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Abstract. There is no doubt that AI research has made significant progress,
both in helping us understand how the human mind works and in constructing
ever more sophisticated machines. But, for all this, its conceptual foundations
remain remarkably unclear and even unsound. In this paper, I take a fresh
look, first at the context in which agents must function and so how they must
act, and second, at how it is possible for agents to communicate, store and
recognise (sensory) messages. This analysis allows a principled distinction to
be drawn between the symbolic and connectionist paradigms, showing them
to be genuine design alternatives. Further consideration of the connectionist
approach seems to offer a number of interesting clues as to how the human
brain—apparently of the connectionist ilk—might actually work its incredible
magic.

1 Introduction

Artificial Intelligence (AI) is both a scientific endeavour that attempts to
understand human cognition and an engineering discipline that tries to con-
struct machines with human-like capabilities. Unfortunately, the lack of a
solid conceptual foundation makes AI, “an engineering discipline built on an
unfinished science” (Ginsberg, 1995). Although the subject matter of this
endeavour—the human mind—has traditionally been the realm of philos-
ophy, philosophy’s main contribution may have been to demonstrate that
common technical words including “symbol”, “representation” and “computa-
tion”, are more difficult to define than they appear. Not surprisingly then,
throughout its short history—beginning with the Dartmouth conference in
1956—AI research has seen a lot of heated debates, many resulting from mis-
understandings due to differing goals, backgrounds and terminologies. In the
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following paragraphs, I present my own attempt to understand and bring
some semblance of order to the topic. I approach the problem as an engineer-
ing task and begin by analysing the difference between the classical symbolic
& connectionist paradigms. Consideration of the functional requirements for
cognition, including the environmental/evolutionary contexts in which agents
find themselves, offers a basis for designs which are shown to be necessarily
computational in nature. This also offers a principled way in which to clarify
the relation between the symbolic and connectionist paradigms and helps to
set the scene for understanding how agents, and in particular we humans,
might acquire meaning, consciousness, feelings, etc.

2 Explaining Cognition

In the beginning there was symbolic AI, and it was good. Indeed, John Hauge-
land (1985) later christened it GOFAI (Good Old-Fashioned AI), to contrast
it with the upstart connectionist approach that gained support in the 1980s
following the publication of Rummelhart & McClelland’s (1986) book on PDP
(Parallel Distributed Processing). Connectionist networks (also known as Ar-
tificial Neural Networks, ANNs) were seen by many as a means to overcome
the problems being faced by the symbolic paradigm.

The classical symbolic approach sees cognition as computation, exemplified
by the digital (von Neumann) computer and, perhaps to a lesser extent, the
Turing machine. It is usually viewed as rule-governed manipulation of formal
symbols. It appears to be inherently sequential, with a centralised control
mechanism. It is generally considered to be logical and transparent, that is,
its inner workings can be expressed/understood in meaningful terms. The
symbolic approach has proved markedly successful, for example, so called
expert systems are able to perform complex tasks, such as medical diagnosis,
planning and configuration at the level of, and sometimes even better than,
human experts. On the other hand, they are difficult to program, brittle (a
single error often causing complete failure), not inherently able to learn, and
lack a biologically plausible mapping. This results in great difficulties when
it comes to building systems that can, for example, navigate around rooms
or interact using spoken language—both skills that children as young as five
acquire with apparent ease.

The Connectionist (ANN, PDP) approach, then, appeared to offer solu-
tions to precisely these difficulties. As a network of "neural-like" processing
units, it is naturally parallel and, with no clear centralised control, inter-
ruptable. It can learn from examples without the need for explicit program-
ming (though the results are often opaque; difficult/impossible for humans to
interpret). It is also tolerant of errors and, most importantly, has a (reason-
ably) obvious mapping to the human brain (which is assumed to be a net-
work of neuron cells at the relevant level of description). To contrast it with
the symbolic approach, some connectionists referred to it as "sub-symbolic"
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processing, a reference to the idea that concepts in ANN’s were seen as repre-
sented in distributed form and that processing often worked only on parts of
that representation/symbol (Chalmers, 1992), whereas in the symbolic form
the entire (atomic) representation was the object of processing. This was
just one way in which proponents of the ANN approach tried to differentiate
it from the classical paradigm. They fully expected connectionist networks
to be able to explain all of cognition. However, while it proved reasonably
successful at simple low-level learning tasks, it struggled to demonstrate sim-
ilar success at the higher levels where the symbolic approach had long held
sway. The proper solution was therefore unclear: was one of the paradigms
correct—in which case, which one—, or was it the case that a hybrid solu-
tion was needed—the ANN providing the lower-level learning that generated
the symbols to drive the symbolic level—, or were they actually genuine
alternatives—both able to support full-blown cognition—, or was there some
other fundamentally different alternative? Not surprisingly, discussions took
on the tone of religious debate, each group believing their position was the
only true answer, and trying time and again to prove it.

One of the most important criticisms of the connectionist approach came
from Fodor and Pylyshyn (1988), hereafter F&P. They pointed out that neu-
ral networks (of the time) were purely feedforward and lacked any sort of
ability to handle sequences of inputs. This led connectionists to develop re-
current ANNs, whereby some of the output (or hidden layer) neurons feed
back to form part of the input vector, so providing "context" for the next set
of sensory inputs. This is equivalent to adding feedback loops to combinatorial
logic to obtain sequential machines, and so provides the necessary capability,
but (I suggest) does not provide a good conceptual foundation upon which to
build. Another point raised by F&P was that representations must be (a) in or
out of structure, and (b) active or inactive. They argued that the distributed
representations favoured by most connectionists failed to have the necessary
structural characteristics (since they were simple vectors), but even if they
did (as, for example, in the case of a parse tree for a sentence) then there
was no way for the network to make use of such information. Again, there
now appear to be mechanisms (e.g. temporal) by which such structure might
be extracted, so this argument against connectionism also appears to have
been met. One interesting point not made by F&P, is how the symbolic ap-
proach fares with regard to these representational criteria. Clearly it manages
structural concerns (using syntax and concatenation–and some semi-magical
mechanism to process it), but what determines whether a representation is
currently active or not? Either it is conjoined with a truth token or, in mod-
ern digital computers, it is its particular (memory) location that indicates
its status–both, in effect, giving a special, perhaps unwarranted, place to the
notion of truth.

It was Searle (1980) who pointed out another major problem with the clas-
sical symbolic approach: the fact that its symbols didn’t actually mean any-
thing! His now infamous Chinese Room thought experiment suggested that
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manipulating meaningless "squiggles" was never going to result in meaning;
that syntax was not sufficient for semantics. The ensuing debate has a long
and tortuous history. It began with the idea that symbols can gain meaning
from their relations to other symbols. This won’t work—it is like looking up a
word in a foreign language dictionary—the explanation, in terms of yet more
foreign words, doesn’t help (even if you look them up, all you get is more
foreign words). Ultimately you have to know what some of the words mean,
i.e. some of them must be "grounded" (Harnad, 1993). Grounding, in essence,
requires causally connecting symbols to the world, such that when an agent
sees, for example, a cat, the corresponding "cat" symbol is "tokened". This
suggested that the connectionists were on to something after all. Unfortu-
nately, there are a number of difficulties with this too, including questions
about how such symbols arise and how they can be in error. The best answer
we have so far is that a symbol/representation/state has meaning for the
agent if there is a possibility that it can use it to successfully predict and act
in the world (Bickhard and Terveen, 1995; Davenport, 1999).

Of course, the most obvious difference between people and computers is
our apparent subjectivity, our awareness, and the feelings we have about
the world. Dreyfus(1972; 1992) argued that human intelligence and expertise
rely on unconscious instincts and intuition, which cannot be captured by
formal rules. If, by this, he is referring to our inability to verbalise these rules
and our difficulty in realising how we solved a problem, then he is correct.
However, this does not preclude physical entities, other than people, from
doing likewise.

Partly in response to the difficulties perceived as inherent to the
symbolic and connectionist paradigms, a number of proposals for more
radical alternatives started to appear. These included dynamical sys-
tems (van Gelder, 1995), embodied cognition (Gibson, 1979), radical em-
bodied cognition (Chemero, 2009), embedded cognition, situated cogni-
tion (Robbins and Aydede, 2009), extended cognition/mind, interactivism
(Bickhard and Terveen, 1995), enactivism, etc. In essence, these divide the
(design) space into those that see cognition as based on representations
versus those who favour an eliminativist (non-representational) approach
(computational/non-computational); those who see the body as an essen-
tial component of cognition versus those who see it as incidental (a mere
input/output device), and those who see the environment as crucial versus
those who see it as incidental. As is often the case, such dichotomies seem
contrived, specifically designed to focus on certain aspects of the problem
that have, perhaps, been neglected in the past. Ultimately, the truth must
lie somewhere between the extremes and include aspects of each viewpoint.
In the following sections I will present my own (simple-minded engineer’s)
attempt to understand and clarify things.



The Two (Computational) Faces of AI 47

3 Engineering Intelligence

The engineering process traditionally recognises requirements, design and
implementation phases, followed by test, distribution and maintenance. The
requirements phase is concerned with function; identifying the problem to be
solved. The design phase then represents an abstract solution to the problem,
a plan which is then implemented (in the implementation phase) producing a
concrete mechanism that matches the design. The mechanism (product) can
then be tested for correct functioning and, if all is well, distributed to cus-
tomers. Finally, the maintenance phase usually comprises incremental bug-
fixes and updates that improve the system. I will now look at the process of
designing a cognitive AI with reference to each of these engineering phases
with the exception of the test, distribution & maintenance phases, which we
need not concern ourselves over since these are clearly and very competently
handled by the environment & evolution (which is unmerciful in weeding out
those less successful designs).

3.1 The Requirements Phase

In order to design a product, be it an AI or a toaster (or an AI toaster), it is
first necessary to determine what it needs to be able to do and what context it
is to operate in. For the toaster it is relatively simple, it needs to heat up bread
in such a way that the surfaces burn slightly and it must do this in a context
where the bread comes in slices of certain dimensions and where there is 220
volt electricity available (not to mention an environment with certain gravity,
and an appropriate atmosphere containing sufficient oxygen, etc., etc.). For
an agent, natural or artificial, its primary goal will (usually) be survival in a
very complex and changing environment. For biological creatures, this means
maintaining an ability to move around in order to find nourishment and
to sustain themselves, while avoiding any physical damage. Among other
things, this requires maintaining an appropriate body temperature, blood
pressure/flow, etc., being able to locate suitable food, and avoiding predators.

Some of these tasks are relatively simple, but some are extremely tricky due
to the inherent vagaries of Nature. As McTear (1988) eloquently put it, "the
unpredictability of the world makes intelligence necessary; the predictability
makes it possible". Agents must try to take advantage of any regularities
they can uncover in order to select the course of action best suited to their
goals. The fact that they are small (but presumably physical) parts of the
physical world, implies they are likely to have only limited knowledge and
so be subject to error. Agents must somehow detect the situation they find
themselves in, try to predict the outcomes of any possible actions, and then
select the action that appears the most beneficial. Ideally, they will need to
remember the consequences of their actions so they can learn and perhaps
choose a more preferable option, should they encounter a similar situation in
the future.
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In an abstract sense these are all control problems, the complexity of which
vary widely. Consider, for example:

• maintaining body temperature / blood pressure, ...
• tracking prey/predator even when occluded, walking/climbing, ...
• conversing in English, doing math, socialising, creating/telling fiction, ...

The (design and) mechanism for accomplishing each of these (control) tasks
would be different. For instance, the first (simplest) sorts of task require only a
simple fixed feedback system. The relevant decision-making data is generally
available, the possible actions are few and known, and so almost no learn-
ing is needed. More sophisticated tasks may require feed-forward predictive
controllers, and may be expected to work with less reliable information (in-
complete & noisy sensory data), and to demonstrate very complex patterns of
behaviour that might change based on experience. The most complex tasks,
those so far unique to humans, require what might be called knowledge-based
controllers. Such a device would be characterised by its ability to handle an
extremely wide range of situations and to learn, so that it may not perform
the same even under identical circumstances. It is this level of performance
that is the focus of Newell & Simon’s (1976) "Physical Symbol System Hy-
pothesis" (PSSH), which claims that "A physical symbol system has the
necessary and sufficient means for [human-level] intelligent action". A physi-
cal symbol system is, roughly, a physical implementation of a symbol system;
that is, of a set of symbols and a set of (inference/rewrite) rules that specify
how the symbols can be manipulated. Newell & Simon couch their definitions
in very general terms, such that it might be taken to include both symbolic
and connectionist-like systems. They also assume that the symbols involved
"designate" things in the world. The evidence they offer for the truth of
the PSSH is (a) the obvious successes of symbolic AI and, (b) psychological
experiments that show that human problem solving involves symbol manip-
ulation processes, which can also be modelled by AI symbol systems. Fodor’s
(1975) Language Of Thought theory provides further support, as does the
simple fact that humans can simulate universal Turing machines. Notice that
a PSS-level mechanism could perform the simpler tasks, but there is no way
that the simpler mechanisms could perform the PSS-level tasks. Having thus
sketched the requirements for a cognitive agent and the context in which it
must function, it is now time to move on to the design phase.

3.2 The Design Phase

Design is obviously constrained by requirements, but also by the properties of
materials available for the implementation. To take an everyday example, if
the requirements are to shelter human beings from the extremes of tempera-
ture, wind and rain (on this planet), then we might do this by building houses
made of wood, of brick, of concrete, or of steel and glass (though probably
not silk or banana skins). Even suitable materials obviously have different
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characteristics, such that we could build skyscrapers with two hundred floors
from steel, but presumably not from wood. Availability is another concern;
there may well be situations where steel is not an option and wood actually
provides the best/only choice. What materials are available, their characteris-
tics, and our ability to work with them, can thus significantly shape the range
of design solutions. When it comes to designing a cognitive AI, however, it
may not even be clear what materials are suitable. Clearly, biology works,
but what of semiconductors or perhaps something else? What properties are
relevant? To answer this question will require a slight digression.

I claim (and will try to argue) that cognition is essentially control, or-
ganised around a prediction/modelling mechanism, and that the design of a
prediction/modelling mechanism can be expressed/described as a computa-
tion. This is a broad (and perhaps controversial) view of computation, but
one I feel is justified. We humans naturally construct mental models of our
environment (not to mention models of fictional worlds or situations). We
then use these models to respond to questions about the actual (or imagi-
nary) world. In the most sophisticated cases, such models are used to run
"simulations" of the world, so as to predict possible future states and to see
how those may change should the agent act in different ways. Armed with
the outcomes of these simulations an agent can then select the action it sees
as the most beneficial. Now the question is how such models (or simulations)
can be constructed and run. Modeling of the real world must mean that states
of the model can somehow be mapped to states of the world and that the
sequence in which the states evolve also follows the same trajectories (notice
that time in the model does not have to be the same as in the real world, only
the sequence matters). What determines the sequence of states? Clearly, the
causal pathways. When implementing such a modeling mechanism we have to
rely on causation. We can either try to find an existing system with the appro-
priate dynamics, construct one anew, or, more commonly nowadays, we can
turn to our universal machine, the (digital von Neumann) computer, that can
be programmed to provide any desired causal behaviour. Notice that the only
concern is the causal evolution of the system. None of the material properties
matter, unless they impact the causal flow. Thus biology, semiconductors,
or beer cans, are all equally suitable materials for constructing such devices.
A program/algorithm/computation, then, is simply "an abstract specifica-
tion for a causal mechanism" (Chalmers, 1995; Davenport, 1999) that will
implement the model/computation. Learning involves changing the causal
pathways so as to produce different behaviours.

Designs for the simplest sorts of tasks (e.g. maintaining body tempera-
ture or blood pressure) can now be cast in this light. Take, for instance, van
Gelder’s (1995) example of Watt’s centrifugal steam engine speed governor
(which he claimed had no representations and so was not computational and
thus necessitated a dynamical systems approach). Such a governor needs to
select one of only two actions (increase or decrease the steam going into the
engine), directly predictable from the current engine speed. Any mechanism
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that provides such control is acceptable. The mechanical linkages of Watt’s
centrifugal governor do exactly that, simply and reliably. The device could, of
course, be replaced with appropriate sensors, actuators and a control system,
electronic or biological, though these may prove much less reliable. Notice,
also, that there may be numerous designs for the inner workings of the control
system (feedback, feedforward, bang-bang, etc.), but that, providing the re-
quirements are met, they are all candidate solutions. Note too, that they are
all causal mechanisms and so have a computational description; i.e. they are
computational with reference to our broad understanding of computation.

When it comes to designing agents capable of displaying human-level be-
haviour, we most certainly need a more sophisticated mechanism—a PSS,
equivalent to a general-purpose von Neumann machine. Given that an agent
can have no a priori knowledge of the world’s regularities1, it would seem that
the best it could do would be to store what it senses and detect when a simi-
lar situation occurs again. Of course, it also needs to maintain a record of the
sequence of situations, including any actions it may have taken. Given "sit-
uation, action, new situation" data, it should have the information it needs
to make "intelligent" actions in the future, but how? In order to shed light
on this and to help resolve a number of important issues, in particular the
fundamental difference between the symbolic and connectionist approaches,
it is necessary to go right back to basics.

4 Back to Basics...

How can we communicate and store messages? Imagine we have a man on a
far away hill, with a flag in his hand. To begin with, he can hold the flag in
only two positions, either down in front of him or up above his head; initially it
is down in front of him. An agent observing this distant man suddenly notices
that the flag has been raised. What is he to make of this? There seem to be two
possibilities. First, the pair could have established a convention beforehand,
such that, for instance, the man raises his flag only if an enemy is approaching.
Thus, on seeing the flag go up the observer quickly prepares, pulling up the
draw-bridge and manning the battlements. The second possibility is that no
convention has been established, so when the flag is raised the observer can
only guess at its purport. Let’s say he assumes the worst, that the raised
flag means imminent attack and so he takes the precaution of pulling up the
draw-bridge and manning the battlements. Thankfully he is mistaken and it
was not an enemy approaching. Unfortunately, it is some rather important
guests who are taken aback by the unfriendly reception. The next time the
man raises the flag the observer recalls the embarrassment and so quickly
begins preparations to welcome honoured guests. But again he is mistaken.
1 It might be argued that evolution has naturally selected for certain architectural

characteristics (both physical bodies and mental structures) which, in effect,
embed some a priori knowledge of the world.
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This time it turns out to be the local tax collector who is overawed by the
reception, but thinks it may be a bribe. The observer might continue this
guessing game or he may decide to experiment, sending out invitations to
various parties to see which ones invoke the man to raise his flag. Through
such interactions the observer can build up a better picture of just what the
signal means, and so hope to avoid any untoward situations in the future.

There are two ways in which this simple signalling system could be ex-
tended to communicate more messages. The first and most obvious way would
be to allow the man to hold the flag in more positions; for example he might
be able to hold it out to the left and to the right, in addition to above
his head and down in front of him. This would allow him to communicate
three messages. This could be further extended, in theory to allow him to
signal an infinite number of messages. Of course, he would have practical
difficulties doing this, as would the observer in attempting to decide which
message was being sent. The distinction between a limited number of discrete
messages and an infinity of messages, is the difference between the discrete
and (continuous) analog forms of communication2. Note that the messages
are mutually exclusive, so that only one message can be communicated at
a time. The other way to extend the number of messages would be to have
more men, each with their own flag and each of whom could communicate
a message independent of (and simultaneously with) the others, so (given
only two flag positions), two men could communicate two messages, three
men three messages, etc. Alternatively, if the men are together considered
to be communicating a single message, then two men might communicate
three mutually-exclusive messages, three men seven messages, four men 15
messages, and so on3. One final variation would be to communicate parts
of the message at different times. This corresponds to so-called serial versus
parallel communication. In both cases, additional consideration may need to
be given to synchronisation, but we will leave this aside for now.

In addition to communicating messages, an agent must be able to store the
messages it receives and later recognise them if they occur again. Consider
a set of (sensory) inputs to the agent–corresponding to the men with flags
in the previous paragraphs. There appear to be two fundamental ways in
which messages might be stored. The first way to remember an input pattern
would be to create another set of men with flags (one man for each input),
and have them simply copy the state of the corresponding input. This could
be repeated for each instant, which would obviously require a lot of men and
flags, unless they were reduced by storing only previously unseen patterns.
2 The term digital is sometimes, perhaps incorrectly also applied to discrete en-

codings. The term analog also has another meaning, often conflated with this
one, wherein it refers to a value, usually encoded in a specific material property,
that varies in direct proportion to another value, e.g. the height of mercury in a
thermometer varies in accord with the ambient temperature.

3 In each case, one combination of states (e.g. no flags raised) must be used as a
background, “no message”, signal.
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For an agent to recognise when an input pattern reappeared would require it
to compare the present input pattern with all the previously seen and stored
patterns. It might attempt to do this in parallel, in which case there must
be some mechanism to consolidate the ultimate "winner", or it may do it by
sequentially comparing them, perhaps placing a copy of the winner into a
certain winner’s location. While these are possibilities, they seem messy and
unintuitive, a situation that would be compounded when it became necessary
to store and extract sequence information and to handle inexact matches.

Contrast this with the other fundamental way in which the storage and
recognition might be managed. This time, create only a single man and flag
for each instant, but establish links (wires/pathways) from him to each of
the inputs that are presently signalling (but not to the inactive ones). Now,
when a previously seen input pattern reappears, the links connect directly to
the corresponding man who can quite easily use his flag to signal that all the
previously seen inputs are once again present. In the case of partial matches,
should several men share a particular input then they become alternatives.
Hence, if one has more of its input pattern active, then it can suppress the
other less likely combination in a winner-take-all fashion. Extending this to
store and detect sequences is also relatively straightforward. Furthermore, the
newly created men—that link to the (sensory) inputs—can form the input
pattern for yet another higher level of men and flags, and so on for as many
levels as required.

5 Is Cognition Symbolic or Connectionist?

Earlier we asked what the relation between the symbolic and connection-
ist paradigms was: was only one approach correct and if so which one?
Was a hybrid solution required? Were they actually alternative approaches,
or were neither correct and so some other solution needed to be sought?
The subsequent discussion has hopefully clarified this. The copy and link
storage-recognition methods provide a clear and principled way to distin-
guish the paradigms. The classical symbolic paradigm is based on the "copy"
mode; whenever a representation is needed in an expression, a new copy
(token/instance) of it is generated (in the same way that, for example, the
letter ’a’ is copied over and over again, as it is used throughout this paper).
In contrast, the connectionist paradigm is clearly based on the "link" mode of
storage; whenever a representation is needed in an expression, the expression
is linked to a single existing version of the representation. This distinction
is equivalent to parameter passing by-value (copy) vs. by-reference (link) in
computer programming languages.

The symbolic and connectionist paradigms thus appear to be genuine al-
ternatives; that is, an intelligent agent could equally well be designed and
implemented using either approach. To be fair, it is still not certain that the
connectionist (link) scheme can actually provide the necessary functionality,
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but as I will try to demonstrate below, I believe it can. Indeed, given that
the human brain almost certainly uses the "link" scheme, it makes sense to
concentrate efforts on explicating it. In the following paragraphs I will try to
show how the connectionist approach outlined above, may provide insights
into some of the more perplexing puzzles regarding human consciousness
experience–intuitions which the symbolic approach fails to give any real clue
about.

6 Connectionist Insights

So far we have seen how an agent can store sensory input by creating causal
links from the active inputs to a newly allocated man and flag. It can take
the outputs from such men and use them as inputs to another tier, and so
on, to produce a (loose) storage hierarchy. When new input is received it is
matched against this hierarchy. In cases where only a partial match can be
found, links to any unmatched inputs form "expectations" (since they were
active on a previous occasion). Hence the agent has "anticipations" of the
missing signals. If we assume that the men (like neurons) retain their state
for at least a short amount of time after the input signals are removed, such
expectations can serve to "prime" the hierarchy so that interpretation of
subsequent inputs will tend towards matches that include previous solutions.

Assume, now, that "nodes" (men or neurons) can detect and store either
simultaneous input signals (as before) or signals that arrive in a particular
order (i.e. signal "A" precedes signal "B"). Coupling this with the idea of
"state-retaining" nodes provides a means to accommodate sequence process-
ing (an alternative to the feedback employed by recurrent neural networks).
Finally, notice that state-retention can provide a decoupling of nodes higher
up the hierarchy from those closer to the input layer. Together, such fea-
tures may provide a way in which goal-directed behaviour might be achieved
and understood–the very top level nodes remaining active and providing the
expectations that guide the lower levels.

We have already seen that agents use the information they store for the
prediction and selection of appropriate actions. The mechanism thus forms
a model that can be run to simulate what will happen. Of course, initially
models will be very simple and incomplete; each man and flag being essen-
tially a "model" of some relationship in the environment. Over time, however,
more sophisticated models will evolve and be refined as a result of interac-
tions with the environment. The decoupling mechanism is a vital part of this
since it allows models to run simulations independent of the current sensory
input, enabling longer term planning and actions. Note that agents will al-
most certainly retain and use multiple models with varying levels of detail
and completeness, so that they can respond rapidly when the need arises, but
be able to “think it through” if time allows.
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Given that agents are part of the environment they act in, they naturally
need to model themselves too. Any reasonably sophisticated agent will thus
develop a "self" model—that we ultimately label "I" or "me" after acquiring
language. Our history of interactions with the world, including other agents
in it, becomes associated with this model, gradually building up our personal
identity.

Finally, and much more speculatively, the expectations that result from
missing inputs may help explain "feelings". Should a node become ac-
tive without any of its inputs—as a result of higher-level expectations, for
example—then it will produce "expectations" on all of its inputs. These
"prime" each of the inputs; a situation very much like the original one when
the actual inputs were present. Note that similar stimulation may result dur-
ing dreaming and during brain surgery when a neurosurgeon stimulates in-
dividual neurons.

6.1 Internal & External Symbols

So far only signals (representations/symbols) that are internal to the agent
have been considered. External symbols, words, signs, etc., also have inter-
nal representations. How can such external symbols gain meaning? Assume
we have one hierarchy (of men with flags) that store and recognise certain
physical states of affairs, for example a cat or a dog, when seen by the agent.
Assume also that there is another hierarchy in which the agent stores and
recognises audible states of affairs, for example the spoken word "cat" or
"dog". Situations will arise in which the spoken word and the actual entity
are present simultaneously, and the agent will store these states of affairs in
the same manner as any other (linking the relevant nodes in each hierarchy to
a new node). Subsequently, on seeing a cat, the previous situation (in which
the word & object occurred together) will be recalled and so–as a result of the
normal mechanism that fills-in missing inputs–the expectation of the word
"cat" will arise. Similarly, should the word "cat" be heard it will produce an
expectation (a mental image) of a cat. In this way, then, external symbols
acquire meaning for the agent.

When it comes to actually describing a situation it is necessary to "ex-
tract" structure from the network to form verbal sentences. Recall that F&P
argued that this was not possible in ANNs, but if we accept that the agent
abstracts the natural language’s grammar in yet another heirarchy, it is not
inconceivable that the basic mechanisms described above could combine it
with the specific situation to generate the necessary words one-by-one.

6.2 Connectionist Logic?

The link (connection) storage method is clearly reminiscent of the connec-
tionist (ANN) approach, each newly created man being like a neuron with
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multiple incoming links (dendrites) and a single output (axon). Given that
the man is created when all his inputs (say a, b, & c) are active, his output
(z) might be expressed as "if a & b & c then z". This form is known as a
Horn clause and is common in Prolog and rule-based expert systems. Unfor-
tunately, when interpreted as a material implication P -> Q, the "logic" is all
wrong. At the very least, since z was created only when a, b & c were active,
given z we should definitely be able to say a & b & c were true. Logic, how-
ever, dictates that given Q & P -> Q, no conclusion can be made regarding
P; see Davenport (1993b) for a more detailed discussion.

Inscriptors (Davenport, 1993a) seem to offer a much better formulation,
viz. "if z then a & b & c". Viewed as a material implication, this allows us
to conclude a & b & c from z (as desired) and, using abduction, correctly
suggests that z may be true if any subset of a, b and/or c are true. It is
only possible to actually conclude z if it is the only candidate, and even then
it may be wrong. A similar form of reasoning was used very successfully by
Peng and Reggia (1990) in medical diagnostic expert systems based on their
Parsimonious Covering Theory, providing some evidence that the approach
described here is viable.

It is interesting to note that the mechanism employed by each "neuron"
provides logical non-monotonic reasoning. The decisions it reaches must be
(logically) correct—given the agent’s limited knowledge and processing re-
sources. In other words, such agents have bounded rationality. Agents will
have evolved this way, since the correct solution is, by definition, the one
that most benefits the agent, and agents whose mechanism failed to make
the correct choices would presumably have died out long ago.

7 To Conclude

There is no doubt that AI research has made huge strides, both in helping
us to understand how the human mind works and in constructing ever better
machines. Yet, for all the progress, its foundations remain shaky at best. This
paper has been an attempt to build solid foundations by returning to first
principles and adopting an engineering approach to the problem. The result is
hopefully a much clearer and simpler picture of how agents may function. Ex-
amination of the possible ways in which agents could communicate, store and
recognise messages, led to a better understanding of the processes involved,
and so provided a principled distinction between the symbolic and connec-
tionist paradigms. Since both approaches can achieve the same function it is
clear that they are genuine alternatives. In other words, an intelligent agent
could equally well be designed using either symbolic or connectionist tech-
niques. To use the analogy of house building, the designer is essentially free
to build above or below ground, the choice being irrelevant as regards the
function–though of course other tangential considerations may tip the balance
one way or the other. Likewise, then, the representations and processing in
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an agent may be continuous or discrete, serial or parallel, symbolic or connec-
tionist (or any combination thereof). And, just as a house could be designed
and built in a variety of materials, so too could an agent–both symbolic and
connectionist "faces" being computational and so multiply-realisable.

Given this, what of the PSSH; is it wrong to claim that a symbol system
is necessary and sufficient for intelligent action? Actually, no. The PSSH is
concerned with the higher functional level, not with the design and implemen-
tation. All it says is that such and such abilities are needed (Nilsson, 2007).
The problem has been that those requirements have often been conflated with
the design/implementation, since there seemed to be no means to create a
symbol system, other than the "copy" (token) one. Now we can see that the
"link" option is a real alternative, perhaps we need different vocabulary for
the PSSH level so as to clearly distinguish it from the design/implementation
level.

And what of the newer contenders—embodied, embedded, and extended
theories of cognition—that reject representations, emphasise the role of the
agent’s body and/or their situation within the world? Most of these research
programs primarily aim at controlling bodily movements, usually by modeling
the agent and its environment, and analysing the coupled system in dynam-
ical terms. For observers this is fine, but it doesn’t explain how an agent
can come to know the “outside” world, which is exactly what makes cogni-
tion difficult and intelligence necessary! An alternative, simpler approach, has
been to avoid having the agent build detailed internal models of the world at
all, and instead have them “look-up” the information from the environment
as needed; “the world as its own model.” These, however, are all relatively
low-level functions and, as we saw earlier, they simply cannot account for
the full range of human intelligent behaviour. At the other end of the spec-
trum are approaches, such as situated cognition, which promise to somehow
combine low-level behaviour with higher cognitive levels. Here, the focus has
been on language and how we interact with other agents in a socio-cultural
environment. Much of this behaviour is undoubtedly a consequence of cer-
tain incidental biological needs (for nourishment, warmth, sex, etc.), and/or
limitations (of memory and processing speed—leading to extended mind like
interactions), and so not a function of cognition per se. Hopefully, the analy-
sis presented here provides an outline of how a computational mechanism (an
agent), with a body, operating in a socio-cultural environment, may actually
come into existence and function.

To date, most AI work has concentrated on the symbolic paradigm or on
connectionist networks that tended to use distributed representations, had
little or no feedback mechanism to handle sequence, and required thousands of
epochs to train. Consideration of the requirements level has shown that there
is a more realistic design alternative for the "link" (connectionist) form. This
is important since it would appear Nature has adopted this "link" scheme for
use in our brains. Further work is needed to fully expound the mechanism and
its implications, but, as we saw above, it does seem to offer clues regarding



The Two (Computational) Faces of AI 57

some of the most intractable problems AI has faced, including intentionality,
feelings, and even consciousness, as well as deeper philosophical conundrums
regarding the ontology of the world, our place in it, and the notion of truth
(Davenport, 2009; Floridi, 2011).

At the very least, I hope this paper has presented the core concepts and ar-
guments in a clear and understandable form, and that it affords a framework
that will help others put the vast literature into some sort of perspective.
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