times(secs) No of Solutions found

n Min Avg Max Min Avg Max

50 0.27 1.05 2.96 2 3.5 6

100 0.69 17.29 112.01 3 19.6 87

150 1.61 740.36 6223.67 3 57.8 209

200 6.28 2177.34 16122.66 5 53.5 223

For the GNDPR algorithm, Table 6.7 below reports the average solution times,

average number of solutions found and average time per solution. Since this

algorithm only focuses on a single region around a selected point, the number of

solutions found and solution times are smaller than those of the GEND algorithm.

Table 6.7: Performance of the GNDPR algorithm on instances with m = 5

n Avg solution time Avg number of solutions found Avg time per solution

50 0.91 1.2 0.78

100 1.10 1.8 0.66

150 3.50 3.8 0.86

200 7.96 5.3 1.29

Note that even the single objective binary knapsack problem is NP-hard.

Hence generating the equitable non-dominated frontier of the multi-objective ver-

sion is computationally challenging, as seen in Table 6.1. We observed that the

GEND algorithm generates a subset of the frontier in reasonable CPU time. The

points generated are not concentrated in a specific area of the cumulative ordered

criteria space, but rather located in different regions of this space. We generate a

good representative subset in only a fraction of the time it takes to generate the

whole frontier.

As seen in Tables 6.5 and 6.7, the number of solutions generated by the
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GNDPR algorithm is relatively fewer than those of the GEND and the epsilon-

constraint algorithms. This considerably reduces the computational effort. How-

ever, this method relies on preference information taken from the DM. For m ≥ 3,

the Lq function used in approximating the frontier may be computationally dif-

ficult to handle and visualize. This might make defining the preferred region a

difficult task for the DM.
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Chapter 7

Conclusion

We consider multi objective optimization problems where the decision maker is

inequity averse, hence she is interested in finding equitably efficient solutions.

These solutions are non-dominated in the Generalized Lorenz sense, and called

equitably non-dominated. We discuss two solution approaches that differ in terms

of the timing of preference articulation.

In the first approach, we aim to generate an evenly spread subset of the set

of equitably non-dominated solutions to be presented to the DM for further con-

sideration. We analyse the cumulative criteria space and fit a simple function

close to the Pareto in the cumulative ordered criteria space. We then select ref-

erence points on the fitted function and generate regions around these points.

Finally, we find the equitably efficient solutions in these regions. To the best of

our knowledge, this is the first study proposing such an approach for equitable

multi-objective programming problems.

The second approach is an interactive approach that relies on input from the

DM during the solution process. We extend a recent approach proposed for

finding non-dominated points in a “preferred” region such that equitably non-

dominated points are found. This extension is not straightforward since we work

on the cumulative ordered space. We discuss results on choosing appropriate
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reference vectors for such problems.

We illustrate the computational feasibility of the algorithms on equitable knap-

sack problems, that fund projects in different categories subject to a limited bud-

get. Such problems are especially relevant in public service provision as categories

may correspond to various population groups benefiting from the service. The

experiments demonstrate that the proposed algorithm returns a well-spread set

of solutions in reasonable time. The interactive algorithm is also computation-

ally very efficient as it benefits from the information provided by the DM and

generates a small number of solutions in the preferred region.

This study can be extended by working on developing faster algorithms for gen-

erating non-dominated points in the defined regions for larger problem instances

(in terms of m and n) in reasonable time. We can also investigate the applica-

tion of some evolutionary and meta-heuristic approaches in approximating the

equitably non-dominated frontier and generating diverse solutions. Also, another

version of the GNDPR could be developed, where an easier-to-handle function

than the Lq function is used to approximate the equitably non-dominated fron-

tier.
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Appendix A

Nomenclature

y A vector in the cumulative ordered space

y′ Scaled cumulative ordered vector

yIP Ideal point in the cumulative ordered space

yNP Anti-ideal (Nadir) point in the cumulative ordered space

yc Centrally located y using equal-weighted Tchebycheff program

yp′ Highly preferred point on the Lq function

yr Reference point on the hyperplane

ypt′, (yrt) Closest non-dominated point from y′IP (yIP ) in a Tchebycheff distance manner

ypl′, (yrl) Closest non-dominated point from y′IP (yIP ) in a linear distance manner

ŷ A non-dominated point in the searched region

y A non-dominated point for the original problem
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Appendix B

Proof of Proposition 6

We know that for M = {1, 2, · · · ,m}:
y1 = −→z 1

y2 = −→z 1 +−→z 2
...

ym = −→z 1 +−→z 2 + · · ·+−→z m

and −→z 1 ≤ −→z 2 ≤ · · · ≤ −→z m

Lets prove Proposition 6 by induction. The base case is at m = 2 where M =

{1, 2}. To show that Proposition 6 holds for the base case, we need to show that

y2 ≥ 2y1.

Since by definition y1 = −→z 1 and y2 = −→z 1 + −→z 2 where −→z 2 ≥ −→z 1, then y2 =
−→z 1 +−→z 1 + ε ≥ 2−→z 1 = 2y1 where ε ≥ 0. Hence y2 ≥ 2y1.

Hypothesis 1: Lets assume that Proposition 6 holds for m = s.

To complete the proof, we need to show that Proposition 6 holds for m = s+ 1.

Due to Hypothesis 1, we just have to show that Proposition 6 holds for the

following combinations of (j, k): (1, s+ 1), (2, s+ 1), · · · , (s, s+ 1). We can show

this by induction too.

First we show that ys+1 ≥ (s+1)y1. Due to Hypothesis 1, we know that ys ≥ sy1.

Since −→z s+1 ≥ −→z 1 = y1, then ys+−→z s+1 ≥ sy1 +−→z 1 = sy1 +y1 = (s+1)y1. Hence

ys+1 ≥ (s+ 1)y1.

Hypothesis 2: Lets assume that (s− 1)ys+1 ≥ (s+ 1)ys−1.
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We know that −→z s+1 ≥ −→z s.

Then −→z s+1 = ys+1 − ys ≥ −→z s = ys − ys−1,
⇒ ys+1 ≥ 2ys − ys−1, multiply both sides by s ≥ 0

⇒ sys+1 ≥ 2sys − sys−1 ⇒ sys+1 ≥ (s+ 1)ys + (s− 1)ys − sys−1︸ ︷︷ ︸
≥0, Due to Hypothesis 1

.

Hence sys+1 ≥ (s+ 1)ys. Therefore, Proposition 6 holds in any space <m.
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