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ABSTRACT

CHAIN MAPS BETWEEN GRUENBERG
RESOLUTIONS

Miige Fidan
M.S. in Mathematics
Advisor: Ergiin Yalc¢in
July 2018

Let G be a finite group. For a given presentation of G = (F|R), Gruenberg
gives a construction of a projective resolution for Z as a ZG-module. This
resolution, which is called Gruenberg resolution, only depends on the ideals
Ip :=ker{ZF — Z} and J := ker{ZF — ZG} (see [1]). We write standard reso-
lution as a Gruenberg resolution by following the construction of Gruenberg [2].
We get an explicit chain map formula between Gruenberg resolution for standard
presentation and the Gruenberg resolution for the usual presentation of a cyclic
group. Then we write an explicit chain map formula between any two Gruenberg

resolutions. We also give some calculations with Gruenberg resolution.

Keywords: projective resolution, cohomology, Gruenberg resolution, chain map.
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OZET

GRUENBERG COZUCULERI ARASINDAKI ZINCIR
DONUSUMLERI

Miige Fidan
Matematik, Yiiksek Lisans
Tez Danigmani: Ergiin Yalgin
Temmuz 2018

G sonlu bir grup olsun. Verilen G = (F|R)’nin takdimi i¢in, Gruenberg bir ZG-
modiil olarak Z'nin bir projektif ¢oziiciisiniin nasil insa edilebilecegini gosteriyor.
Gruenberg ¢oziicti olarak adlandirilan bu ¢oziicii sadece I := ker{ZF — Z} ve
J :=ker{ZF — ZG} ideallarina baghdir [1]. Gruenberg’in metodunu kullanarak
Gruenberg ¢oziicii olarak standart takdimi kullanarak ¢oziiciiyii elde ediyoruz [2].
Standart takdim i¢in Gruenberg ¢oziicii ile devirli grubun takdimi i¢in Gruenberg
¢oziicl arasindaki zincir doniigtimiintin agik formiiliinii elde ediyoruz. Daha sonra
herhangi iki Gruenberg ¢oziicli arasindaki zincir doniigiimiiniin nasil bulunacagini

gosteriyoruz. Ayrica Gruenberg ¢oziicii ile baz1 hesaplamalar yapiyoruz.

Anahtar sozciikler: projektif ¢oziicii, kohomoloji, Gruenberg c¢oziicii, zincir

dontigiimii .
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Chapter 1

Introduction

Let G be a group. A presentation of GG is a short exact sequences of groups
I1-R—-F5G—1

where F' is a free group. By using a given presentation, Gruenberg gave a con-
struction of a projective resolution of Z as a ZG-module in [1] and [2]. The
Gruenberg resolution depends only on augmentation ideal Ir := ker{ZF < Z}
and the two-sided ideal J := ker{ZF - ZG}. The Gruenberg resolution is a

Z.G-free resolution of Z of the form

NN Yy u— § Y ) J)J? Ip)Jlp —">7G—~17 0.

Let us denote Fyy, := J*/J* 1 and Fyy,_y := J* 1/ J5 I for k > 1. Using stan-
dard presentation, Gruenberg presented a ZG-free resolution of Z expressing
with bar notation in [2]. Then he showed the differentials induced by inclu-
sions dy, : For, — Fy,_1 is, in fact, the same as the differentials in the standard

resolution.

Since any two projective resolutions of Z are chain homotopy equivalent, Gru-
enberg resolutions are unique up to chain homotopy equivalence. We find an
explicit formula to write chain map between Gruenberg resolution for standard

presentation and the Gruenberg resolution for the usual presentation of a cyclic
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group. After this result, we realize Hanke and et al. [3] described a chain map
from the standard resolution to the resolution for the cyclic group. Our chain
map formula coincides with their formula up to choice of generators. However,
we replaced this with a more natural formula. To write this formula, we used the
Fox derivative. It is defined in the Chapter 3.3. Consider 1 = R —- F - G — 1
be a standard presentation of cyclic group with order n where F' is free on
X = {z1,2g,2,...,2,01} and R is free on Y = {yup = =, T2} and

m(zy) = g. The first theorem of this thesis is the following:

Theorem 1.0.1. There is a chain map between the Gruenberg resolution for
standard presentation and the Gruenberg resolution for the presentation of cyclic

group, that is, for all n > 0 the diagrams

e TR J R R R T ) e e RG-S T — 0

lf2k+l lfzk jf2 lfl ]id lid
g—1 1

7.G 7G-—N o ... 76— 76 27G -7 —0

commute with

i dg’ il ghtETr i iy >
Filla') = G and follg"lo") =
9 , otherwise
and there is a formula for chain maps such that
far(@) = fa(lg"19"]) - fo(lg™g™]) for o€ J* [T
Sorsr(@) = fae([g™]- - 19" ] fr(lg™+]) for o€ J¥Ip) T g

More generally, we explain how to write chain maps for any two Gruenberg
resolutions. There is a commutative diagram between any two presentations of
group G. The mapping between generators is denoted by fr and the mapping

between relations is denoted by fr in the following diagram

1 R -2~ F s @ 1

e o o

1 Ry —2-F, 2. @ 1.

Let Fy,Fy be free on X; = (z;) and Xy = (a;), respectively. Also Ry, Ry be

free on Y7 = (y;) and Y3 = (b;), respectively. To write chain map between their
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corresponding Gruenberg resolutions, we define a convolution * in the Equation

4.1. The second theorem of this thesis is the following:

Theorem 1.0.2. Given a map of presentations (fr, fr). There is a chain map
f«, associated to a map of presentations, between their corresponding resolutions,

that is, for all n > 0 the diagrams

e R LB e R e 2 L ST, 2G-S 70

AN

R | ) (SRR L8 SN 5 ey Ay - RN ) LI ) e I

commute where

filwi—1) =" M(ay‘ - 1)

oa;
j J

s = 1) = 30 20 g,

and there is a formula for chain map such that

far(a) = folys, — 1) % -+ x fa(ys, — 1) for a € J’““/J’“Jrl
Jor—1(@) = folyy, — 1) %% folyi,, — 1) * fi(ws, — 1) forae Jk_l]F/JkIF'

The thesis is organized as follows:

In Chapter 2, we give the necessary definitions and propositions from homo-
logical algebra including the definitions of the projective resolution and group

cohomology.

Chapter 3 is divided into three sections: Gruenberg resolution, Standard reso-
lution as a Gruenberg resolution and Fox calculus. In the first section, we begin
with several lemmas which are necessary to show that Gruenberg resolution is a
ZG-free resolution of Z. In the second section, we introduce Gruenberg resolution
for standard presentation. In the last section, we introduce the Fox derivative.
We write our chain map formula with using the Fox derivative, hence it is crucial
for this thesis.



Chapter 4 is the main chapter of this thesis. This chapter includes two sections.
The proofs of the Theorem 1.0.1 and 1.0.2, which are mentioned above, are in

the first and second section, respectively.

The last chapter includes our calculations with Gruenberg resolution. The first
group we considered is Cy x C5. We show that our chain map formula gives a
chain map between Gruenberg resolutions for Cy x C5. In the following sections,

we calculate the cohomology group of S35 using Gruenberg resolution.



Chapter 2

Projective Resolutions and

Group Cohomology

This chapter contains background information on group cohomology. In the first
section, we give some definitions and propositions which are used in the follow-
ing chapters. In the second section, we give the algebraic definition for group

cohomology. The main references for this chapter are [4], [5], [6], and [7].

2.1 Projective resolutions

Definition 2.1.1. Let R be an arbitrary ring. A sequence

SN NN LN N e N

of R-module homomorphisms is called exact at F; if ITm(f;11) = ker(f;) where
Im(fi1) denotes the image of fiv1 and ker(f;) is the kernel of f;. A sequence of
homomorphisms is called an exact sequence if it is an evact at F; for all ©. Let

A, B, and C be R-modules. An exact sequence of the form
0-A5BL =0

18 called a short exact sequence. For a short exact sequence, we have
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1. « is injective because of exactness at A,
2. B is surjective because of exactness at C', and

3. Im(av) = ker(B) because of exactness at B.

Example 2.1.2. Consider A =7 and C = Z/nZ. An extension of Z/nZ by Z

1s given by the short exact sequence
0=2"575 7Z/nZ — 0,

where xn denotes the multiplication by n and m denotes natural projection.

Definition 2.1.3. A short exact sequence
05A%BS S0
15 called split if there is a map v : C'— B with § oy = idc.

Proposition 2.1.4. A short ezact sequence 0 — A = B 5o 50is split, then
there is an R-module complement to a(A) € B, that is, B= A& C.

Definition 2.1.5. An R-module P is projective if given any homomorphism
f:P— N and any epimorphism ¢ : M — N, there is a homomorphism
f : P — M such that ¢ o f = f, i.e. the following diagram commutes

P
L f
”/
M > N 0.

Definition 2.1.6. Let C, be a sequence of R-modules
NG M. 2N M N6 BN NG NN}

If the composition of any two consecutive maps is zero, that is, d,_1 od, = 0
for all n > 0, then the complex is called a chain complex. The n-th homology

group of C, are defined as the R-module

_ ker(d,)
H,(C,) = T (dyy)’

6



We define a cochain complex as follows: Let C* be a sequence of R-module:

dn+1

dn72 _ dnfl an
\Onl C«n_>cm+1 s ..

d® dt
00" S ot S

If the composition of any two consecutive maps is zero, that is, d* o d™ =0 for
all n > 0, then the complex is called a cochain complex. The n-th cohomology
group of C* are defined as the R-module
ker(d")
H"(C") = —————.
() Im(d»—1)
Definition 2.1.7. Let A, = {A,} and B. = {B,} be chain complexes. A chain
map of complexes f : A, — B, is a sequence of R-module homomorphism f, :

A, — B, such that for every n the following diagram commutes:

dn2 dn1 dn dn—1
- An+1 - An An—l -
frt+1 fn frn—1
On42 Sn+1 ) On—1
BnJrl Bn - anl

i.e. foralln, f,_10d,=90,0 f,.

Let g : A, — B, be a chain map. If there is a map s : A, — B, satisfying
frno— 9gn = 0pi1 08, + Sp_1 0d, for all n, then f and g are called homotopic and

denoted by f ~ g. Hence the following diagram commutes:

dn+1 dn dnfl
An—i—l An An—l
7 7/
s s
s s
S Sn—1
fn+1 In+1 7; 7 fn|9n // fn—l In—1
s s
s s
R 4 On On—1
n+1 Bn anl

Remark 2.1.8. 1. A chain map f : A, — B, is said to be null-homotopic

iof fis homotopic to the zero map.

2. A chain map f is called homotopy equivalence if there is another chain
map g : B, — A, such that fog~ida, and go f ~idg,. Then A, and B,

are called homotopy equivalent.
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3. If fo + A, — B, and g. : B, — C, are two chain maps, then
(g« 0 fi) : Ay — C. is a chain map.

Definition 2.1.9. Let N be an R-module. A projective resolution of N is an
exact sequence

dn dn d
i ms P PSP 5 PSS RS NSO

such that each P; 1s a projective R-module.

Every R-module has a projective resolution. To see this, take P, as the free
(hence projective) R-module on a set of generators of N. By the universal prop-
erty of free modules, we define an R-module homomorphism € : Fy — N. Since € is
surjective, the resolution begins with Py —== N which is exact. Let Ky = kere
and P; be any free module mapping onto the submodule K, that is, P, - Ky — 0
is exact. Define d; : P, — P, to be the composition P, - Ky — Fy. Then

d1

Py Py—=N 0

N

is exact since Im(d;) = Ky = ker(e). Inductively, we can take n-th stage a free
R-module P,,; which is mapping onto the submodule K,. Then we obtain a

projective resolution of N.

Consider the projective resolution P, — N of N where

dn dn, d
Po:--m P4 PP .- =P %P0

Note that H,(P,) = 0if n > 0 and Hy(P,) = N. Given an R-module M, we have
cochain complex

d2

0 — Homp(Py, M) —L— Homp(P;, M)

dn+1

Hompg(P,_1, M) —“—~ Homp(P,, M) -~ ...

obtained by applying Homg(—, M). Now we define

ker(d"*1)

Extiy(N, M) = = 0

8



for n > 1 and Ext%(A, M) = ker(d"'). This group is called the n-th Ext group.

Again consider P, of N and take tensor product with M to obtain

1®dn+1 1®dn 1®dn71\

i S M® Py — N M@ P, 22 M@ P, 180 A @ Py — 0.

Define
ker(1 ® d,)

Im(]. X dn+1)
M ® F,

Torf (M, A) =

for n > 1 and Torf(M,A) =
group.

. This group is called the n-th Tor

Proposition 2.1.10. /5, Proposition 4, page 781] Let f : A — B be a map of R-
modules and P, — A be a projective resolution of A and QQ, — B be a resolution

of B. Then there is a chain map f : P, — Q. such that the following diagram

commutes:
PP, Pp—.p—% .4 0
lfn Ifn—l A fo !
e Q" Qo Q"= Qo —"—B 0

Moreover, f is unique up to chain homotopy.

Proof. Let P, be projective for all n and let ¢ be surjective. The bottom sequence
is exact. First we need to show existence of f . Since Py is projective and v is
surjective, there exist a map fo such that the first square commutes, that is,
1 o fo = f o . By induction, suppose we have constructed fn,l such that
0p_1 0 fn_l = fn_Q od,_i. Then

577,—1 o fn—l o dn - fn—2 o dn—l o dn =0

so that fn—l od, maps P, to kerd,,_;1 = Imd,,. Then we obtain fn such that
Op O fn = fn_l o d, since P, is projective. Now we need to show uniqueness
up to chain homotopy. Suppose there is another map g : P, — Q.. Then
W( fo — go) = 0. Define maps s,, : P, = @Q,+1. We need to show that there exist



amap s, : P, = @,4+1 such that d,y; 0s, = fn — Gn — Sp_1 © dp.

dn+2 dn+1 dn dnfl d2 d1 %2
I AR | Pn Pn—l Pl PO /A 0
s v/
. Sn 7 . Sn—1 4/ N so 7/ .| s-1 7
1 PRGN i L7 A 7o Lot
5n+2 4 dn+1 4 6n 5n71 52 4 51 s 1/1
o > n+1 n anl Ql QO B 0

Since P, is projective and 1 is surjective, we obtain sq : Py — ()1 such that
01089 = fo — go- Inductively, suppose s,_1 such that 6, 0s, 1+ s, 20d, 1 =

fn—l - gn—l- Then

~

671 < (fn - gn — Sp—-19 dn) = (fAnfl - gnfl) o dn - 5n O0Sp-10 dn
= (571 0Sp-1+ 820 dn—l) o dn - 571 O Sp—10 dn

= 8Sp—20° dn—l © dn =0
Since Im ¢,,.1 = kerd,, and P, is projective, there exist a map s, : P, = Qni1

such that d, 1 0s, = fn — Jpn — Sp_1 0 dy,. O

Corollary 2.1.11. Any two projective resolutions of A are chain homotopy equiv-

alent.

Proof. Suppose P, — A and Q. — A are projective resolutions of A.

da di do

Py P =) A 0
f2 1 fo id

Qy—2 Q — = Qg —2 A 0
92 o 90 id

p—2.p Yt .p—" .4 0,

By previous lemma, the identity map i¢d : A — A can be lifted. Then there exist
chain maps f: P, — @, and g : Q. — P,. The composition of these chain maps
go f: P, — P, induces the identity map on A. Also id : P, — P, induces identity
map on A. Using previous lemma, g o f ~ idp,. Similarly, we get f o g ~ idy,.

Hence we conclude P, and @), are chain homotopy equivalent. O

10



2.2 Group cohomology

Let R be the commutative ring and G be a group. The group ring of G over R,
RG, is the set of all formal sums, Z a;g; where a; € R and where only finitely

many of the a;’s are nonzero. Addltlon is defined by

Z a;g; + Z bzgz - Z a; + bz)gz
i=1

and multiplication is defined by

(D ag)(Q_buh) = D agbulgh) =) (D agby-uk.

geG heG g,heG keG geG

Let R =7. A Z-module A is an abelian group A. G-action on an abelian group

A is a map

GxA—A

(9,a) —=g-a
such that, for all a,b € A and g,h € G,
l.1-a=a
2. g-(a+b)=g-a+g-b
3.9 (h-a)=(gh)-a
In other words, an abelian group A on which G acts as group automorphisms is

the same as a module over ZG. Denote the set of elements of A which are fixed

by all the elements of GG, that is,
={a€ A:ga=uaforall g€ G}.
In general a short exact sequence

0—->A—-B—-C—=0

11



of G-modules induces an exact sequence
0— AY - BY — C°. (2.1)
To observe that this sequence is exact, we have following lemma:

Lemma 2.2.1. Let A be a ZG-module. Suppose that Homyg(Z, A) is the group
of all ZG-module homomorphism from Z to A. Then A% = Homyq(Z, A).

Proof.
Homzg(Z,A) — A€

fZ— A - f(1)
Any ZG-module homomorphism f : Z — A is uniquely determined by its value
on 1. Say f,(1) =xz. Then z = f,(1) = fo(g-1) =g fu(1) =g -x for all g € G.
Hence # € A% and f, — x is an isomorphism. Then A% = Homgg(Z, A). O

By this lemma, any projective resolution of Z as a ZG-module with trivial
action gives a long exact sequence extending (2.1). One of this type resolution is

the projective resolution of Z
dn n
s P M R s RS RSz 0.

Denote F,, = ZG Q7 2.G Rz, - - - ®7 Z.G n-th fold tensor product for n > 0 which is
a free Z-module generated by the (n + 1)-tuples (go, 91, - , gn) Where g; € G for
all 7. This F}, is equipped with ZG-module structure via the diagonal action by
g (90, y9n) = (990, ,9gn). The map € : Fy — Z is the augmentation map
€(Q_yeq 499) = D_,eq ag and the maps d, for n > 1 is defined by

n

dn(90: 911 9n) = D _(=1)(dos -+ Gis- -+ Gn). (2.2)

i=0
This projective resolution with this basis and this boundary maps is called the

standard resolution of Z over ZG.

n+1 n+l
(dn o dn-i—l)(gOa s agn-‘rl) = Z Z (_1)J+k_6(]7k)(907 s 79}& s agAk:a s >gn+1)
=0 k=0,k#j

12



where
_ 0, ifk<y
5(]7 k) =
1, ifk>j.
Since each possible (n — 1)-tuple appears twice in the summation with opposite
sign, we have d,, o d,,»1 = 0. Hence if we show kerd,,_; = Imd, for all n, we will

show the standard resolution is exact. Define s,, : F;,_1 — F,, by s,(g1,...,0n) =
(1,91,---,9n). Then

(dn o Sn)(Qla s 7gn) = dn(lagb s agn)

n

= (g1 90) — Y (=17 (1,91, Gjs- -1 9n)

o

J
= (gb s agn) - (Snfl o dnfl)(gla s >gn)

Hence d,, o s, + sy,-1 0dy,—1 = idg, ,. If a € kerd,,_q, then d,(s,(a)) = a,
which means a € Imd,. Since it is clear that Ima C kerd,_;, we have

kerd,,_1 = Imd,, for all n.

Let F! be a free ZG-module with G-action g-(go, g1, -, 9n) = (990,91, - - -, In)-
Its basis is in the form (1, g1, 9192, .., 9192 - .. gn). Define the bar notation such
that

(90, 91+, 9n) = 9olgo 91191 " 92| - 19 1G]
[g1|g2| con |gn] = (179179192, -5 01092 - - -gn)-

Then there is an isomorphism of ZG-module between F,, and F such that

(905 G1s - -+ Gn) (90,95 g1, - - -+ Gnt1Gn)

gg fg
(990: 991, - - -+ 99n) = (990, 9o "1+ -+ G 19n)-

Using the differentials formula in 2.2 gives the following formula for the maps
d,: F — F |

dulg1] - lgn] = 9102 - - - |gn)
n—1
+ Z(—l)l[gﬂ oo gi-1lgigis1|gival - - - |gn]
=1
+ (=1)"g1] - - - |gn-1]-

13



Hence this projective sequence with this basis and this boundary maps is called

bar resolution.

Consider the resolution with deleting first term

dn dn d
i P S E, S - B S Fy— 0.

Applying Homzg(—, M), we get
Oé-HOIIlzg(FWO7 M) LHomZG<F1’ M) LHOIHZG(Fm M) L —

We can identify Homyg(F),, M) with the set of functions from G" = GXGx---xG
to M. Let C™"(G, M) be the collection of all maps from G" to M for n > 1 and
C°(G, M) = M. The elements of C"(G, M) is called n-cochains. We can define
the coboundary map from C™(G, M) to C"™(G, M) by

dn(f)(gl7 s 7gn> = glf<g27 s 7gn)
+ Z(_l)lf(gh -3 9i—15,9i9i+1, 9it25 - - - 7gn)
=1
+ (_1)n+1f(glv s 7gn—1)-

The elements of kerd” which is denoted by Z™(G, M) are called the n-cocyles
and the elements of Imd"~! which is denoted by B"(G, M) are called the n-
coboundaries. Then the n-th cohomology group of G with coefficient M is equal

to quotient of n-cocyles over n-coboundaries, that is,

Z"G, M)
H'"(G,M)= ——F—.
(M) = ZG )
Example 2.2.2. Let G = (x) be a cyclic group of order n and

N=1+xz+---+2""". We have
l+z+-+2"Haz-D=@-1)1+a+--+2" ) =a"-1=0.

Then there is a free resolution with the maps N(z — 1) = (x — 1)N = 0 in the

followings:
N/Fe N fe Ny fe BN fe INY fo e o BN N}

14



After deleting Z, apply Homgg(—, M). Since Homzg(ZG, M) = M, we get a
chain complex
0->MES5MES MES M-

Hence we can calculate the cohomology group of G with coefficient M. Since
ker(z — 1) = {m € M : (x — 1)m = 0} which is denoted by M and

ker(N) = {m € M : Nm = 0} which is denoted by nM,

we have H*(G, M) = M® forn =0 and

( ker(N) NM . .
— dd
mz—1)  @—DM Im®9
H"(G, M) =
ker(T M€
\I§(<N§ = N if n is even ,n > 0.

If we take M = Z, then Homyo(ZG,Z) = 7Z. Then we get a chain complex

052%722572% .

Then
Z/nZ, ifn is even ,n >0
H"(G,Z) = < 0, if m is odd
Z. if n=0 .

15



Chapter 3

Gruenberg Resolution

Gruenberg [2] gave an explicit method for obtaining a projective resolution of Z
as a ZG-module by using a given presentation of a group G. In this chapter,
we explain how to construct a Gruenberg resolution. We follow [1], [2], [7], [8].
Then we introduce Fox derivative [9] which we use for writing differentials of a

Gruenberg resolution.

3.1 Gruenberg resolution

Let G be a group. Let X be any set and Y be a set of words on X. A group GG
has generators X and relations Y if G = F//R where F' is free group with basis
X and R is the normal subgroup of F' generated by Y. The ordered pair (F|R)
is called a presentation of G [10]. Equivalently, a presentation of G is a short

exact sequences of groups
1R F5G—1

where F'is a free group. Recall that the augmentation map € : ZG — Z is defined
as a map which takes every element of G to 1 € Z. The kernel of € is an ideal

which is called augmentation ideal of ZG and is denoted by I5. Similarly, the
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augmentation ideal of ZF will be denoted by Ir. The map 7 : ' — G in the

presentation induces the surjective ring map
7 7F

2per arf =2 pep agm(f).

7G

The kernel of this map is two-sided ideal in ZF and is denoted by J.

Lemma 3.1.1. Let F be free on a set X. Consider the word o = x{* ---x* €

F where ¢, = £1 for 1 < i < n. Then a — 1 is an F-linear combination of
X—-1={z;—1:x;€X for1<i<n}.

Proof. 1t is clear for n = 1. Suppose the statement is true for n = k. We need to
show it is true for n = k+1. Using the following identities x™! —1 = —z7*(z — 1)

. €
and 179 — 1 = z1 (20 — 1) + (21 — 1), if o = 2725 - - - 2,5, then we have

a—1 =zxi'xd-- xi’“(wiﬁf — 1)+ (22 ak —1)
I EECE (@ — 1) + (22 - — 1) if epr1 =1
—ay'ay 'xik%;il(xkﬂ — 1)+ @2y xyt = 1) if e = -1

Since (z{'x5?---x;F — 1) can be written F-linear combination of X — 1 by the
induction assumption and (x4 —1) € X —1, (2{'x - - - 2,5 — 1) can be written
a linear combination of the set X — 1. Hence a — 1 is an F-linear combination of

X -1 [l

Definition 3.1.2. Let F be a group and A be a ZF-module. A mapping d : F' —
A is called a derivation if d(xy) = d(z) + xd(y) for all z,y € F.

Lemma 3.1.3. Let A be an ZF-module, d : F' — A be any map and h : Ip — A
be a map with h(x — 1) = d(x). Then d is a derivation if and only if h is a
ZF-module homomorphism. Hence Homzp(Ip, A) = Der(F, A), where Der(F, A)

1s a set of all derivations.

Proof. Suppose d is derivation. Then d(zy) = d(x)+zd(y) for all z,y € F. Since
d(z) = h(x —1), h(zy — 1) = d(zy) = h(xr — 1) + xh(y — 1) for all x,y € F. Then
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h(xzy — 1) — h(z — 1) = zh(y — 1) for all z,y € F. Since h(zy — 1) — h(z — 1) =
h(zry = 1) = (x = 1)) = h(zy — ) = h(z(y — 1)), h(z(y — 1)) = zh(y — 1) for all

x,y € F, which means h is a module homomorphism.

Suppose h is a module homomorphism. Then h(z(y — 1)) = zh(y — 1) for all
x,y € F. This implies h(xy — 1) — h(x — 1) = xh(y — 1) for all z,y € F. By using
the definition of the map h, we get d(zy) — d(z) = zd(y) for all z,y € F. Then
we obtain a function satisfying the derivation formula d(xy) = xd(y) + d(x) for

all x,y € F. Hence d is a derivation. O]

Proposition 3.1.4. If F' is free on a set X, then Ir is free as a left ZF-module
on X —1.

Proof. Take an element o = ZfeF arf € ZF. If a € Ip, then ZfeFaf =0.

aza—OzZaff—Zaf:Zaf(f—l).

feF fer fer

Then Ir is generated by all f — 1 as an abelian group. By Lemma 3.1.1, any
element f — 1 can be written as a linear combination of X — 1. Hence X — 1
generates Ir as a ZF-module. To prove freeness, we need to show [ satisfies
the universal property of a free ZF-module with X — 1, that is, given a map
h:X—1— A, where A is a ZF-module, there exists ZF-module homomorphism

h:Ip — A such that the following diagram commutes

X —-1——1Ip

N

A.

Let A x I denote the semidirect product defined by

(a1, f1)(az, f2) = (a1 + f1 - as, fif2)

where ay,a9 € A and f1, fo € F. Let yu: X — A x F denote the map defined by
w(x) = (h(x —1),x). Since F is free on X, p extends to a group homomorphism
i F — AxF with 7i = id where m : Ax F' — F is defined by 7(a, f) = f. Let
d : F — A be the map defined by fi(f) = (d(f), f). By the definiton of semidirect
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product, A(z)ji(y) = (d(x) + zd(y), zy). Since 4 must satisty (zy) = z)i),
we get d(zy) = d(x) + xd(y), which means that d is derivation. By Lemma 3.1.3,
we have Hom(Ip, A) = Der(F, A). This means there exist a map h : Iy — A with

A~

h(f —1) =d(f). Hence
(h(x —1),2) = p(x) = p(x) = (d(z),z) for all z € X

Then h(z — 1) = h(z — 1), which shows that % extends to a ZF-module homo-
morphism h. O]

Proposition 3.1.5. Let F be a free group with basis X, and R be a normal
subgroup of F with basis Y. Then J = ker(ZF LN ZQ) is a free ZF-module with
basis Y —1={y — 1|y € Y}.

Proof. It is clear Y — 1 C J. To show that J is ideal generated by ¥ — 1, choose
left transversal 7" of R in F. Then F = UsertR. Take any element a € ZF', then
o= imjjtir; where tir; € F,m;; € Z. If a € J,

0=71"(a) = Z m 7 (t:)
12
where 7(t;) are distinct.
o= — 0 = Z(Z mmti(rj — 1))
( J
is F-linear combination of elements of form r — 1 with » € R. Since r' — 1 =
r(r' =1)+ (r—1) and r* — 1 = —r~(r — 1), J is generated as ZF-module by
Y — 1. Similarly, using F' = |J Rt, J is generated by Y — 1 as right ZF-module.

To show freeness, assume ) a;(y; — 1) = 0, where o; € ZF. Then oy; = ) . ;5 ;
where 5, ; € ZR and f5; ; = > m;r, where m; € Z,r; € R.

0= Z timxry = mj = 0.
jik
Then the coset representation of ¢; are independent over ZR. Hence we have
> i Bij(yi —1) = 0 for each j. By Proposition 3.1.4, J is a free left ZF-module
with basis Y — 1. O

Lemma 3.1.6. If A is a left ideal of ZF, then A/JA is a left G-module.

19



Proof. If a € A and 7(f) = g € G, then g(a + Ja) = fa+ JA. If n(f1) = = (f),
then f; — f € ker(n*) = J. Hence this is well-defined since (f; — f)a € JA. O

Lemma 3.1.7. If A is free as a left ideal of ZF on S, then A/JA is G-free on
S+ JA.

Proof. Since we have A = @, _(ZF(s) and JA = @, ¢ Js, we have

seSs

AJJA= ELF(s)/]s = E@ZF/T)(s).

seS ses

]

Lemma 3.1.8. If A is free as a two-sided ideal of ZF on S, B is free as a left
ideal of ZF on T, then AB 1is free as a left ideal on ST.

Proof. Suppose A and B are free as left ideal of ZF on S and T respectively.
Then AB is generated by all elements s;A\t;, A € ZF. Since A is two-sided ideal,
s;A € A can be written as a sum of vsy, with v € ZF. Then s;t; generates AB
as left ideal. Suppose Z” Nijsit; = 0, then we have ). \; js; = 0 for each j by
the independence of ¢; and then \; ; = 0 for each ¢ and j by the independence of
s;. Hence {s;t;} generates AB freely. O

Theorem 3.1.9. Let 1 - R — F 5 G — 1 be a given presentation of group G

where F' is a free group. Then the following is a free resolution of Z :
v JH I = JIp ) I — J)J? = Ip)JIp = ZG — 7 — 0

where ZG — 7 is the unit augmentaiton map and Ir/JIp — ZG is induced by

and other maps are all induced by inclusions.
Proof. Denote Fy, = J"/J"™ and Fy, | = J" 'p/J"Ip for all n > 1. Since

JH C J'Ip and dy, : JU/J"T — J"Up/JM R, dy, is a composition of
Jr)Jtt — gn /gty — JV e/ J M E. Since JUIp < J" and JUT < J" we
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have
kerdy,, = {a+ Jrtt e J”/J"“\dgn(oz + J”“) = J"Ip}

{a+ J7 e g /g agn [ = Jn)
{a+ e gt/ a € JMr}
T I
In(dey) = J*/J .
Since J" " C J™ and dynyy 0 JM R/  p — J/ I doy,y is a composi-

tion of J"Ip/J"  p — J'p/J" T — J*/J". Similarly, we have

Kerdomr1 = {a+J" € /T nldanss (o + J7 L) = J7HL)
{a+ J" U € Jn ) o+ Jrtt = gt}
{a+ J" e e JV)J"  pla € JVT}
_ L,
Mdopyy = J'Ip)JmH.

Then ker dy, = Imdsy,,1 and kerdsy, 1 = Imd, 5. This gives us exactness at all

F,,. We need to check exactness at first three terms. Take the sequence

Ip)Jlp "=+ 72G <=7 0.

Take a basis element (z —1) € Ip/JIp. Since Im(7*(x —1)) = 7*(x) — 1 = ker(e),

the image of 7* is in the kernel of €. Then this sequence is exact. O

Theorem 3.1.10. If F is free on X and R is free on'Y, then J"/J" is G-free

on the following set of cosets of elements

{yr = D(ya — 1) ... (yp — 1) + J"TL where yy, ...y, € Y}

and J" " g/ J" Ik is G-free on the cosets of all elements

{ty—=D)(y2—1) ... (Y1 —1)(xz—=1)+J"Ip, where z € X and y1,...,Yn—1 € Y}.

Proof. Since F' is free on X and R is free on Y, by Propositions 3.1.4 and
3.1.5, we have I is free on X — 1 and J is free on Y — 1. By applying the
Lemma 3.1.8, J" is free on (y; — 1)(y2 — 1)...(y, — 1) and J" ' is free on
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(y1 — Dy — 1) ... (Yn—1 — 1)(z — 1) where x € X and v, ...,y, € Y. By Lemma
3.1.7, J*/J"! is G—free on

(1 — D(yz — 1) ... (yo — 1) 4+ J" T

and J" '/ J" I is G—free on

(i =Dy —1) ... (Ypor — D(x = 1) + J"Ip.

Example 3.1.11. Let G = (g) be cyclic group with order n. Let
l1-R—-F5LG—1

be a presentation of G with F' = (z) and R = (z") and w(x) = g. By using

Gruenberg resolution, we get

dak+1 d dog—1 d d *
= Py = P = oy > =y > [ >, 2G-S Z—0

where Fy, = JE/J*Y and Fyy = JFUp/J*Ip. Then Fy, is free
on generator xo, = (2" — 1)* + J* and Fy_y is free on generator
Doy = (2" — 1) Ya — 1) + J*Ip. Since

(@" =1 =142+ +a" (" = 1) e - 1),

we have

o (2o + JM) = (1424 + 2" ) (2" = D e — 1) + J¥p)
= (1 +x+ -+ xn_l)(x2k71>.

Hence dyy, is the multiplication by (1 + -+ + 2" 1) :== N. We write dy, = N.
Since Fory1 is free on generator xopy1 = (2" — 1)@ — 1) + J*p and
dog+1(Torr1) = (x — V)xay, then doxy1 is the multiplication by x — 1. We write

dorr1 = x — 1. Then this resolution becomes

Nogag N oa Ne . ga Noga T ug <7 0.
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3.2 Standard resolution as a Gruenberg resolu-

tion

Let G be any group and F' be free group on {z, : g € G*} where G* denotes the

set of all non-identity elements of G. The map 7 : x4 — g gives a presentation

1 R F——=G 1

which is called the standard presentation. Take x; = 1p. Define
Yig,n) = xg;hlxgxh-

Lemma 3.2.1. If w = zg424,...24, € R, then w can be written as a prod-

uct of elements in Y = {ygmnlg,h € G*}. Moreover, R is free on the set
YV ={ymlg. h € G}

Proof. First take w = x4 24,. Then

Lgr1Lgs = LgigaLgigoXg1Lgs = LgrgalY(g1,92)

If we take w = x4, 24,74, then

Tg1TgyLgs = Tg1 Lgag3Y(g2,93)
_ —1
= Lg19293L g1 gog3 L 91 L g293Y(92,93)

= Lg19293Y(91,9293) Y(g2,93) -

Claim that w = 2,7, ... Ty, = Tg1g5..00Y(g1,92..98) - - - Y(gr_1,9)- SUPPOse the state-
ment is true for £ = n — 1. Then we need to show it holds for £ = n. Take

W= Ty Tyy-..Ty,-

Lgi1Lgy -+ Lgy = Lg1Lgags...gnY(g2,93-..9n) * * * Y(gn-1,9n)
_ —1
= Lg192..9nLg1g2...9n Y91 T g2...9n Y(g2,93...9n) * =+ Y(gn—1,9n)

= Lg1g2...9nY(91,92.--9n) Y(92,95---gn) * * * Y(gn—1,9n)"

Since w = 4,2y, ... 7, € R and m(w) = 1, 24,4, 4, = 1 = 1. From this we

n

obtain that w € (y(g.n))-
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Take T' = {x, : h € G*} is a Schreier transversal for R in F and ¢(z,xp,) = .
Then y(gn) = ¢(xg2n) ' 2gxy where 2y, € T and x, € X. If any xy,, 2, € T and
zg € X,z wgun, = w € R implies xyxp, = xp,w. Then ¢(zgap,) = ¢(zp,w) =
xp,. R is free on the set Y = {yn : g,h € G*} by Nielsen-Schreier Theorem
[10]. O

Since R is free on the set Y, Y —1 = {ygn — 1 : g,h € G*} is a set of free
generators for J. Then we denote
(9,h) = xgzp — gy € J
= Zgn(Y(gn) — 1)-

Since (g,h) = 0 if and only if g =1 or h =1, (g, h) # 0 generate J freely.
Define

[g1192] - - - |g26) = (91, G2) - - - (Gok—1, Gor) + JkHt
[91|g2\ cen \gqu] = (91, 92) ce (921@737 921@72)(%%,1 - 1) + JkIF-

Then

91192 - - |gor] € For = J*/JH
(g1]2] - - - |g2k—1] € For—y = J* /¥ Ip.

Hence for 1 # g¢; € G, [g1]92| ... |g2x] generate Fyy freely and [g1]gs] . . . |g2k—1]
generate Fo,_; freely. It is clear [g1]ga| .. .|g;] = 0 if g, = 1 for some 1 <m < j.

Proposition 3.2.2. If dy, is the differential Fy, — Fj_1 in the Gruenberg resolu-
tion for the standard presentation of G, then for all k > 0

dr([91]g2] - - - 1gr]) =a1lge| - - - [gx]
k—1 ‘
+ > (=V'gilgal - - 1gigisal - - - lgx]
=1

+ (=1)*g11g2! - - - lgr—1]-

Proof. Consider the Gruenberg resolution for the standard presentation

dok+1 day; dok—1 ds do dq
"_>F2k+1_>F2k_>F2k71_>"'_>F3_>F2_)F1_>FOL>Z_>O~
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If k=1, then d; : F; — Fp is induced by 7 : FF — G. Hence we have di[g;] =
di((zg, = 1)+ JIr) = g1 | — [ ] = g1 — 1. Then the statement is true for k& = 1.
For the case k = 2, we have
d>([91192]) = da((91. 92) + J7)
= dy((Tg, gy — Tgyg,) + J°)
=Zg (g, — 1)+ (xg, — 1) — (249, — 1) + JIp

91lg2] — [9192] + [91]

Then ds([g1]g2]) = 91]92] — [9192] + [91]- Consider the case k = 3,

d3([91192195]) = d3((91, 92) (g, — 1) + JIr)
= d3((2g, 29, — Tg,9,)2g, — (91, 92) + J*IF)
= d3(T g, Ty T gy — TgrgnTgs — (91, G2) + J°IF)
= Tg, (Tg,Tg5 — Tgags) + (Tg1Tg295 — Tg19295)
~ (Tg102T g5 — Tgrgags) — (91, 92) + J°

= 01192, 93] + [9119293] — [9192]93] — [91]92]-

Thus ds([g192|93]) = 91(92/95] — [9192/95] + [91]9293] — [91]g2]-

Using induction on k, we can conclude the proof. Suppose the statement is
true for all m < k. Consider the case m = k. First suppose k is even. Then take

k = 2n the map ds, : F5, — F5,_1. Abusing the notation,
911921 - - 192n) = (91, 92) - - - (9203, Gon—2)(G2n—1, G2u) + J"*
= (91, 92) - - - (92n-1[920) — [920—1920) + [g20—1]) + J" I, by k =2
= (91:92) - - - ([920-1][920] + [920] — [920-1920] + [g2n—1]) + J"IF
= [g1] ... [g20-1][g2n] + [91] - - - [920—2g2n]
— 91l -+ g2n-1920] + [91] - - - |g20—1]-

By induction on n, the definition of d,,_; satisfies,

[g1192] - - - |g2n-1][92n] =91[02] - - - |g2n—1]92n]
2n—2

+ Z )'lg1lgal - |gigiral - - |g20]

- [91|92| ce |g2n—2|92n]-
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Using this equality

2n—2
[91] - - gn] = 1192 - - - |g2n] + Z Ngigival - 1gan] = [91] - - - [g2n—2g2n]

+[g1] - - - |g2n—2920) — [91] - - - |92n-1920) + [91] - - - |g2n-1]
2n—1

= q1192] - - - |92a] + Z - 19igisal - 1g2a] + [g1] - - - [g20-1],

that is, dan([91]92] - - - |92n)) = g1lgal - - - [g2n] + 277 (= 1) [gul - - - |giGiza] - - - |gn] +
[91|92| ce ‘g2n71]-

Now suppose k is odd. Then take & = 2n + 1 the map doj,11 : Foni1 — Fop

91192 - - - [92n 1) = (91, 92) - - (G2n—1, 920) (Xgy,, — 1) + g
= (91, 92) - - - (92n-3, G2n—2)(92n-1[92n|92n+1] — [92n—192n|g2n+1]
+ [g2n-1|92n92n+1] — [G2n—1lg20]) + J**1, by k =3
= (91, 92) - - - (92n-3, G2n—2)([92n—1][g2n] G2n11] + [920]g2n+1]
— [920-1920|92041] + [92n-1192ng2n+1] — [92n-1lg20]) + J**
= [91] - - - |92n—2]g2n—1][92n| G2n+1]
+ (91, 92) - - - (92035 Gon—2)([92n]92n+1] — [92n-1920|92n+1]

+ [g2n—1/92n92n11] — [g2n—1lg2n]) + J**.

By the case k = 2n,

[91| s |92n+1] = [91‘ S |92n—2|92n_1][92n|92n+1] + [91| e |g2n|g2n+1]
- [91\ S |g2n7192n’g2n+1] + [91| e |g2n71|92n92n+1] - [91| e \g2n71’92n]

Using the definition of ds,_;
[91] - - - |92n—2|92n-1][92n|g2n+1] =g1[92] - - - |92n11]
2n—2

+ Z )'lg1lgel - |gigiral - - - |g2n 1]

+ (=1)*g1lga| - - - |92n—2|g2n|g2n+1]-

26



By combining above equalities

2n—2

(1] -+ - |g2n+1] = G1lga] - - - [gansa] + Z (=1)'[an] - - - lgilgiva] - - 1g2nsa]
i=1

— 91| - - - 192n—2|92n|g2n+1] + [01] - - - |92n—2|92n | G2n+1]
- [91| S |g2n—192n|92n+1] + [91| S |g2n92n+1] - [91| e |92n]

2n
= q1lg2| - - - |92nlg2n 1] + Z(—l)i[gﬂ - gilgil - - |g2n4a]
i=1
—lol - - 1g2n]-
Then
2n
dopt1([g1] - - [92n41]) = g1lg2| - - - [g2n]g2041] + Z(—l)’[gl\ o1l gial - - - |ganta]

i=1

- [91| cen ’92n71‘g2n]-

Hence we have the statement is true for all &. O

3.3 Fox calculus

Let F be free group on X and ZF' be the group ring of F'. The derivation D is
an additive map from ZF into itself such that for all u,v € ZF,

1. D(u+wv) = D(v)+ D(v)

2. D(u-v) = D(u)-€(v) +u-D(v) where € : ZF — Z is an augmentation map.
Alternatively, we can say the derivation D is an additive map from ZF into itself
such that for all g, h € F,

D(gh) = D(g) + gD(h).

By definition we have the following consequences

27



1. D(a) =0 for a € Z

2. DX az9) = a,D(9)

3. D(g7') = —¢g7'D(g) where g € F.

For each generator z; € X, the Fox Derivative of F' with respect to x;, that is

i : F— ZF, is defined by the rules
81‘]‘

1 8£Ek_{1, IfIk:CL’J

‘ 0x; B 0, otherwise

2. For any wy,wy € F,
O(wiwy)  Ow

ow
- 1+’U)1 2

z; x; oxj

Fox [9] proved that there is unique derivation from u € ZF to Du mapping
x1,%g,... into prescribed elements D(xy), D(x2),--- € ZF with the following
formula
Du = =—D(z;).
J

Consider the augmentation map given by € : ; — 1. Then u — u — €(u) is a
derivation mapping from xi, 2o, ... into 1 — 1,29 — 1,.... By using the above
formula, we get the fundamental formula
u—e(u) = —(z; — 1).
=3 5t =D
Hence any element u € ZF can be obtained from e(u) and the Fox derivatives

with respect to each j.

By using the definition of Fox Derivative, we can obtain the result for n > 1

i L L S S L
or Oz ox Ox or '
Since z"x~" = 1 and @ =0,
ox
0= O(z™x™™) _ O +xnax—



or™ —1—x—--—ag"!
From this equality, we have = — g .. ]
ox "
Then we get the formula
l+z+- 42"t vifn>1
oz 0 .
or =
g =g — 7l ifn < —1.

More generally, take a word u € F such that u = uozt uyazt? - - - u, 127, where
all pr # 0 and all u, do not include the generator x; for 1 < k < ¢g. From the
formula of the Fox derivative, we have
ou ozt e o ozt
92 = Up oz, + uox; Uy oz, + Uy UG O
=up(1 42+ 4+ 2P ) FugaPug (14 x4+ -+ 27 + ...

+upx!t - ug (L4 x4+ + 2P,

For example, consider u = 2922252,

ou
oy~ ")
ou _
92g 1 — zoxiay 2(1 + x9).
Then
ou

ou
= —(1’1 — 1) + a—w(ZL’z — 1)

= 2o(1+x1) (21 = 1) + (1 = 2oiay (1 4 @2) (w2 — 1))

= zoxizyt — 1,

which satisfy the fundamental formula.

Also consider the map dy : J/J? — I/ JIp where Jis freeon Y —1 = {y; —1:
yi € Y}iand Ipisfreeon X —1 = {z;—1:x; € X}. Take an element (y; —1)+J%
Using the fundamental formula, we get

O(y; — 1)
y1= 2=
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We write dy using Fox derivative
Iy — 1)
da(y; — 1) = Z é—x(ﬂfz —1).

For example, the map dy : J/J? — Ip/JIp from the Gruenberg resolution of
cyclic group with order n. Take an element xo = (2™ — 1) + J2. Using the

fundamental formula, we get

(" —=1) = %(m —1).

xn
Then dy is multiplication by e which is the same what we found in Example
x

3.1.11

We will use the Fox derivative in order to write down differentials for the

Gruenberg resolutions in the following chapters.
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Chapter 4

Chain Maps between two

Gruenberg Resolutions

As we mention earlier in Corallay 2.1.11, projective resolutions are unique up to
chain homotopy equivalence. Hence there exist a chain map between any two Gru-
enberg resolutions. In the first section, we give an explicitly chain map between
Gruenberg resolution for standard presentation and the Gruenberg resolution for
the presentation of cyclic group. In the second section, we give a chain map for
any two Gruenberg resolutions. In the third section, we mention an application

of chain map between standard resolution and the periodic resolution of cyclic

group [3].

4.1 The case of cyclic group

In this section, we write down an explicit chain map between the Gruenberg reso-
lution for standard presentation and the Gruenberg resolution for the presentation

of cyclic group.

31



Consider G is cyclic group with order k. Then for all n > 0 the diagrams

R (Y S e N LSS0 PN L) ey i R Sy § e O S

lfzk Lf%l jfz lfl \id lid
N g—1 N 1

7.G 7.G 7.G 7G 276G -7 —0

commutes. Since G is cyclic, we have

G=(g9:9"=1)
F=7Z-g
R=27Z-g".
Consider F is free on X = {x1,24,2.,...,2;01} and R is free on

Y = {Yap) = x, wawy}. Using Proposition 3.1.4 and 3.1.5, we have I is free
as a left ZF-module on X — 1 and J is free ZF-module on Y — 1. By using
Theorem 3.1.10, we have J* 'Ip/J*Ip is G-free on the cosets of all elements
(v — D(ya — 1) ... (Y1 — 1)(z — 1), where z € X,y; € Y for 1 < i < k and
Jk [ Jk+1 is G-free on the cosets of all elements (y; — 1)(y2 — 1) ... (yx — 1), where
y; € Y for 1 <i < k. Take an element a € I/ JIr. Let a = [¢°] where 1 < i < n.

(25 — 1) = [¢] 2= g'[ ] - []

o

Alg]) ——g — 1.

Since this diagram commutes, fi([¢']) = _1 . By using Fox derivative, we
: 9-

conclude fi([¢']) = %q where 1 < i < n.
g

Take an element « € J/J?. Let a = [g"|g"2] where 1 < iy,15 < n.
i i d i [ i i i i
Tyir giz (Y(gin giz) — 1) = [97]97] ———g" [9"2] = [9"¢"] + [9"]

f2 fl

g 99 _ 9(g"g") 99"

i1 2 N
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For iy + i3 < n we have g1 ¢g®? = g™, then using the Fox derivative
i1+ i i
0lg"™) _ w09"  Og"

o9 g dg dg
Then 5t (gt g ‘
Qo i1 09 i1
99 (9"9%) 99" _,
dg dg dg
For iy + i, > n we have g''¢g? = g¢"t2 " then we need to find
) a 12 8 i1+i2—n a i1
g I (9 ) + J_. Using the Fox derivative we have
9y 99 dyg
a(gi1+’iz) _ a<gi2+i27ngn) _ 6(gi1+’izfn) +gil+i2_n@-
dg dg 9y 9y
0 i1+1i2 0 1 0 12
Since lg ): J +g" J , we have
9y 9y dg
giﬁ—ig—nagn _ agh B a(gi1+i2*n) +g“ 8gi2
99 Oy 9y dyg
This means
o Ogt
agn o(ghgt) agh | 9TTET S Lif it >n
oy T o T og %
g g g 0 , otherwise.
2 09%  0(g"g"?) | J0g"
Since fa([g"]g™2]) = % % 9 , we have

i i gi1+i27n ) Zf Z.l + 7:2 Z n
fa([g"1g"]) =

, otherwise.
Since fo([g"[9%]) = 9" =" f2(y(gir g2) — 1), we have
1 s Zf il + ig Z n

f2<y(gil7gi2) - 1) =
0 , otherwise.

Take a € JIr/J*Ir. Let a = [g"|g™2|g"].

d: il o | i1 o | A i1 o i i1
. 9"g"19"] = [9" g™ 9"] + (999" — [9"]9"]

[9"19"]9"]
f3 f2

519197 |9%]) ——= g fo([g]9]) — fo(lg™ 97|9"]) + follg™g79%]) — fo([g""|9])-

33



Denote g™ fo([g"2|g%]) — fa([g"g"2|g%]) + follg"|g2g]) — fo([g"]g]) = A.
Then A — gilgiz-l—ig—nfz(y(gizygig) — 1) - gz‘1+i2+z‘3—nf2(y(gilgiwig) - 1) +
gz1+12+z3—nf2(y(gi1 gizgia) — 1) _ gl1+12—nf2 (y(g¢17gig) — 1) By the fOHOWiIlg table

A
i1 +1i9 <nandig+is <nand iy +iy+iz <n 0
i1 +is <nandig+izs<nandiy+iyg+iz>n 0
11+ >nand s +1i3 <n ghtie=n(gis — 1)
i1 +is <nandis+iz>n 0
i1+ 12 >n and is + i3 > n gtz (gis — 1)
we get
e ghteTn(gis — 1) [ if i +ia>n
0 , otherwise.
Hence

o A G o (Y giey — 1)(g% — 1)
i1 412 413]) — _ ;
f3(l9"1919"]) = T 1

= fa(lg"19"]) f1([9"])

Here is a question: “Can we generalize the remaining maps in terms of f; and

f2? 2

Remark 4.1.1. Let G be cyclic group with order n. For the chain map between
the Gruenberg resolution for standard presentation and the Gruenberg resolution
for the presentation of cyclic group, take any element [¢'|¢’|g*] € JIp/J*Ip. Then
F2(ds([g%]g716%])) = falg'lg’](g* — 1). This follows from commutativity of the dia-

gram at F3 = J[F/J2IF. Similarly if the diagram commutes at Fop_1, we have

For—a(doralg™] g% ]) = far—a([g"] - - 1g™2]) (g™ = 1).

Theorem 4.1.2. There is a chain map between the Gruenberg resolution for

standard presentation and the Gruenberg resolution for the presentation of cyclic
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group, that is, for all m > 0 the diagrams

e TR L TR R R g R L e 2G-S0

lf2k+1 lfzk jf2 lfl jid lid
g-—1 -

70 726N - No7c "G~ 7 0

commute with

i . . gll—HQ_n 3 lf il + ig Z n

Fllg) = G and £lls" 15" =

, otherwise

and there is a formula for chain maps such that

for(a) = fo[g"19"]) - - folg™|g"]) for a € Jk/ gk
foerr(@) = far([g™] .- [g"*]) fi([g™+1]) fora€ J*Ip /T p.

Proof. We have f3 as a base step. Assume the following equality

Faealg™| g = faroa([™] - 1g™ 2] i[9
We need to show fy;, holds the statement. Take o = [gi1| o |gi2k] € Fy.

. . d . .
lg"]- - 1g™ ] ——=dax([g"] - - . 1g"])

for fak—1

Farlg"] - - [g™]) == forr(dak([g™] - - - 194])).
Denote A = for,_1(dox([g"] . . .]92*])). By the definition of doz, which is given in
the Proposition 3.2.2, we have
A =g fara(lg®] - [g™]) + S5 (1) o ([ - gl g [g™])
+for-1([g"] - - 1g"1])
= " forr([97] - 19™]) + 2057 (1) fara (97 ] - |97 g7+ g™])
— faea([g"] - g™ 19" ]) 4 far—a([g"] - - [g™])

By using the induction assumption,

A =g fara([g”] .- [g]) fr([g™*])
+ 3 (1) fara(g™] - - g g7 g ]) fi([g™4])
— far—a([g"] - 192D f(lg™ 1 g™*]) + far—a(lg" |- - - 1g™2]) fr([g™])
= for—a(dar1[g"] - . - |9 ]) fr(lg*]) + far—2([g"] - - - |g™2]) fr([g"*])
— far—a([g"] - 192D f(lg™ 1 g"*]) + far—a(lg" |- - - 1g™2]) f([g"])
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Using the Remark 4.1.1 and the fact that diagram commutes at Fb;_1, we have

A = faallg™] - lg™=2D) (g™ = D fillg™]) + for-a([g"] - 19D fi(lg™])
= far—2(lg"]- - lg==2]) f[g=]) + far—a(lg™ ] - - [g"2]) fu([g"])
= fae—2([g"] .- [g™2]) (g™ fullg™]) — fillg™—1g™]) + fillg™]),

: : o1 +ing—n O(9")
— 11 12k —2 tog—1Ft2k—n T J
fou—2([g"] - g g dg

Then

9(g")

i1 t2k—21) gl2k—1tizk—n
ka—2([9 ||9 ])g g

Fulg®] g = <

= fa2(lg"]- - lg"2]) fa([g" g™ ]),

which is what we want.

Now take o € Fopyq = Jk]F/Jk'H]F Then o = [gll| . ‘gi2k+1]‘

dog+1

dors1([g™] - - - [g++1])

[g"] ... |g'2+1]

for+1 fok

Forr(l07] - 1620]) L for(daa ([g] - - - |g2+1])).

By using the Remark 4.1.1 and the fact that the diagram commutes at Fy, we

have
Forldaea([g"] - 1g™]) = far(lg" ] lg™]) g™+ = 1)

Using commutativity of above diagram,

i i . ) 2k+1 _ ]
aia(lg" - lg) = fullg] o)

= fallg" |- lg™]) fulg™+]),

which is what we want. We showed chain maps between these two Gruenberg

resolutions depend on f; and fs. m
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4.2 The general case

A map of presentations (Fj, R1) — (F3, Ry) is a pair of maps fr, fr such that

the following diagram

T

1 R - P

e e -

1 Ry—2-p, 2. 1

commutes. Let F,F, be free group with basis X; = (z;) and Xy = (a;), respec-
tively. Assume Ry, Ry are generated by Y} = (y;) and Y2 = (b;), respectively.

Since above diagram commutes, we have

mi(z; —1) = WQ(Z a(fap—éjxi))(aj — 1))

J

> a(fF(qg(g; =0, 1) = (Y %{;—U@ —1).

J
There exist a chain map between Gruenberg resolutions of these presentations

such that the following diagram commutes:

e JE B e e e T2 T e TG -7 — 0

T

e T e IR e e Ty ) J2 2 I [ o, DS TG 7 — 0.

Take an element o € I, /J11p, .

a=(t;—1)— " (2 — 1)

I

SoiAila; — 1) = (X, afg;ji)(aj —1)).

By the commutativity of this diagram, we have \; = 8f§(xi)' Hence
aj
filwi—1) =" a )(aj = 1).

(%Lj

J
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Take an element o € J;/J?2.

q1

a(y: — 1)

a=(y;—1)

f2 jﬁ

Sl — 1) 23, afF(qg(jj — g, ).

Since »_; 8fF(QI3(3;_1)) (aj — 1) = @ —afR(aybi—k_ 2 (bp — 1)), we get

o 6fR(yi - 1)
N by,

Ak

by using commutativity. Hence

Rl —1) = 32 288, 1)
k

Note that the maps f; and fy can be written directly using Fox derivative. The

commutativity f; and f5 comes from the maps J; — Jo and Ip, — Ip,.

Take an element o € Jy I,/ J3 5.

a=(y—(a; — 1) —2 =5l (g — 1)

f3 lf2

%,J 3 1,J @
5 A — )= 1)~ Ty 5, A ),

Since we do not know whether group is commutative or not, we cannot say

fa(yi — 1) fi(x; — 1) = f3(a) such that

Z fr(yi) (bs—1) Z afg(xj) (1) = Z O fr(yi) Z dfr(x;) (bs—1)(a;—1).

5()5 a abs aat

S
To get rid of this, we define an operation *, convolution, such that

(5, — 1) 3 ) géfj) =2 —6@;@?‘” (b~ 1) (4.1)

where 0 denotes the noncommutative Fox derivative. Using convolution, we have

ol = 1) ey = 1) = 32 2 g, gy S D gy (4

O faly) D0 r(y))
=2 b, ob,,

(b — 1)(as — 1). (4.3)

n,t
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9fr(yi) 0(0fF(;))
0by ob,,
commutes. We have the following equations

(i — 1)( Zu (yx — 1) (4.4)

Then we can take )\;]t = . Now we need to show this diagram

Taking Fox derivative of 4.4,

O fr(yi Ofr(z, N 0
2 e = T R

9
- Z uy? fgblyk))a)l - 1).

By the Equations 4.2 and 4.3, we have

> O OO 4, 1), 1) = (3 Py ),

n,t $ l k

which means this diagram commutes. Hence we can write f3 in terms of f; and

fa such that

fs(a) = folys = 1) * fi(z; — 1) where @ = (y; — 1)(z; — 1).

Theorem 4.2.1. Given a map of presentation (fr, fr). There is a chain map f.,
associated to map of presentation, between their corresponding resolutions, that

1, for alln > 0 the diagrams

SR Y (S N 5 P 3 (R Ay - N Ry S SN e T
jf% jkal lfz lfl ‘id \id
e T T e IR L e Ty ) J2 2 I [ o, DS TG-S0

commute where

filzi—1) =) afg(xi) (a; — 1)

j J

folyi—1) = Z afgb(?i) (bj —1).

Furthermore, there is a formula for chain maps such that
foe(@) = folyiy — 1) %+ fays, — 1) for a € JE/JHH

f2k71(05) = fQ(yh - 1) Kook f2(yik71 o 1) * fl(mlk - 1) fOT OS Jkil]F/Jk[F'
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Proof. We have f3 as a base step. Assume the statement is true for for_o. We

need to show it is also true for for_;. Take an element in JF'Ip /JFIp , say

= (yil - 1) st (y’ik—l - 1)(xlk - 1)'

doj_ .
o 2k—1 Zj u;ej
for—1 lf%g
dok— .
foror (@) === 37 b folys, — 1) %+ fa(yy,, — 1),

where e¢; = (y;, — 1)...(y;_, — 1). Take for_1(a) =3 A6, where
ém = (bmy, — 1) ... (b, — D)(ap, —1).
Ofnlys) Ofr(z) 1 ~=0faly)  (0fr),
; 8bm1 (bm1 ]‘) ; aamk (amk ]‘) - ; abml v abnk e’ﬂJ
(4.5)
where é, = (b, —1)...(bn,_, — 1)(am, — 1). Hence
yi = 9frlya)  0(9fr) 0(0fR)
" Oby, ~ Oby, , Ob,,
We have the following equation
(yh - 1) s (yik—l - zlk - ZU Y — : (yjk—l - 1) (46)

Taking Fox derivative of 4.6,

Z afR(y“)(bml —1)--- Z M(amk —1) = Zu;fz(yjl —1)*---

myi abml myi aamk 1,5
By the Equation 4.5, we have
0 i 8
Z frly ) fF Zuf? (yj — 1) % * folyy, | —

Dby,

n

Then we can write fy,_1 in terms of f; and f5 such that
fon-1(a) = folys, — 1) %o foys, — 1) * filzi, — 1)

where o = (yil — 1) ce (yik_l - 1)<x1k - 1)'
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Now we need to show it is also true for fo,. Take an element in JF/JF say
=W =1 (g, — 1)

a > ue;
Jok Lf%l
5
for(@) == 370w foly, — 1) -+ folys,, — 1) * filay, — 1),

where ¢; = (y;, — 1)...(yj,, — D(xj, — 1). Take for(a) =3 A6, where
e = (bos — 1)+ (b — Dby — 1),
3 b 1) 3D O ) = 3T O ST,

m,i m,i

where €, = (b, —1)...(by,_, —1)(bm, — 1). Hence

Ofr(yi)  0(9fr)0(9fr)

N = e .
" Obp, ob,, , 0Oby,
We have the following equations
(yh - 1) ylk Zu Yjn — : (yjkﬂ - 1)(xjk - 1)' (4'8)
Taking Fox derivative of 4.8, we have
Sl oy s ), = 3wkl = D+ Al =)
m,i abml m,i abmk
By the Equation 4.7, we have
0 i 3
Z fR(Zh)m fR Zuf2 Yj, — 1) %o fi(xg, —1).

Db,

n

Then we can write fs, in terms of f; and f5 such that

fon(a) = folysy, — 1) % -+ % fo(y;, — 1) where o = (y;, — 1) ... (y;, — 1).

Hence given formula for chain maps is true for all f,. ]
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4.3 Applications

Hanke et al. [3] described a chain map from standard resolution to the resolution
for the cyclic group. In their paper, R is a commutative ring with identity and
A = R[Zj] is group ring of Z; over R. The standard resolution of R is denoted
by Se with modules S, := A ®g --- ®r A and particular basis which is given by

[hl‘h2|’hr] I:6®h1®h1h2®"'®h1h2...hr
where hy, hs, ..., h,. € Zx. The boundary is given by

Oy ([halha|. .. |hy]) :hl[h2| ]
+Z )i[halhal . .. |hihisa] - . - |hy]

+ (=) halhal . o]

The resolution of cyclic group is denoted by M, with M; := A for all ¢ > 0 and
the boundary maps are defined by

5, — mg, if ris even
m,, if ris odd,
where m, denotes multiplication by ¢ = e + g + --- + ¢! and m, denotes
multiplication by 7 = g — e. They defined some notion to describe a chain map
Se — M,. Take an element hy ® ---hos € Sy¢ and it can be written by bar
notation such that hy ® ---hos = ¢g*[¢g"]---|g*] where 0 < a; < k for all
0 < ¢ < 2s. They call the element hy ® ---hys € So strongly alternating if
g™ g™ |- - - |g®*] satisfies ag;1 + agiyo > k for all 0 < i < s — 1. Take an element
ho ® -« hosi1 € Sasy1. This element is called strongly alternating if there is an
a € Zy such that a ® hg ® - -+ ® hosy1 is strongly alternating. The A-linear maps
fr S, — A are given by
1, if [hy]...|hen] is strongly alternating

f2n([h1| SR |h2n]) =
0, otherwise

f2n+1([h1| e |h2n+1]) = O'ifgn([h2| . |h2n+1]) for hl = gi, 0<s<n. (49)
Then they give a proposition:
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Proposition 4.3.1. The collection of the maps f. : S, — M, is a chain map

from standard resolution to the minimal resolution, i.e for all s > 0 the diagrams

7]

P P P
Sos+2 Sost1 Sos

jf2s+2 lfzs-u lf%

o) o 0 0
A M25+2 - M2s+1 MQS

commute:

f2s(0¢) = 7 fasia(c) Jor ¢ € Sys11

J2s41(0c) = 0 fasqa(c) for ¢ € Sosio.

Using this explicit chain map formula, they proved the ” Combinatorial Stokes

Formula” which is Theorem 4.1, page 11 in [3].

Our chain map formula does not coincides with their formula in 4.9 since we

work with normalized standard resolution. However 7 f1(c) = g"—1 for ¢ = [¢"] in

0]
their paper, that is, fi(c) = 8g which is the same with our formula for f;. The
notion of strongly alternating is also the same as our condition for unnormalized

f2. Remember we find

1 ,ifii+ia>n
Fa(Ygin g2y — 1) =
0 , otherwise.
and
i i gil+i27n ) Zf ,L.l + i2 Z n
f(lg™1g"]) =
0 , otherwise.
Hence if we use [¢" [¢2] = (y(yir gizy) — 1) instead of z g gin (y(gir giz) — 1), then our

formulas coincides.
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Chapter 5

Computations with Gruenberg

Resolution

In this chapter, we give some computations using Gruenberg resolution. In the
first section, we write differentials of the Gruenberg resolution for a given pre-
sentation of Cy x Cs. This presentation is written according to the Example 3.15
in [8], page 62. After calculating differentials, we write a chain map between
Gruenberg resolutions of two given presentations of Cy x C5. In the following
section, we write differentials for S5 this time. Then we calculate the cohomology

group of S3 in two different ways.

5.1 Gruenberg resolution for C; x (5

Let G = Cy x Cy. Consider F is free on X = {z1,z5}. We have a presentation
such that
l1-R—>F—->G—1 (5.1)

where R is free on Y = {22 22 o7 2wy, vy wiw9xy, 27 ey twiws }. Denote 1y =
22 vy = 22, 13 = a7 a2y, vy = xy'va0wy, 5 = ] @y 1129, Then using

Proposition 3.1.4 and 3.1.5 we see that 1 —1 and x5 — 1 are generators for Ir and
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ry— 1,79 — 1,73 — 1,74 — 1,75 — 1 are generators for J. Consider the Gruenberg

resolution
SRS CV0 LI § S0 £y Ny RN Sl SN fe Ty )

Using the Fox derivative, we can write the map dy from {r; — 1} + J? where

1 <i<5to{x; — 1,29 — 1} + JIp as follows

Oo(ry — 1) = 0oz — 1) = (1 +21) (21 — 1)
Oa(ra — 1) = Oy(a3 — 1) = (1 + z2) (22 — 1)
o(rs —1) = (a7 by — 1) = (—ay ' + 27 23) (21 — 1) + (27" + 27 aa) (2 — 1)
=27 (23 = (21 — 1) + (1 + 22) (22 — 1))
Oy(ry — 1) = Oy(wy  wrwamy — 1) = (25" + 25 ' wwe) (21 — 1) + (=25 + 25 w1) (22 — 1)
=23 (1 + 2122) (21 — 1) + (21 — 1)(22 — 1))
Do(rs — 1) = Oo(ay w0y ' mws — 1) = a7 w3 (1 — @2) (21 — 1) + (21 — 1) (22 — 1))

Using this map and relations, we can get the map d; from (r; —1)(z; — 1) + J?Ip
to (r; — 1) + J* where 1 <4 <5 and 1 < j <2 in the following way

Os((r1 —)(z1 — 1)) = (x1 — 1)(r1 — 1)
O3((ry — 1)(wy — 1)) = xo(zy w1 momy (] oy 020 — 1)) + 2o (25 22021 — 1) — (1] — 1)

= @a(ra(rs = 1) + (ra —1)) = (rn — 1)

O5((re = 1) (21 = 1)) = 21(rs = 1) = (r2 — 1)

O5((ry = 1) (w2 = 1)) = (32 = 1)(r2 — 1)

03((rs — (21 — 1)) = a1 (23 = 1)(r1 = 1) + (r2 — 1)) — (r5 — 1)

O3((rs — 1)(wy — 1)) = @o(ay oy wday (o7 vy Moy g — 1) 4+ oy oy Mgy (07 252, — 1)

— xy oy (o gty — 1)) — (rs — 1)
=ao(r5tr3(rs — 1) + 15t (3 — 1) — 15t (rs — 1)) — (r3 — 1)
O3((ry — (w1 — 1)) = (x5 " + 25 w120 + 25 212077 — 1) (17 — 1)
+ (—xyt +ryte) (e — 1) — (rg — 1)
=z (a7 ey e (ry — 1) + (r5 — 1)) — (14 — 1)
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O3((ry — 1)(wy — 1)) = mo(y 222w 3wy (o7 25 Loy g — 1) 4 2y 222 (2] oy — 1))
+ a2y (2] — 1) — 23 (23 — 1)) = (rg = 1)
= ao(ry trirs(rs — 1) +rytry(rs — 1) + 71y (rp — 1)
— 7y (ra = 1)) = (ra— 1)
0s((rs — (w1 — 1)) = w1y (ra = 1) —a7(r1 — 1)) = (r5 — 1)
0((rs — 1)(wz — 1)) = wa(wy ' wy  wowyay wy *wn (23 — 1))

“xy (27 ' w3ws — 1))

— xz(:E2_1$1_13:2:r1x1_1932_2x11:1_1$2_
— xg(xglelxgxl(xfla:;lxlxg —1)—(rs — 1)

= ay(ryry (rg = 1) —rgtry H(rs = 1) — g H(rs — 1)) — (r5 — 1)

With using this differentials, we can write down the higher differentials for Gru-

enberg resolution for Cy x Cs.

5.2 A chain map between Gruenberg resolu-

tions of (y; x (5

In this time, we write a chain map between the Gruenberg resolution of standard
presentation and the Gruenberg resolution of Cy x Cs.

Let 1 - Ry — F; — (5 x 'y — 1 be standard presentation of Cy x Cy. Take
another presentation of C'y x C5 which is stated 5.1. Then we have a commutative
diagram:

Cyx Cy——=1

lfR LfF lid

1 R ® F = 02 X Cg—>1
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Then we have

fr(ze) = =

fr(xp) = 22

fF(l’ab) = fF(iUba) = T2
fR(y(a,a)) =T

frR(Y(ap) =75

frWaar)) = fR(Y(aba)) = T4
fR(?/(b,b)) =12

fr(Ypa) =1

FrRYpar)) = frR(Yb.ba) = T3-
By using Gruenberg resolutions of these presentations, there exist a chain map

such that the following diagram commutes:

e B2 T3 I TP e 0 )R B I ) T I TG -7 — 0

e e e e

15) 15) 15) 15) €
— J2) I3 Jolp, | J2 e > Jo) J2 2 1p, | Jolp, —> 7.G —~ 7 — 0.

Then we have
filxg —1) =21 —1
filzp—1) =29 — 1
fi(xa — 1) = xa(xy — 1) + (22 — 1).
Hence it is equal to what we defined in Chapter 4.2 such that
filz,— 1) = Z%{”(% —1).

We also get

Jo Y(a,a) — 1) = (7”1 —1)

fo(Yap) —1) = (15 — 1)
Yaa) — 1) = fo(Yapa) — 1) = (ra — 1)
Yo —1) = (r2 —1)

Jo(Wwary — 1) = fo(Yppay — 1) = (r3 = 1).
Then again it is equal to what we defined in Chapter 4.2 such that

0
fo(Ygm — 1) = Z %(yi —1).

i
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Take an element o € Jilp /Jp. We define earlier f; such that
fa(a) = fa(ygn — 1) * fi(xg — 1) where a = (y(gn) — 1)(xg — 1). This convolu-

tion is equal to our differentials which is calculated above, that is,

fala) = 0y nlWlan = D) 01r (s = 1),

Z7j

1. Take an element a = (Yo, — 1)(2, — 1).

a = (ya,a - 1)(33’(1 - 1) —>$a(y(a,a) - 1) - (y(a,a) - 1)

lfs J2

a a,a a a 3
e )
Since %‘%‘W = (r — 1) and —afgg“) = (21— 1), B5((r1 — D)(z1 — 1)) =

(x1 — 1)(r; — 1). Hence this diagram commutes.

2. Take an element o = (Y40 — 1)(zp — 1).

a = (ya,a - 1)(1'17 - 1) —>xa$ab<y(a,b) - 1) + xb(ya,ab - 1) - (y(a,a) - 1)

lfs sz
fo(Y(aa) — 1) * fi(zy — 1) Lxlazgxl(rg, — 1) +xo(ry — 1) — (1 — 1).

Since fa(Ya,a) — 1) * fi(zy — 1) = (11 — 1) * (x2 — 1),

O3((r1 = D)(zg — 1)) = wa(ra(rs = 1) + (ra — 1)) — (r1 — 1)
= $1I2[E1(T‘5 — 1) + (L’Q(T4 — ].) — (7”1 — ].)

Hence this diagram commutes.

3. Take an element o = (Y40 — 1)(za — 1).

o = (ya,a - 1)(-Tab - 1) —>xa$b(y(a,ab) - 1) + xab(y(a,b) - 1) - (y(a,a) - 1)

’ ’

fg(y(a,a) — 1)f1(37ab — 1) Lwlxz(m — 1) + [L’Q{El(T5 — 1) — (7“1 — 1)
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Since fo(Yaa) — 1) * fi(za — 1) = (r1 — 1) * (2221 — 1) + (21 — 1)),
O5((r1 — (@21 — 1) + (22 = 1)) = za(ra(rs — 1) + (ra — 1)) (21 — 1)
+ xo(ra(rs — 1)+ (ry — 1)) — (r; — 1)
= xara(y ((ra—1) = (1 — 1)) = (15 — 1)
+ zo(21(rs — 1) + 25 'z 2o (ry — 1) — (rg — 1))
+xory(rs — 1) + 22(ry — 1) — (11 — 1)
= x129(ry — 1) — z129(r1 — 1) — 212021 (15 — 1)
+ xowq(rs — 1) + 2129(r1 — 1)
— xo(ry — 1) + xymomy (r5 — 1)
+ao(ry —1)—(r; — 1)
= x129(ry — 1) + zox1(r5 — 1) — (1 — 1).

Hence this diagram commutes.

4. Take an element a = (ypp — 1)(z, — 1).

o= (Yop — 1)@ — 1) — 2Tpa(Ybo) — 1) + Za(Yopa) — 1) — Y0y — 1)
lf:ﬂ sz
P
Fo(yop — 1) * fi(xe — 1) s 2w 29(0) + 21 (13 — 1) — (12 — 1).

Since fo(ywp) — 1) * fi(ze — 1) = (ra — 1) x (21 — 1), O5((r2 — 1)(21 — 1)) =
x1(rg — 1) — (ry — 1). Hence this diagram commutes.

5. Take an element o = (ypp — 1)(xp — 1).

a = (Yop — Dy — 1) ——=2 (Yo — 1) — Weop — 1)
lfs jf2
Py — 1) % filwy — 1) —2s 2y (ry — 1) — (12 — 1).

Since fo(ywpp) — 1) * fi(wpy — 1) = (ro = 1) * (2 — 1), O3((re — 1)(z2 — 1)) =
(xg — 1)(r2 — 1). Hence this diagram commutes.

6. Take an element o = (ypp — 1)(ap — 1).

o= Yop — 1) (@ — 1) —— 2pZa(Yp,ap) — 1) + ToaYp0) — 1) — (Wpp) — 1)

: ;

ooy — 1) * fi(wa — 1) B reai(rs — 1) — 20a1(0) — (rs — 1).
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Since fo(Ypp) — 1) * fi(wap — 1) = (12 = 1) * (z2(21 — 1) + (22 — 1)),

O3((rg — ) (xo(xy — 1)+ (1 — 1)) = z2(re — 1)(x1 — 1) + (ro — 1) (22 — 1)
= 1’2(2['1(7"3 — 1) — (7’2 — 1)) -+ (IQ — 1)(7”2 — 1)
= xox1(r3 — 1) — (1 — 1).

Hence this diagram commutes.

7. Take an element a = (y, — 1)(z, — 1).

@ = (Yap = D(wa = 1) ——ds(a)

) p

Fo(Wap) — 1) * filza — 1) =2 fo(ds()).

Yap) — (@ — 1) = 2 2aZba Yoa) — 1) — 20 2(Y(aba) — 1) + 2oy 26(Y(apa) — 1)
— (Y(apy — 1) By the definition of f5, we have
ds(a) = $I1$51$1$2$1(0) — xflxgla;g(rl -1+ :1:1’1372’13:2(7"4 —1)—(rs — 1)
= —xl_l(rl —1)+ :vl_l(m —1)—(rs — 1)

Since fo(Yap) — 1) * fi(za — 1) = (15 = 1) * (21 — 1), O3((r5s — 1)(21 — 1)) =
27 (ry — 1) — a7 (r; — 1) — (rs — 1). Hence this diagram commutes.

Similarly, we can write f3 in terms of f and f; for any other elements in
JiIp, /| J2IF, . For cyclic group, we write chain maps in terms of f, and f; without
any convolution because in this case generator and relation commute. Although
Cy x (' is commutative group, the chain map of Cy x Cy is not commutative be-
cause generators and relations does not commute. Hence we need the convolution

in order to write explicitly.

5.3 Gruenberg resolution for Sj;

Let G = S3. Consider F is free on X = {x,y}. We have a presentation such that

1-R—-F->G—=1
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where Ris freeon Y = {2? 43, zyzy, vy tay?, yoyz, y~

Denote 1 = 22, ry = 3, r3 = wyvy, 4 = v 'y lay? rs = yryz,

re = y lazytx, rv = a7, rg = ylz~'y'xz. Then using Propo-

V=1, =13 1. -1 —1
xy te Py ey )

sition 3.1.4 and 3.1.5 we have x — 1 and y — 1 are generators for Ip
andry — 1,79 — 1,r3 — 1,14y — 1,75 — 1,7¢ — 1,77 — 1,73 — 1 are generators for J.

Consider
e 2T TIR ) P B T2 B IR )T S TGS T 0.

Using Fox derivative, we can write the map dy from {r; — 1} + J* where 1 <7 < 8

to {z — 1,y — 1} + JIp with abusing notation in the following way

do(ry — 1) = dy(2® — 1) = (1 + z)(x — 1)
do(ry —1) = do(y’ = 1) = (1 +y + ") (y — 1)
da(rs — 1) = do(zyzy — 1) = (L +2y)(z — 1) + (z + 2yz)(y — 1)
do(ry — 1) = dy(z ™ty tay® — 1)
=2y =D -1+ (=2 ly T ey e by ) (y - 1)
do(rs — 1) = do(yzyz — 1) = y(1 + zy)(z — 1) + (L + yz)(y — 1)
do(r6 — 1) = do(y "ty e = 1) =y (1 +ay e —1) -y (L +ay ")y —1)
do(r7 — 1) = do(z7 'y’ = 1) =27 (=1 + ) (@ =) +2 ' (1 +y +y°)(y — 1)
dy(rs = 1) =do(y 'z ly e =) =y a7y =)@ - 1) —y A+ y )y - 1)

Using relations, we can get the map d3 from (r; — 1)(z — 1) + J?Ir and
(ri = D)(y — 1) + J%Ip to (r; — 1) + J? where 1 <4 < 8 with abusing notation

ds((r1 —1)(z = 1)) = (x = 1)(r — 1)

ds((r1 = 1)(y — 1)) = ylrery ' (rs = 1) = rery (= 1) + (r6 — 1)) = (r — 1)
ds((rs = 1)(x = 1)) =a(r; = 1) = (r2 — 1)

ds((rs = 1)(y = 1)) = (y = 1)(r2 = 1)
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d3((rs = 1)(z = 1)) = x(r5 = 1) = (r3 — 1)

d3((rs = 1)(y = 1)) = ylrers(ra — 1) +re(rs — 1) + (r — 1)] — (r3 — 1)
ds((ra = 1)(z = 1)) = a[ry trg(rr = 1)+ (rg = 1) =17 (= D] = (ra = 1)
d3((ra = 1)(y — 1)) = ylrs(ra = 1) + (rs = )] = (ra — 1)

ds((rs — 1)(z = 1)) = a[ry'ry(ry = 1)+ (rs = 1) =17 (0 = D] = (15 = 1)
ds((rs =)y = 1)) =y(rs = 1) — (r5 — 1)

ds((r¢ — 1)(z — 1)) = 2[rgry ' (ry — 1) —ryry H(ro — 1) + (rg — 1)] — (16 — 1)
ds((re — 1)(y — 1)) = ylry rsry vy (s — 1) = vy trgr ey (r — 1)

Y
+y[—rytrsrstre — 1)+t (rs — 1) — 1y (e — 1)] — (r6 — 1)
ds((r7 — ) (@ — 1)) = a[rytro(ry — 1) 417 (ra — 1) — 7 — 1)) — (77 — 1)
ds((r7 — 1) (y — 1)) = ylrsrery Hrs — 1) — rgrory H(ry — 1) +rg(ry — 1) + (rg — 1)]
—(rr—=1)
ds((rs = 1)(z — 1)) = a[rs ' (rn = 1) = r5' (rs = 1)] = (rs — 1)
ety e s = 1) =t e (= D) = (= 1)

Y
+yl=ry (e =] = (rs = 1).

With using this differentials, we can write down the higher differentials for Gru-

enberg resolution for Ss.

5.4 Cohomology groups of 53

In [11], Swan constructed a resolution for Ss. In this section we examine this
construction. Then we calculate cohomology groups of S3. After this, we will
again calculate the cohomology groups of S5 by using Gruenberg resolution. First

we write the presentation of S3 in the following way:
S?) = <:1:,y|x2 = 1,1'?/-73 = y2>
The relation 3 = 1 can be omitted since

Yy = %’2@/%'2 = ITXYTT = $y2$ = TYrrYyr = y2y2 = y4.
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Then we have resolution such that
0—>Z—+C’3 02—>Ol—>00—>Z—>0

where Cy = ZG has a single generator with €(g) = 1, C} is generated by = — 1
and y — 1, Cy is generated by 22 — 1 and xzyx — y? and Cj is generated by e.

7G 2 70
VAN
76 ——=7.G Lray 7G — =7 — 0.

x+1)(m /

76" 70

Apply Homyg(—,Z), then we have

AL
\ RN

HYG,Z) =kerd, = Z
kerd2

HY(G,Z) = =
<G7 ) Imdl O
ker d3
H*(G,7Z) = =17/2
( Y ) Il’Il d2 /
ker d4
H*(G,Z) = =
(G7 ) Imd3 O
ker d5
HYG,Z) = =7/|G| =7Z/6.
(6.2) = 1o = Z/IG =2/
Since it is 4-periodic, we have
(
7, n=20

Z/2, n=2 mod (4)
Z/6, n=0 mod (4)
0, n is odd.

H'(G,Z) =

\
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In the Chapter 5.3 we calculate differentials of the Gruenberg resolution of S3
I V0 =N § Y £ PN T LN Sy § KUY el N )

Then

0 7, d! Z2 d? ZS d3 Z16 d Z64 ds

obtained by applying Homgzg(—,Z). By our calculations in the Chapter 5.3, we

have following

d' =0,

o

0 3

2 9

o |01

2 9

2 92

0 3

0 —2
(00 0 0 0 0 0 0]
2 0 1 0 0 1 0 0
0 -1 0 0 0 0 1 0
0O 0 0 0 0 0 0 0
0 0 -1 0 1 0 0 0
0 0 -1 1 0 1 1 0
10 0 -1 0 1 1 0
e (01 0 10 0 0 1
0 0 1 0 -1 0 0 0
0 0 1 0 -1 0 0 0
1 -1 0 1 0 -1 0 0
1 -1 1 0 1 -1 -1 0
0 1 0 0 0 0 —1 0
10 1 0 0 0 0 1
1 0 0 0 -1 0 0 -1
10 1 -1 0 0 -1 —1




Then denote d3 by its reduced row echelon form.

1 0000 -1 0 1]
01000 0 0 3/2
CiS:OOlOO—lO 2
00010 0 0 1/2
00001 -10 2
000O0O0O O 1 3/2
Then
kerd, = Z
Imdle
kerd, =0
Imdo =Z®7Z
ker ds = Z.
Hence

H(G,Z) =kerd, = 7Z

ker dy
HYG.72) = =
(G7 ) Im dl
kerd3
H*(G,7Z) = =7/2.

For higher cohomology groups can be calculated with using higher differentials.
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