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Abstract—Traditional Database Management System (DBMS)
software relies on hard disks for storing relational data. Hard
disks are cheap, persistent, and offer huge storage capacities.
However, data retrieval latency for hard disks is extremely
high. To hide this latency, DRAM is used as an intermediate
storage. DRAM is significantly faster than disk, but deployed
in smaller capacities due to cost and power constraints, and
without the necessary persistency feature that disks have. Non-
Volatile Memory (NVM) is an emerging storage class technology
which promises the best of both worlds. It can offer large storage
capacities, due to better scaling and cost metrics than DRAM,
and is non-volatile (persistent) like hard disks. At the same time,
its data retrieval time is much lower than that of hard disks and
it is also byte-addressable like DRAM.

In this paper, we explore the implications of employing NVM
as primary storage for DBMS. In other words, we investigate the
modifications necessary to be applied on a traditional relational
DBMS to take advantage of NVM features. As a case study, we
have modified the storage engine (SE) of PostgreSQL enabling
efficient use of NVM hardware. We detail the necessary changes
and challenges such modifications entail and evaluate them using
a comprehensive emulation platform. Results indicate that our
modified SE reduces query execution time by up to 40% and
14.4% when compared to disk and NVM storage, with average
reductions of 20.5% and 4.5%, respectively.

I. INTRODUCTION

Traditional design of Database Management Systems

(DBMS) assumes a memory hierarchy where datasets are

stored in disks. Disks are a cheap and non-volatile storage

medium suitable for storing large datasets. However, they are

extremely slow for data retrieval. To hide their high data-access

latency, DRAM is used as an intermediate storage between

disks and the processing units. DRAM is orders of magnitude

faster than a disk. In addition, with increasing DRAM chip

densities and decreasing memory prices, systems with large

pools of main memory are common.

For these reasons, relational in-memory DBMSs have be-

come increasingly popular [1, 2, 3, 4]. Significant components

of in-memory DBMSs, like index structures [5], recovery

mechanisms from system failure [6], and commit processing

[7] are tailored towards the usage of main memory as primary

storage. However, in-memory DBMSs dealing with critical or

non redundant data still need to provide a form of persistent

storage, typically a large pool of disks [1, 8, 9, 10].

DRAM is a major factor affecting the power-efficiency of

in-memory database servers. In a typical query execution for

an in-memory database, 59% of the overall energy is spent in

main memory [11]. Furthermore, there are inherent physical

limitations related to leakage current and voltage scaling that

prevent DRAM from further scaling [12, 13]. As a result,

DRAM is unlikely to keep up with current and future dataset

growth trends as a primary storage medium.

NVM is an emerging storage class technology which pro-

vides a good combination of features from disk and DRAM.

Prominent NVM technologies are PC-RAM 1 [14], STT-RAM
2 [13], and R-RAM 3 [15]. Since NVM provides persistency at

the device level, it does not need a refresh cycle like DRAM

to maintain data states, as a consequence NVM technologies

consume less energy per bit compared to DRAM [16]. In

addition, NVM features significantly better access latencies

than hard disks - with read latencies being almost as good as

those of DRAM, byte-addressability, and higher density than

DRAM [17].

To benefit from these features, a DBMS design should take

into account the characteristics of NVM. Simple ports of a

traditional DBMS - designed to use disks as primary storage

medium - to NVM will show improvement due to the lower

access latencies of NVM. However, adapting a DBMS to fit

NVM characteristics can offer a number of benefits beyond

lower access latencies.

In this paper, we study the implications of employing NVM

in the design of a DBMS. We first discuss and provide insights

on the different available options of including NVM into the

memory hierarchy of current systems. We then investigate the

required modifications in the DBMS’s storage engine (SE) to

leverage NVM features using a well-known relational disk-

optimized DBMS - PostgreSQL. We explain in detail the

necessary steps to modify PostgreSQL, and explain how the

modifications impact the internals of the DBMS. Our modifi-

cations aim at providing fast access to data by bypassing the

slow disk interfaces while maintaining all the functionalities

of a robust DBMS such as PostgreSQL.

We evaluate two modified SEs of PostgreSQL using a

comprehensive emulation platform and the TPC-H [18] bench-

mark. In addition, we also evaluate an unmodified version of

1PC-RAM: Phase Change Random Access Memory
2STT-RAM: Spin Transfer Torque Random Access Memory
3R-RAM: Resistive Random Access Memory
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PostgreSQL using a high-end solid state disk and the emulated

NVM hardware. We show that our modified SEs are able to

reduce the kernel execution time, where file I/O operations

take place, from around 10% to 2.6% on average. In terms of

wall-clock query execution time, our modifications improve

performance by 20.5% and 4.5% on average when compared

to disk and NVM storage, respectively. We also demonstrate

that the performance of our modified SE is limited by the fact

that, since data is directly accessed from the NVM hardware, it

is not close to the processing units when it is needed for query

processing. This leads to long latency user-level cache misses

that eat up the improvements achieved by avoiding expensive

data movement operations.

II. BACKGROUND

In this section, we first describe in detail the properties of

NVM technologies, highlighting the implications these might

have in the design of a DBMS. We then describe currently

available system software to manage NVM.

A. Characteristics of NVM

Data access latency: Read latency of NVM technologies is

significantly lower than that of a disk. However, since NVM

devices are still under development, sources quote varying

read latencies. For example, the read latency for STT-RAM

ranges from 1 to 20ns [16, 19, 20]. Nonetheless, there is a

general consensus that read latencies will be similar to those

of DRAM [16, 19].

PC-RAM and R-RAM are reported to have a higher write

latency compared to DRAM, but STT-RAM also outperforms

DRAM in this regard [16, 19]. However, the write latency is

typically not on the critical path, since it can be tolerated by

using buffers [17].

Density: NVM technologies provide higher densities than

DRAM, which makes them a good candidate to be used

as main memory as well as primary storage, particularly in

embedded systems [21]. For example, PC-RAM provides 2 to

4 times higher density as compared to DRAM [17], and it is

expected to scale to lower technology nodes as opposed to

DRAM.

Endurance: Endurance is defined as the maximum number

of writes for each memory cell [17]. The most promising

contestants are PC-RAM and STT-RAM. Both memories offer

an endurance close to that of DRAM. More specifically, en-

durance for NVMs is 1015 whereas for DRAM it is 1016 [22].

On the other hand, NVMs exhibit higher endurance than flash

memory technologies [19].

Energy consumption: Since NVMs do not need a refresh

cycle to maintain data states in memory cells like DRAM,

they are more energy efficient. A main memory designed by

using PC-RAM technology consumes significantly lower per

access write energy as compared to DRAM [22]. Other NVM

technologies also have similar lower energy consumption per

bit when compared to DRAM [16, 20].

In addition to the features listed above, NVM technologies

also provide byte-addressability like DRAM and persistency

Fig. 1. Comparison of traditional FS and PMFS. “mmap” refers to the system
call for memory mapped I/O operation. “mmu” is the memory management
unit responsible for address mappings.

like disks. Due to these features, NVMs are starting to appear

in embedded and energy-critical devices and are expected to

play a major role in future computing systems. Companies

like Intel and Micron have launched the 3D XPoint memory

technology, which features non-volatility [23]. Intel has also

introduced new instructions to support the usage of persistent

memory at the instruction level [24].

B. System software for NVM

Using NVM as primary storage necessitates modifications

not only in application software but also in system software

in order to take advantage of NVM features. A traditional

file system (FS) accesses the storage through a block layer.

If a disk is replaced by NVM without any modifications in

the FS, the NVM storage will still be accessed at block level

granularity. Hence, we will not be able to take advantage of

the byte-addressability feature of NVM.

For this reason, there have been developments in file sys-

tem support for persistent memory. PMFS is an open-source

POSIX compliant FS developed by Intel Research [25, 26]. It

offers two key features in order to facilitate usage of NVM.

First, PMFS does not maintain a separate address space

for NVM. In other words, both main memory and NVM use

the same address space. This implies that there is no need to

copy data from NVM to DRAM to make it accessible to an

application. A process can directly access file-system protected

data stored in NVM at byte level granularity.

Second, in a traditional FS stored blocks can be accessed in

two ways: (i) file I/O and (ii) memory mapped I/O. PMFS

implements file I/O in a similar way to a traditional FS.

However, the implementation of memory mapped I/O differs.

In a traditional FS, memory mapped I/O would first copy pages

to DRAM [25] from where application can examine those

pages. PMFS avoids this copy overhead by mapping NVM

pages directly into the address space of a process. Figure 1

from [25] compares a traditional FS with PMFS.
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(a) Traditional design (b) All-in-NVM (c) NVM-Disk

Fig. 2. NVM placement in the memory hierarchy of a computing system.

III. DESIGN CHOICES

In this section, we discuss the possible memory hierarchy

designs when including NVM in a system. We also discuss

the high-level modifications necessary in a traditional disk-

optimized DBMS in order to take full advantage of NVM

hardware.

A. Memory Hierarchy Designs for an NVM-Based DBMS

There are various ways to place NVM in the memory hier-

archy of a current DBMS computing system. Figure 2 shows

different options that might be considered when including

NVM into the system. Figure 2a depicts a traditional approach,

where the intermediate state - including logs, data buffers, and

partial query state - is stored in DRAM to hide disk latencies

for data that is currently in use; while the bulk of the relational

data is stored in disk.

Given the favorable characteristics of NVM over the other

technologies, an option might be to replace both DRAM and

disk storage using NVM (Figure 2b). However, such a drastic

change would require a complete redesign of current operating

system and application software. In addition, NVM technology

is still not mature enough in terms of endurance to be used

as a DRAM replacement. Hence, we advocate for a platform

that still has a layer of DRAM memory, where the disk is

completely or partially replaced using NVM, as shown in

Figure 2c (NVM-Disk).

Using this approach, we can retain the programmability of

current systems by still having a layer of DRAM, thereby

exploiting DRAM’s fast read and write access latencies for

temporary data structures and application code. In addition,

it allows the possibility to directly access the bulk of the

database relational data by using a file system such as PMFS,

taking full advantage of NVM technology, which allows the

system to leverage NVM’s byte-addressability and to avoid

API overheads [27] present in current FSs. Such a setup does

not need large pools of DRAM since temporary data is orders

of magnitude smaller than the actual relational data stored in

NVM. We believe this is a realistic scenario for future systems

integrating NVM, with room for small variations such as NVM

alongside DRAM to store persistent temporary data structures,

or having traditional disks to store cold data.

B. List of Modifications for a traditional DBMS

Using a traditional disk-based database with NVM storage

will not take full advantage of NVM’s features. Some impor-

tant components of the DBMS need to be modified or removed

when using NVM as a primary storage.

Avoid the block level access: Traditional design of DBMS

uses disk as a primary storage. Since disks favor sequential

accesses, database systems hide disk latencies by issuing fewer

but larger disk accesses in the form of a data block [28].

Unfortunately, block level I/O costs extra data movement.

For example, if a transaction updates a single byte of a tuple,

it still needs to write the whole block of data to the disk. On

the other hand, block level access provides good data locality.

Since NVM is byte-addressable, we can read and write

only the required byte(s). However, reducing the data retrieval

granularity down to a byte level eliminates the advantage of

data locality altogether. A good compromise is to reduce the

block size in such a way that the overhead of the block I/O

is reduced to an acceptable level, while at the same time the

application benefits from some degree of data locality.

Remove internal buffer cache of DBMS: DBMSs usually

maintain an internal buffer cache. Whenever a tuple is to be

accessed, first its disk address has to be calculated. If the

corresponding block of data is not found in the internal buffer

cache, then it is read from disk and stored in the internal buffer

cache [29].

This approach is unnecessary in an NVM-based database

design. If the NVM address space is made visible to a process,

then there is no need to copy data blocks. It is more efficient

to refer to the tuple directly by its address. However, we need

an NVM-aware FS, such as PMFS, to enable direct access to

the NVM address space by a process.

Remove the redo logging: To ensure the atomicity, consis-

tency, isolation and durability (ACID) properties of a database,

a DBMS maintains two types of logs: the undo and redo

logs. The undo log is used for cleaning after uncommitted

transactions, in case of a system failure or a transaction abort

issued by the program [30]. The redo log is used to re-

apply those transactions which were committed but yet not

materialized before the system failure.

In the case of NVM-based design, if internal buffers are

not employed and all updates are materialized directly into

the NVM address space then the need and criticality of the

redo log can be relaxed [27]. However, the undo log will still

be needed to recover from a system failure.

IV. A CASE STUDY: POSTGRESQL

PostgreSQL is an open source object-relational database

system. It is fully ACID compliant and runs on all major

operating systems including Linux [31].

In this section we study the storage engine (SE) of Post-

greSQL and apply necessary changes to make it more NVM-

aware. We first describe the read-write architecture of Post-

greSQL and then explain our modifications.

A. Read-Write Architecture of PostgreSQL

Figure 3a shows the original PostgreSQL architecture from

the perspective of read and write file operations. The left

column in the figure shows the operations performed by
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(a) Storage engine operation - PostgreSQL. (b) Modified storage engine - SE1 (c) Modified storage engine - SE2

Fig. 3. High level view of read and write memory operations in PostgreSQL (read as “pg” in short form) and modified SEs.

software layers of PostgreSQL, while the right column shows

the corresponding data movement activities. Note that, we used

PMFS for file operations. Furthermore, as shown in Figure 3a,

we assume that the disk is replaced by NVM for storing the

database.

PostgreSQL heavily relies on file I/O for read and write

operations. Since the implementation of the file I/O APIs in

PMFS is the same as that of a traditional FS, using a particular

FS does not make any difference.

The PostgreSQL server calls the services of the Buffer Layer

which is responsible for maintaining an internal buffer cache.

The buffer cache is used to keep a copy of the requested page

which is read from the storage. Copies are kept in the cache

as long as they are needed. If there is no free slot available

for a newly requested page then a replacement policy is used

to select a victim. The victim is evicted from the buffer cache

and if it is a dirty page, then it is also flushed back to the

permanent storage.

Upon receiving a new request to read a page from storage,

the Buffer Layer finds a free buffer cache slot and gets a

pointer to it. The free buffer slot and corresponding pointer are

shown in Figure 3a as Pg Buffer and PgBufPtr, respectively.

The Buffer Layer then passes the pointer to the File Layer.

Eventually the File Layer of PostgreSQL invokes the file read

and write system calls implemented by the underlying FS.

For a read operation, PMFS copies the data block from

NVM to a kernel buffer and then the kernel copies the

requested data block to an internal buffer slot pointed by

PgBufPtr. In the same way, two copies are made for write

operation but in the opposite direction.

Hence, the SE of original PostgreSQL incurs two copy oper-

ations for each miss in the internal buffer cache. This is likely

to become a large overhead for databases running queries on

large datasets. Since PMFS can map the entire NVM address

space into the kernel’s virtual address space [25], the copy

overhead can be avoided by making modifications in the SE.

We applied these modifications in two incremental steps which

are described in the following subsections.

B. SE1: Using Memory Mapped I/O

In the first step towards leveraging the features of NVM, we

replaced the File Layer of PostgreSQL by a new layer named

MemMapped Layer. As shown in Figure 3b, this layer still

receives a pointer to a free buffer slot from the Buffer Layer,

but instead of using the file I/O interface, it uses the memory

mapped I/O interface of PMFS. We term this storage engine

SE1.

Read Operation: When accessing a file for a read operation,

we first open the file using the open() system call, same as

in original PostgreSQL. Additionally, we create a mapping of

the file using mmap(). Since we are using PMFS, mmap()

returns a pointer to the mapping of the file stored in NVM. The

implementation of mmap() by PMFS provides the application

with direct access to mapped pages of files residing in NVM.

As a result we do not need to make an intermediate copy

of the requested page from NVM into kernel buffers. We

can directly copy the requested page into internal buffers of

PostgreSQL by using an implicit memcpy() as shown in

Figure 3b. When all requested operations on a given file are

completed and it is not needed anymore, the file can be closed.

Upon closing a file, we delete the mapping of the file by calling

the munmap() function.

Write Operation: The same approach as in the read operation

is used for writing data into a file. The file to be modified is

first opened and a mapping is created using mmap(). The

data to be written into the file is copied directly from internal

buffers of PostgreSQL into NVM using memcpy().
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A SE with the above mentioned modifications does not

create an intermediate copy of the data in kernel buffers. Hence

we reduced the overhead to one copy operation for each miss

in the internal buffer cache of PostgreSQL.

C. SE2: Direct Access to Mapped Files

In the second step of modifications to the SE, we replaced

the MemMapped Layer of SE1 by the PtrRedirection Layer

as shown in Figure 3c. Unlike the MemMapped Layer, the

PtrRedirection Layer in SE2 receives the pointer to PgBufPtr

(i.e P2PgBufPtr), which itself points to a free slot of buffer

cache. In other words, PtrRedirection Layer receives a pointer

to a pointer from the Buffer Layer.

Read Operation: When accessing a file for a read operation,

we first open the file using open() system call, same as in

original PostgreSQL and SE1. Additionally, we also create a

mapping of the file using mmap(). Originally PgBufPtr points

to a free slot in the internal buffer cache. Since mmap() makes

the NVM mapped address space visible to the calling process,

the PtrRedirection Layer simply redirects the PgBufPtr to

point to the corresponding address of the file residing in NVM.

Pointer redirection in case of read operation is shown by a

black dashed arrow with the “Read” label in Figure 3c.

As a result of doing pointer redirection and the visibility of

the NVM address space enabled by PMFS, we incur no copy

overhead for read operations. This can represent a significant

improvement, since read operations are predominant in queries

that operate on large datasets.

Write Operation: PMFS provides direct write access for files

residing in NVM. Since PostgreSQL is a multiprocess system,

modifying the NVM-resident file can be dangerous. Direct

write operations can leave the database in an inconsistent state.

To avoid this issue, SE2 performs two actions before mod-

ifying the actual content of the page and marking it as dirty.

First, if the page is residing in NVM, it copies the page back

from NVM into the corresponding slot of internal buffer cache,

i.e. Pg-Buffer. Second, it undoes the redirection of PgBufPtr

such that it again points to the corresponding slot in the buffer

cache and not to the NVM mapped file. This is shown by a

black dashed arrow with the “Write” label in Figure 3c. This

way, SE2 ensures that each process updates only its local copy

of the page.

V. METHODOLOGY

System-level evaluation for NVM technologies is chal-

lenging due to lack of real hardware. Software simulation

infrastructures are a good fit to evaluate systems in which

NVM is used as a DRAM replacement, or in conjunction with

DRAM as a hybrid memory system. However, when using

NVM as a permanent storage replacement, most software

simulators fail to capture the details of the operating system,

and comparisons against traditional disks are not possible due

to the lack of proper simulation models for such devices. As

the authors of PMFS [25] noted, an emulation platform is the

best way to evaluate such a scenario.

TABLE I
TEST MACHINE CHARACTERISTICS.

Component Description

Processor
Intel Xeon E5-2670 @ 2.60Ghz
HT and TurboBoost disabled

Caches
Private: L1 32KB 4-way split I/D, L2 256KB 8-way
Shared: L3 20MB 16-way

Memory 256GB DDR3-1600, 4 channels, delivering up to 51.5GB/s

OS Linux Kernel 3.11.0 with PMFS support [25, 26]

Disk storage
Intel DC S3700 Series, 400GB, SATA 6Gb/s
Read 500MBs/75k iops, Write 460MBs/36k iops

PMFS storage 224 GB of total DRAM

For this reason, we have set up an infrastructure similar to

that used by the PMFS authors. We first recompiled the Linux

kernel of our test machine with PMFS support. Using the

memmap kernel command line option we reserve a physically

contiguous area of the available DRAM at boot-time, which

is later used to mount the PMFS partition. In other words,

a portion of the DRAM holds the disk partition managed by

PMFS and provides features similar to those of NVM, such

as byte-addressability and lower latency compared to a disk.

Table I lists the test machine characteristics. We configure the

machine to have a 224GB PMFS partition, leaving 32GB of

DRAM for normal main memory operation. A high-end SSD

is used as regular disk storage.

A technological advantage of NVMs over traditional disks is

their lower read access latencies. To quantify the performance

impact this can have in query executions, we evaluate two

baselines using unmodified PostgreSQL 9.5, (i) with the

dataset stored in a regular high-end disk (disk base95), and (ii)

in the PMFS partition (pmfs base95). In addition, we evaluate

the modified storage engines - SE1 and SE2. These are run

with the dataset stored on the PMFS partition and are termed

as pmfs se1 and pmfs se2, respectively.

To test these system configurations we employ decision

support system (DSS) queries from the TPC-H [18] benchmark

with a scale factor of 100, which leads to a dataset larger than

150GB when adding the appropriate indexes. Like most data

intensive workloads, these queries are read dominant. Since

DRAM read latencies are expected to be quite similar to pro-

jected NVM read latencies, the emulation platform employed

provides good performance estimations. In our experiments,

we report wall-clock query execution times as well as data

obtained with performance counters using the perf toolset.

We report results for 16 of the 22 TPC-H queries since some

queries failed to complete under PMFS storage.

VI. EVALUATION

In this section we show the performance impact that the

modified storage engines (SE) have on kernel execution time

and on wall-clock execution time for TPC-H queries. Later,

we identify potential issues current DBMSs and applications in

general may face in order to harness the benefits from directly

accessing data stored in NVM memory.
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Fig. 5. Wall-clock execution time normalized to pmfs base95.

A. Performance Impact on Kernel Execution Time

Figure 4 shows the percentage of kernel execution time for

each of the evaluated queries running on the four evaluated

systems. When using traditional file operations (e.g. read()),

like those employed in unmodified PostgreSQL, the bulk of

the work when accessing and reading data is done inside the

kernel. As can be seen, the baseline systems spend a significant

amount of the execution time in kernel space: up to 24% (Q11

- disk base95) and 20% (Q11 - pmfs base95), with an average

of around 10%. The kernel space execution time is dominated

by the time it takes to fetch data from the storage medium

into a user-level buffer. These overheads are high in both disk

and NVM storage, and are likely to increase as datasets grow

in size.

However, when using SE1 or SE2, this movement of data

can be minimized or even avoided. For pmfs se1 we observe

that the amount of time spent in kernel space decreases sub-

stantially and it is very similar to that observed for pmfs se2.

This is because the two systems are doing a similar amount of

work on the kernel side, with the difference that SE1 is doing

an implicit memcpy() operation into a user-level buffer, but

this is now done in user-level code. Overall, we see that the

modified SEs are able to lower kernel space execution time

significantly in most queries: Q02 to Q12, Q15, and Q19. A

few queries show lower reductions because they operate over

a small amount of data, e.g, Q1, Q13, Q16, and Q20. An

important thing to note is that, for SE1 and SE2, the kernel

space time is likely to remain constant as datasets grow, as no

work is done to fetch data.

B. Query Performance Improvement

Figure 5 shows wall-clock execution time for each query

and evaluated system. The data is normalized to pmfs base95.

We observe that the benefits of moving from disk to a faster

storage can be high for read intensive queries such as Q05

(40%), Q08 (37%), and Q11 (35%). However, for compute

intensive queries, such as Q01 and Q16, the benefits are non-

existent. On average, the overhead of using disk over PMFS

storage is of 16%.

For SE1, the time reductions observed in terms of kernel

execution time do not translate into reductions in overall query

execution time. The main reason for this is the additional

memcpy() operation performed to copy the data into the

application buffer. In fact, we find that this operation in PMFS

is sometimes slower than the original read() system call

employed in the baseline, leading to a 3% slowdown on

average.

When using SE2 there is no data movement at the time of

fetching data into an application-accessible memory region,

due to the possibility to directly reference data stored in PMFS.

However, this has a negative side effect when accessing the

data for processing later on, as it has not been cached by

the processing units. Therefore, the benefits of avoiding data

movement to make it accessible are offset by the penalty to

fetch this data close to the processing units for processing at a

later stage. In order to mitigate this penalty, SE2 incorporates

a simple software prefetching scheme that tries to fetch in

advance the next element to be processed within a data block.

When compared to pmfs base95, SE2 is able to achieve sig-

nificant performance improvements in read dominant queries

such as Q11 (14.4%), Q15 (11.9%), and Q19 (8.6%). On

average, SE2 is 4.5% faster than pmfs base95 and 20.5% faster

than disk base95.

Figure 6 shows a classification of each cycle of execution

as ‘compute’, if at least one instruction was committed during

that cycle, or as ‘stalled’otherwise. These categories are further
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Fig. 7. Last-level cache (LLC) misses breakdown — B = pmfs base95, SE2 = pmfs se2.

broken down into user and kernel level cycles. Data is shown

for pmfs base95 and SE2, normalized to the former. As can

be seen, the stalled kernel component correlates well with the

kernel execution time shown in Figure 4, and this is the com-

ponent that is reduced in SE2 executions. However, we observe

that for most queries some of the savings shift to stalled user

since data needs to be brought close to the processing unit

when it is needed for processing. There are some exceptions,

i.e., Q11, Q15, and Q19, for which the simple prefetching

scheme is able to mitigate this fact effectively.

Figure 7 shows a breakdown of user and kernel last-level

cache (LLC) misses. Here, we can clearly see how the num-

ber of LLC misses remains quite constant when comparing

pmfs base95 and SE2, but the misses shift from kernel level

to user level. Moreover, in our experiments we have observed

that user level misses have a more negative impact in terms

of performance because they happen when the data is actually

needed for processing, and a full LLC miss penalty is paid

for each data element. On the other hand, when moving larger

data blocks to an application buffer, optimized functions are

employed and the LLC miss penalties can be overlapped.

C. Discussion

We have shown that there is a mismatch between the

potential performance benefits shown in Figure 4 and the

actual benefits obtained shown in Figure 5. Direct access to

memory regions holding persistent data can provide significant

benefits, but this data needs to be close to the processing units

when it is needed. To this end we have employed simple

software prefetching schemes that have provided moderate

average performance gains. However, carefully crafted ad-

hoc software prefetching is challenging, and applications may

not be designed in a way that makes it easy to hide long

access latencies even with the use of prefetching, as happens

with PostgreSQL. Moreover, such a solution is application and

architecture dependent.

For these reasons, we advocate for the need to have ad-

ditional software libraries and tools that aid programmability

in such systems. These libraries could implement solutions

like helper threads for prefetching particular data regions,

effectively bringing data closer to the core (e.g., LLC) with

small application interference. This approach would provide

generic solutions for writing software that takes full advantage

of the capabilities that NVM can offer.

VII. RELATED WORK

Previous work on leveraging NVM for DBMS design can

be divided into two categories: (i) employing NVM for whole

database storage and (ii) for the logging components.

The work reported in [27, 32] reduces the impact of

disk I/O on transaction throughput and response times by

directly writing log records into an NVM component instead

of flushing them to disk. Authors of [33] employ NVM for

distributed logging on multi-core and multi-socket hardware

to reduce contention of centralized logging with increasing

system load. Pelley et al. [34] explore a two level hierarchy

with DRAM and NVM, and study different recovery methods.

Finally, Arulraj et al. [16] use a single tier memory hierarchy,

i.e., without DRAM, and compare three different storage

management architectures using an NVM-only system.

VIII. CONCLUSION

In this paper, we study the implications of employing NVM

in the design of DBMSs. We discuss the possible options

to incorporate NVM into the memory hierarchy of a DBMS

computing system and conclude that, given the characteristics
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of NVM, a platform with a layer of DRAM where the disk is

completely or partially replaced using NVM is a compelling

scenario. Such an approach retains the programmability of

current systems and allows direct access to the dataset stored

in NVM. With this system configuration in mind we modified

the PostgreSQL storage engine in two incremental steps - SE1

and SE2 - to better exploit the features offered by PMFS using

memory mapped I/O.

Our evaluation shows that storing the database in NVM

instead of disk for an unmodified version of PostgreSQL

improves query execution time by up to 40%, with an average

of 16%. Modifications to take advantage of NVM hardware

improve the execution time by 20.5% on average as compared

to disk storage. However, current design of database software

proves to be a hurdle in maximizing the improvement. When

comparing our baseline and SE2 using PMFS, we achieve

significant speedups of up to 14.4% in read dominated queries,

but moderate average improvements of 4.5%.

We find that the limiting factor in achieving higher perfor-

mance improvements is the fact that the data is not close to

the processing units when it is needed for processing. This is

a negative side effect of directly accessing data from NVM,

rather than copying it into application buffers to make it

accessible. This leads to long latency user level cache misses

eating up the improvement achieved by avoiding expensive

data movement operations. Therefore, software libraries that

help mitigate this negative side effect are necessary to provide

generic solutions to efficiently develop NVM-aware software.
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