
Signal Processing 132 (2017) 8–18
Contents lists available at ScienceDirect
Signal Processing
http://d
0165-16

☆Part
Signal P
July 201

n Corr
E-m

gezici@
journal homepage: www.elsevier.com/locate/sigpro
Centralized and decentralized detection with cost-constrained
measurements$

Eray Laz a,b, Sinan Gezici a,n

a Department of Electrical and Electronics Engineering, Bilkent University, Bilkent, Ankara 06800, Turkey
b Radar, Electronic Warfare and Intelligence Division, ASELSAN Inc., Ankara, Turkey
a r t i c l e i n f o

Article history:
Received 2 May 2016
Received in revised form
27 July 2016
Accepted 16 September 2016
Available online 19 September 2016

Keywords:
Hypothesis testing
Measurement cost
Decentralized detection
Centralized detection
Sensor networks
x.doi.org/10.1016/j.sigpro.2016.09.012
84/& 2016 Elsevier B.V. All rights reserved.

of this work was presented at the 17th IEEE
rocessing Advances in Wireless Communicati
6.
esponding author.
ail addresses: eray@ee.bilkent.edu.tr (E. Laz),
ee.bilkent.edu.tr (S. Gezici).
a b s t r a c t

Optimal detection performance of centralized and decentralized detection systems is investigated in the
presence of cost constrained measurements. For the evaluation of detection performance, Bayesian,
Neyman–Pearson and J-divergence criteria are considered. The main goal for the Bayesian criterion is to
minimize the probability of error (more generally, the Bayes risk) under a constraint on the total cost of
the measurement devices. In the Neyman–Pearson framework, the probability of detection is to be
maximized under a given cost constraint. In the distance based criterion, the J-divergence between the
distributions of the decision statistics under different hypotheses is maximized subject to a total cost
constraint. The probability of error expressions are obtained for both centralized and decentralized de-
tection systems, and the optimization problems are proposed for the Bayesian criterion. The probability
of detection and probability of false alarm expressions are obtained for the Neyman–Pearson strategy and
the optimization problems are presented. In addition, J-divergences for both centralized and decen-
tralized detection systems are calculated and the corresponding optimization problems are formulated.
The solutions of these problems indicate how to allocate the cost budget among the measurement de-
vices in order to achieve the optimum performance. Numerical examples are presented to discuss the
results.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

In this paper, centralized and decentralized hypothesis-testing
(detection) problems are investigated in the presence of cost
constrained measurements. In such systems, decisions are per-
formed based on measurements gathered by multiple sensors, the
qualities of which are determined according to assigned cost va-
lues. The aim is to develop optimal cost allocation strategies for
the Bayesian, Neyman–Pearson, and J-divergence criteria under a
total cost constraint. In the case of centralized detection, a set of
geographically separated sensors sends all of their measurements
to a fusion center, and the fusion center decides on one of the
hypotheses [1]. On the other hand, in decentralized detection,
sensors transmit a summary of their measurements to the fusion
center [2]. For quantifying the costs of measurement devices
(sensors), the model in [3] is employed in this study. According to
International Workshop on
ons (SPAWC), Edinburgh, UK,
[3], the cost of a measurement device is basically determined by
the number of amplitude levels that it can reliably distinguish.
This cost model can be used in sensor network applications in
which measurements are performed via various sensors. As an
example, for fire detection in a forest, there can exist a finite
number of sensors performing temperature measurements, and
according to these measurements, the decision on the presence of
fire is made. The accuracy of the decision depends on the quality of
the measurements collected by the sensors. If the cost allocated to
a sensor is higher, the measurement becomes less noisy as mod-
eled in [3]. Similar applications can be considered in wireless
cognitive radio, sonar and radar systems.

Detection and estimation problems considering system re-
source constraints have extensively been studied in the literature
[4–22]. In [4], measurement cost minimization is performed under
various estimation accuracy constraints. In [5], optimal distributed
detection strategies are studied for wireless sensor networks by
considering network resource constraints, where it is assumed
that observations at the sensors are spatially and temporally in-
dependent and identically distributed (i.i.d.). Two types of con-
straints are taken into consideration related to the transmission
power and the communication channel. For the communication
channel, there exist two options, which are multiple access and
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parallel access channels. It is shown that using a multiple access
channel with analog communication of local likelihood ratios (soft
decisions) is asymptotically optimal when each sensor commu-
nicates with a constant power [5]. In [6], binary decentralized
detection problem is investigated under the constraint of wireless
channel capacity. It is proved that having a set of identical sensor is
asymptotically optimal when the observations conditioned on the
hypothesis are i.i.d. and the number of observations per sensor
goes to infinity. In [7], a decentralized detection problem is stu-
died, where the sensors have side information that affects the
statistics of their measurements and the network has a cost con-
straint. The author examines wireless sensor networks with a cost
constraint and a capacity constraint separately. In both scenarios,
the error exponent is minimized under the specified constraints.
The study in [7] produces a similar result to that in [6] for the
scenario with the capacity constraint. In addition, [7,8] have the
same results for scenario with the power constraint. It is obtained
that having identical sensors which use the same transmission
scheme is asymptotically optimal when the observations are
conditionally independent given the state of the nature.

In [9], the decentralized detection problem is studied in the
presence of system level costs. These costs stem from processing
the received signal and transmitting the local outputs to the fusion
center. It is shown that the optimum detection performance can be
obtained by performing randomization over the measurements
and over the choice of the transmission time. In [10], the aim is to
minimize the probability of error under communication rate
constraints, where the sensors can censor their observations. The
optimum result is obtained by censoring uninformative observa-
tions and sending informative observations to the fusion center. In
[11], the aim is to obtain a network configuration that satisfies the
optimum detection performance under a given cost constraint. The
cost constraint depends on the number of sensors employed in the
network. In [12], the optimal power allocation for distributed de-
tection is studied, where both individual and joint constraints on
the power that sensors use while transmitting their decisions to
the fusion center are taken into consideration. The optimal de-
tection performance is obtained for the proposed power allocation
scheme. In [13], a binary hypothesis testing problem is in-
vestigated under communication constraints. The proposed algo-
rithm determines a data reduction rate for transmitting a reduced
version of data and finds the performance of the best test based on
the reduced data. In [14], the decentralized detection problem is
investigated under both power and bandwidth constraints. It is
shown that combining many ‘not so good’ local decisions is better
than combining a few very good local decisions in the case of large
sensor systems. In [15–17], the decentralized detection problem is
studied with fusion of Gaussian signals. It is stated that there is an
optimal number of local sensors that achieves the highest per-
formance under a given global power constraint, and increasing
the number of sensors beyond the optimal number degrades the
performance. In [18], the authors investigate decentralized de-
tection and fusion performance of a sensor network under a total
power constraint. It is shown that using non-orthogonal commu-
nication between local sensors and the fusion center improves
fusion performance monotonically. In [19], the optimization of
detection performance of a sensor network is studied under
communication constraints, and it is found that the optimal fusion
rule is similar to the majority-voting rule for binary decentralized
detection. In [21], the sensor (or, sample) selection problem is
studied for distributed detection. The authors seek the best subset
of data samples that results in a desired detection probability. To
this aim, the number of selected sensors that perform the sensing
task is minimized under a given probability of error constraint for
the Bayesian criterion and under false-alarm and miss-detection
rate constraints for the Neyman–Pearson criterion. In addition, a
dual problem is also proposed such that the probability of error is
minimized for a constant number of selected sensors in the
Bayesian criterion. For the Neyman–Pearson criterion, it is aimed
to minimize the probability of miss detection under a given false
alarm constraint and a fixed number of selected sensors. It is found
that for conditionally independent observations, the best sensors
are the ones with the largest local average log-likelihood ratio and
the smallest local average root-likelihood ratio in the Neyman–
Pearson and Bayesian setting, respectively. As in [21], the sensor
selection problem is studied in [22], where the aim is to find a
subset of p out of n sensors that yield the best detection perfor-
mance. The authors show numerically the validity of the Chernoff
and Kullback–Leibler sensor selection criteria by illustrating that
they lead to sensor selection strategies that are nearly optimal
both in the Bayesan and Neyman–Pearson sense.

Based on the cost function proposed in [3] for obtaining mea-
surements, various studies have been performed on estimation
with cost constraints [4,20]. In particular, Ref. [4] considers the
costs of measurements and aims to minimize the total cost under
various estimation accuracy constraints. In [20], average Fisher
information maximization is studied under cost constrained
measurements. On the other hand, Ref. [23] investigates the tra-
deoff between reducing the measurement cost and keeping the
estimation accuracy within acceptable levels in continuous time
linear filtering problems. In [24], the channel switching problem is
studied, where the aim is to minimize the probability of error
between a transmitter and a receiver that are connected via
multiple channels and only one channel can be used at a given
time. In that study, a logarithmic cost function similar to that in [3]
is employed for specifying the cost of using a certain channel.

Although costs of measurements have been considered in var-
ious estimation and channel switching problems such as
[4,20,23,24], there exist no studies in the literature that consider
the optimization of both centralized and decentralized detection
systems in the presence of cost constrained measurements based
on a specific cost function as in [3]. In this study, we first consider
the centralized detection problem and propose a general for-
mulation for allocating the cost budget to measurement devices in
order to achieve the optimum performance according to the
Bayesian criterion. Also, a closed-form expression is obtained for
binary hypothesis testing with Gaussian observations and generic
prior probabilities. In addition, it is shown that the probability of
error expression for the Gaussian case is convex with respect to
the total cost constraint in the case of equally likely binary hy-
potheses (Lemma 1). Then, we investigate the decentralized de-
tection problem in the Bayesian framework with some common
fusion rules, and present a generic formulation that aims to
minimize the probability of error by optimally allocating the cost
budget to measurement devices. A numerical solution is proposed
for binary hypothesis testing with Gaussian observations. As
convexity is an important property for the optimization problems,
the convexity property is explored for the case of two measure-
ment devices (Lemma 2). Furthermore, the Neyman–Pearson and
J-divergence criteria are investigated for the cost allocation pro-
blem in order to achieve the optimum detection performance. The
general optimization problems are proposed for both criteria and
the Gaussian scenario is investigated as a special case. As for the
Bayesian criterion, both centralized and decentralized detection
systems are taken into consideration.

The remainder of the paper is organized as follows: In Section 2,
the optimal cost allocation among measurement devices is studied
for the Bayesian criterion. In Section 3, the problem is investigated
in the Neyman–Pearson framework. In Section 4, the optimization
problems obtained according to J-divergence are examined. In
Section 5, numerical examples that illustrate the obtained results
are presented. Finally, conclusions are presented in Section 6.
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2. Cost allocation for Bayesian criterion

In this section, the cost allocation problem is investigated for
hypothesis-testing problems based on the Bayesian criterion.
When it is possible to assign costs to the decisions and when the
prior probabilities of the states of nature are known, the Bayesian
approach is a well-suited candidate for detection criterion [25].
The aim in this section is to minimize the Bayes risk for both
centralized and decentralized detection systems under a total cost
constraint on measurements.
2.1. Centralized detection

In centralized detection problems, all sensor nodes transmit
their observations to the fusion center, and the decision is per-
formed in the fusion center based on the data from all the sensors.
The system model for centralized detection is shown in Fig. 1.

As illustrated in Fig. 1, …x x x, , , K1 2 represent the scalar ob-
servations, and …s , s , , sK1 2 denote the sensors by which the
measurements are taken. The measurement at sensor i is re-
presented as = +y x mi i i, where mi is the measurement noise. The

measurement ∈ y K is processed by the fusion center to produce
the final decision γ( )y , where = [ … ]y y yy , , , K

T
1 2 and γ( )y takes

values from { … − }M0, 1, , 1 for M-ary hypothesis testing.
In the Bayesian hypothesis-testing framework, the optimum

decision rule is the one that minimizes the Bayes risk, which is
defined as the average of the conditional risks [25]. The condi-
tional risk for a decision rule δ(·) when the state of nature is Hj is
given by

∑δ Γ( ) = ˜ ( )
( )=

−

R c P ,
1

j
i

M

ij j i
0

1

where c̃ij is the cost of choosing hypothesis Hi when the state of
nature is Hj, and Γ( )Pj i is the probability of deciding hypothesis Hi

when Hj is correct, with Γi denoting the decision region for hy-
pothesis Hi. Then, the Bayes risk can be expressed as

∑δ π δ( ) = ( )
( )=

−

r R ,
2j

M

j j
0

1

where πj is the prior probability of hypothesis Hj. For the values of
c̃ij, uniform cost assignment (UCA) is commonly employed, which
is stated as [25]

˜ =
=
≠ ( )

⎧⎨⎩c
i j

i j

0, if ,

1, if . 3
ij

For UCA, the Bayes rule, which minimizes the Bayes risk spe-
cified by (1) and (2), reduces to choosing the hypothesis with the
maximum a posteriori probability (MAP), and the corresponding
Bayes risk can be stated, after some manipulation, as
Fig. 1. Centralized detection system model.
∫δ π( ) = − ( )
( )={ … − }

r p dy y1 max ,
4B

l M
l l0,1, , 1K

where δB denotes the Bayes rule, and ( )p yl is the probability dis-
tribution of y under hypothesis Hl [25].

In this section, the aim is to perform the optimal cost allocation
among the sensors in Fig. 1 in order to minimize the Bayes risk
expression in (4) under a total cost constraint. The cost of mea-
suring the ith component of the observation vector, xi, is given by

σ σ= ( + )C 0.5log 1 /i x m2
2 2
i i

, where σx
2
i
is the variance of xi and σm

2
i
is the

variance of the noise introduced by the ith sensor [3]. Then, the
total cost is expressed as

∑ ∑
σ

σ
= = +

( )= =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟C C

1
2

log 1 .
5i

K

i
i

K
x

m1 1
2

2

2
i

i

As mentioned in Section 1, the number of amplitude levels that
can be distinguished by the measurement device determines the
cost of the measurement. The dynamic range of the input to the
measurement devices has no effect on the cost of the measure-
ments provided that the number of resolvable levels stays the
same. The cost function in (5) uses the variances of the observation
and the measurement noise to describe the number of distin-
guishable amplitude levels [3]. This is the same motivation as that
used by Hartley [26]. Moreover, the cost function has the same
form as Shannon's capacity formula for the Gaussian noise channel
[27], where xi is transmitted across a communication channel that
adds a noise term mi to it. Apart from these, the cost function for
each sensor is monotonically decreasing, nonnegative, and convex
with respect to σm

2
i
for σ∀ > 0m

2
i

and σ∀ > 0x
2
i

. (The convexity
property of the cost function can easily be shown by examining its
Hessian matrix [28].) In addition, when the measurement noise
variance is low, the cost is high since the number of amplitude
levels that the device can distinguish gets high [3]. When σm

2
i
goes

to infinity, the cost converges to zero and when σm
2

i
goes to zero,

the cost approaches infinity.
Based on (4) and (5), the following optimization problem is

proposed for centralized detection problems:

∫ ∑π
σ

σ
( ) +

≤ ( )

σ{ } ={ … − } ==

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

p d

C

y ymax max subject to
1
2

log 1

, 6

l M
l l

i

K
x

m

T

0,1, , 1 1
2

2

2
mi i

K K
i

i
2

1

where CT is the (total) cost constraint. Hence, the optimal alloca-
tion of the measurement noise variances, σm

2
i
, (equivalently, the

costs, Ci) is to be performed under the total cost constraint. It is
also noted that the maximization of the objective function in (6)
corresponds to the minimization of the Bayes risk in (4), which
represents the probability of error for the Bayes rule. When the
optimization problem proposed in (6) is solved, the optimum cost
values for the measurement devices (sensors) are obtained and
these values achieve the optimum performance for centralized
detection.

In practical systems, the observations, = [ … ]x xx , , K
T

1 , are in-
dependent of the measurement noise, = [ … ]m mm , , K

T
1 . Hence,

the conditional probability density function (PDF) of the mea-
surement vector when hypothesis Hl is true can be obtained as the
convolution of the PDFs of m and x as follows:

∫( ) = ( ) ( − | ) ( )
p p p H dy m y m m. 7l lM XK

In addition, if the sensors have independent noise, ( )p mM can be
expressed as ( ) = ( )⋯ ( )p p m p mm M M KM 1 K1

.
As a special case, a centralized binary hypothesis-testing pro-

blem is investigated in the presence of Gaussian observations and
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measurement noise, which is a common scenario in practice. In
this case, the distribution of observation x under hypothesis H0 is
Gaussian with mean vector μ0 and covariance matrix Σ, which is
denoted by μ Σ( ),0 . Similarly, x is distributed as μ Σ( ),1 under
hypothesis H1. In addition, the measurement noise vector, m, is
distributed as Σ( )0, m , where σ σ σΣ = { … }diag , , ,m m mm

2 2 2
K1 2
; that is,

the measurement noise is independent for different sensors [3].
Considering that x and m are independent, the distribution of the
measurement, = +y x m, is denoted by μ Σ Σ( + ),0 m under hy-
pothesis H0 and by μ Σ Σ( + ),1 m under H1.

For the hypothesis-testing problem specified in the previous
paragraph, the Bayes risk corresponding to the Bayes rule can be
obtained as follows in the case of UCA [25, Chapter 3]:

δ π
π π

π
π π

( ) =
( )

+ + −
( )

( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟r Q

d
d

Q
d

d
ln /

2 2
ln /

,
8B 0

0 1
1

0 1

where

( )μ μ μ μΣ Σ≜ ( − ) + ( − ) ( )
−

d 9
T

1 0 m 1 0
1

and ∫π( ) = ( )
∞ −Q x dt1/ 2 e

x
t0.5 2

denotes the Q-function.
It can be shown that the derivative of δ( )r B in (8) with respect to

d is negative for all values of d; hence, δ( )r B is a monotone de-
creasing function of d. Therefore, the minimization of δ( )r B can be
achieved by maximizing d. If the observations are assumed to be
independent; that is, if σ σ σΣ = { … }diag , , ,x x x

2 2 2
K1 2
, then d can be

expressed as

∑ μ

σ σ
=

+ ( )=

d ,
10i

K
i

x m1

2

2 2
i i

where μi represents the ith component of the vector μ μ−1 0.
Hence, the optimization problem in (6) for this case is stated as

follows:

∑ ∑μ

σ σ

σ

σ+
+ ≤

( )σ{ } = ==

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ Cmax subject to

1
2

log 1 .
11i

K
i

x m i

K
x

m
T

1

2

2 2
1

2

2

2
mi i

K
i i

i

i
2

1

The objective function in (11) is convex with respect to σm
2

i
for

σ∀ > 0m
2

i
and σ∀ > 0x

2
i

since the Hessian matrix of the objective
function,

μ σ σ μ σ σ μ σ σ= { ( + ) ( + ) … ( + ) }H diag 2 / , 2 / , , 2 /x m x m K x m1
2 2 2 3

2
2 2 2 3 2 2 2 3

K K1 1 2 2
, is

positive definite. Since a convex objective function is maximized
over a convex set, the solution lies at the boundary [20,29].
Therefore, the constraint function becomes an equality constraint
and the optimization problem can be solved by using the Lagrange
multipliers method [28,29]. Based on this approach, the optimal
cost allocation algorithm is obtained as follows:

σ

σ

μ α σ
σ μ α

σ μ α

= −
<

∞ ≥ ( )

⎧
⎨
⎪⎪

⎩
⎪⎪

, if

, if 12

m

x

i x
x i

x i

2

4

2 2
2 2

2 2
i

i

i
i

i

with

∏α
σ

μ
=

( )∈

| |⎛
⎝
⎜⎜

⎞
⎠
⎟⎟2 ,

13

C

i S

x

i

S

2
2

2

1/

T

K

i

K

where set SK is given by σ= { ∈ { … } ≠ ∞}S i K1, 2, , :K m
2

i
, and | |SK

represents the number of elements in the set SK. The algorithm in
(12) implies that if the observation variance σx

2
i
is greater than μ αi

2 ,
the variance of the measurement device (sensor) is set to infinity;
that is, the observation is not measured at all, and the cost of the
measurement device is zero. If the observation variance is smaller
than the specified threshold, the variance of the measurement noise
is calculated according to the expression in (12), which states that if
the observation variance is low, the variance of the measurement
device is assigned to be low. In other words, if the observation
variance is low, a device with a high cost is considered to take
measurements. Moreover, if the difference between the means of
the observations for the two hypotheses, μi, is high and σ μ α<x i

2 2
i

is
satisfied, a low measurement noise variance is assigned to the
measurement device. If μi is close to zero such that σ μ α≥x i

2 2
i

, a
measurement device with zero cost is considered. Apart from this, if
the observations are i.i.d. given the hypothesis, the variances of the
measurement devices are chosen as equal, meaning that all the
devices are required to have equal costs in order to achieve the
optimum performance. The variances of the measurement devices
become σ σ= ( − )/ 2 1m x

C K2 2 2 /T for i.i.d. observations.
In the following lemma, the probability of error corresponding to

the optimal cost allocation in (12) is shown to be convex with re-
spective to the total cost constraint, CT, for the case of equal priors.

Lemma 1. Consider a binary hypothesis-testing problem in the
presence of independent Gaussian observations and measurement
noise. Then, for the optimal cost allocation strategy in (12), the
probability of error in (8) is a convex monotone decreasing function of
the total cost constraint CT in the case of equal priors; i.e.,
π π= = 0.50 1 .

Proof. In the case of equal priors, the probability of error in (8)
reduces to ( )Q d/2 . Assume, without loss of generality, that the first
N of K sensors have finite measurement noise variances; that is,

σ < ∞m
2

i
for ∈ { … }i N1, , . Then, from (10), the probability of error

can be written as = ∑ μ

σ σ= +

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟P Qe i

N1
2 1

i

xi mi

2

2 2 . When the optimal σm
2

i

values obtained from (12) and (13) are inserted into the prob-
ability of error expression, the optimal probability of error is stated
as

∑ μ

σ
τ= −

( )

⁎

=

−
⎛

⎝
⎜⎜⎜

⎛
⎝
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⋯

⋯

⎛
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⎞
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N1/
N

x xN

1
2 2

1
2 2 . The first order derivative of ⁎Pe with re-

spect to the total cost CT is obtained as

( )τ β τ

π β τ

∂
∂
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⁎ − −

−

P
C N

ln2 2 exp 2 /8

2 2 2
,
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T

where β ≜ + ⋯ +μ

σ

μ

σx

N

xN

1
2

1
2

2

2 . Then, the second order derivative of ⁎Pe

with respect to the total cost CT is calculated, after some manip-
ulation, as follows:

( )
( ) ( )

τ
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β τ

β τ τ τ β τ

∂
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−
−

+ + −
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−
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2
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2
4 / 2 / 1/2

2 /
2 / 2 / 1

T T

T
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As the arithmetic mean is larger than or equal to the geometric
mean, β τ≥ is obtained. Then, β τ> −2 C N2 /T since <−2 1C N2 /T .
Therefore, it is observed from (15) and (16) that the first and the
second order derivatives of ⁎Pe with respect to CT are negative and
positive, respectively. Hence, ⁎Pe is a convex and monotone de-
creasing function of the total cost constraint CT for all >C 0T . □

Lemma 1 states the convexity property of the probability of
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error corresponding to the optimal cost allocation strategy in (12)
for equally likely binary hypotheses and in the presence of in-
dependent Gaussian observations and measurement noise. It
should be noted that the convexity property in Lemma 1 is specific
for the case of equal priors and non-convex behavior can be ob-
served for some CT for hypotheses with unequal priors.

At this step, it is important to express the dual of the problem,
which aims to find the minimum total measurement cost under
the required detection performance. The optimization problem for
the case in Lemma 1 can be written as follows:

∑ ∑
σ

σ

μ

σ σ
+

+
≤

( )σ{ } = ==

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟Q Pmin

1
2

log 1 subject to
1
2

,
17i

K
x

m i

K
i
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where Pec represents the probability of error constraint. The La-
grange multipliers method is used in order to solve the problem in
(17) as in the solution of the problem in (11). Then, the optimal
cost allocation strategy achieving the minimum total measure-
ment cost under the given probability of error constraint is ob-
tained as follows:
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where (·)−Q 1 represents the inverse of the Q-function.

2.2. Decentralized detection

In contrast to centralized detection, local sensors send a sum-
mary of their observations to the fusion center in decentralized
detection. For binary hypothesis-testing, local sensors can send
their binary decisions about the true hypothesis (0 or 1) to the
fusion center. The fusion center collects the binary decisions of the
sensors and decides on the hypothesis. The fusion center can
employ, e.g., OR, AND, or majority rules [30], as discussed in the
following. The system model in this scenario is presented in Fig. 2.
As in centralized detection, sensor i, si, measures the observation
as = +y x mi i i. Then, the sensors make local decisions about one of
the two hypotheses as γ( ) =y ui i i, where ui is equal to 0 for hy-
pothesis H0 and 1 for hypothesis H1. The outputs of the sensors,

…u u u, , , K1 2 , are provided as inputs to the fusion center, which
makes the final decision denoted by Γ( )u . The fusion rule that is
employed in this section is the majority rule [30]. The majority
rule is optimal when the noise components of the sensors are i.i.d.,
the hypotheses are equally likely, and the observations are i.i.d.
and independent of the noise of the sensors [31]. The expression
Fig. 2. Decentralized detection system model.
for the majority rule is given by
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with = ⌊ ⌋ +t K/2 1, where ⌊·⌋ represents the floor operator that
maps a real number to the largest integer lower than or equal to
itself. Although the majority rule is considered in the following
analysis, the results can easily be extended for generic integer
values of t in (20). (For t¼1 and t¼K, the rule in (20) reduces to
the OR fusion rule and the AND fusion rule, respectively.)

Considering independent but not necessarily identically dis-
tributed measurements (yi's), the probability of error (i.e., the
Bayes risk for UCA) for the fusion rule in (20) can be calculated as
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where
( )

pl j
i
z c i, ,

denotes, for the ith sensor, the probability of choosing

hypothesis
( )

Hl z c i, ,
when hypothesis Hj is true, and ( )l z c i, , corresponds

to the element at the cth row and the ith column of matrix ( )zL ,

which has a dimension of ( ) × KK
z

and is formed as follows: The

numbers of 1's and 0's in a row are z and −K z , respectively, and
the rows of the matrix contain all possible combinations of z 1's
and −K z 0's. For example, matrix ( )zL for K¼5 and z¼3 can be
given as follows:
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where, e.g., =( )l 13,1,3 , =( )l 03,4,2 , and =( )l 13,3,3 . Although matrix ( )zL
is not unique (e.g., the orders of the rows can be changed), all the

( )zL matrices result in the same probability of error in (21).
For the case of i.i.d. measurements (yi's) and identical decision

rules at the sensors, the probability of error for the fusion rule in
(20) can be expressed, as a special case of (21), as follows:
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where plj represents, for each sensor, the probability of deciding
for hypothesis Hl when hypothesis Hj is true.

In the decentralized detection framework, the aim is to mini-
mize the probability of error in (21) under the total cost con-
straint; that is,
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In order to solve this optimization problem, the conditional
probability densities are obtained and inserted in the objective
function. Then, an exhaustive search is applied to find the mea-
surement noise variances. In order to reduce the computation
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time, parallel computing can be used. The solution of (23) provides
the optimum cost allocation strategy for the considered decen-
tralized detection system.

As a special case, the Gaussian scenario is investigated. Suppose
that the probability distributions of the observations are in-
dependent when the hypothesis is given, and the distribution of
the ith observation is denoted by μ σ( ),i x0

2
i
and μ σ( ),i x1

2
i
under

hypothesis H0 and hypothesis H1, respectively. In addition, the
distribution of the ith measurement noise is given by σ( )0, m

2
i
, and

the observations are independent of the measurement noise. For
the sensors, the Bayes rule is employed assuming UCA and equally
likely priors [25]. In this setting, the probability distribution of ui
(i.e., the decision of the ith sensor) given the hypotheses can be
specified as follows:

μ μ

σ σ

μ μ

σ σ

( ) =

( − ) ( − )

+
=

( − ) ( − )

+
=

( )

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

p u

Q u

Q u

1

2
, if 0

1

2
, if 1

24

j i

j
i i

x m

i

j
i i

x m

i

0 1
2 2

1 0
2 2

i i

i i

for ∈ { }j 0, 1 , where ( )p uj i represents the probability of ui under
hypotheses Hj. Hence, the optimization problem can be expressed
for the Gaussian case as follows:
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where β = −( ) ( )l2 1z c i z c i, , , , . The solution of this optimization problem
leads to the optimal performance for the considered decentralized
detection system by optimally allocating the cost values to the
measurement devices (sensors).

Remark 1. The decisions at the local sensors are made according
to the Bayesian criterion and the optimization is performed for the
given fusion rule, which is the majority rule.

In the following lemma, the convexity of the optimization
problem in (25) is investigated for the special case of two sensors.

Lemma 2. Consider the Gaussian scenario that leads to the optimi-
zation problem in (25). In addition, suppose that K¼2, μ = 0i0 , and
μ μ= > 0i1 for i¼1,2. Then, the problem in (25) is a convex optimi-
zation problem if σ σ μ+ ≤ /12x m

2 2 2
i i

for =i 1, 2 and for all values of σm
2

i
under the total cost constraint.

Proof. Under the assumptions specified in the lemma, the objec-
tive function in (25) can be expressed as
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2 2 represents second-order derivative of Γ( )r with re-

spect to σm
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From (27), the convexity condition for Γ( )r can be obtained as

≥μ
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2 2 for =i 1, 2. That is, if this condition is satisfied for all

values of σm
2

i
under the total cost constraint, the optimization

problem becomes a convex optimization problem as the constraint
is already convex as discussed previously. □

Lemma 2 presents conditions under which the optimal cost
allocation problem in (25) becomes a convex optimization pro-
blem. In that case, the problem can be solved based on convex
optimization algorithms such as the interior-point algorithm [28].
3. Cost allocation for Neyman–Pearson criterion

The Bayesian criterion considered in the previous section is
well-suited in the presence of prior probabilities of the hypotheses
and cost assignments for possible decisions (see (1)–(3)). However,
in some cases, the information about the prior probabilities of the
hypotheses may not be available or assigning costs to possible
decisions may not be suitable. In such scenarios, the Neyman–
Pearson approach can be adopted for binary hypothesis-testing
problems, where the aim is to maximize the probability of de-
tection while satisfying a constraint on the probability of false
alarm [25]. In this section, the Neyman–Pearson approach is em-
ployed for designing optimum centralized and decentralized de-
tection systems in the presence of a cost constraint on measure-
ment devices.

3.1. Centralized detection

As described in Section 2.1, the sensors in a centralized detec-
tion system transmit all of their observations to the fusion center
and the fusion center decides on the hypothesis. Therefore, it
suffices to apply the Neyman–Pearson criterion to the fusion
center only. In this context, the aim is to maximize the probability
of detection subject to the constraints on the probability of false
alarm and the total cost, which is stated by the following opti-
mization problem:
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where Γ1 is the decision region for hypotheses H1, ( )p yi is the
probability distribution of the observation under Hi, where

∈ { }i 0, 1 , and αfc is the false alarm constraint. The solution of (28)
yields the maximum value of the probability of detection via op-
timal cost assignments for the local sensors under the false alarm
and total cost constraints.

Next, the Gaussian scenario is investigated as a special case
based on the same distributions and assumptions employed in
Section 2.1. Due to the presence of separate constraints in (28), the
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optimal NP decision rule can be obtained first, which leads to a
likelihood ratio test with the probability of false alarm set to αfc

[25]. For the considered Gaussian scenario, the corresponding
probability of detection can be obtained as α= ( ( ) − )−P Q Q dD fc

1 ,
where d is given by (9) [25]. Therefore, the optimization problem
in (28) can be expressed as follows:
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In order to maximize the objective function, the term inside Q
function should be minimized which can be achieved by increas-
ing d in (9). This results in the same optimization problem pro-
posed in Section 2.1; hence, the cost values of the sensors are
determined according to the algorithm given in (12).

3.2. Decentralized detection

In decentralized detection, all local sensors make their own
decisions, which are processed in the fusion center to decide on
the hypothesis. In Section 2.2, local sensors make a decision ac-
cording to the Bayes rule and the majority fusion rule is employed
at the fusion center. In this part, decisions are made according to
the Neyman–Pearson criterion in the local sensors and the fusion
center uses a counting rule [32]. The counting rule is specified in
such a way that the probability of false alarm is lower than a
specified threshold. As an example, the probability of false alarm
in the fusion center versus the value of N (for the N out of K rule) is
illustrated in Fig. 3 for a sensor network with 12 local sensors. In
the figure, the probability of false alarm for the local sensors is
10�3 and the measurements of the sensors are independent. For
such a system to achieve an overall probability of false alarm lower
than 10�12, the best fusion rule becomes 5 out of 12. Moreover, it
is observed that the probability of false alarm is a decreasing
function of N similar to the probability of detection. In order to
achieve the maximum probability of detection, N is chosen to be
the minimum of possible value that satisfies constraint on the
probability of false alarm, αfc.

The same assumptions and the probability distributions used in
Section 2.2 are employed in this section. Then, the probability of
false alarm PFAfc

at the fusion center for the N out of K strategy is

calculated as follows:
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Fig. 3. Probability of false alarm versus N for the N out K fusion rule.
where αi is the probability of false alarm at the ith sensor, and ( )l z c i, ,

corresponds to the element at the cth row and the ith column of
matrix ( )zL , as defined in Section 2.2.

The proposed optimization problem aims to maximize the
probability of detection while keeping the total cost of the sensors
under a certain limit and guaranteeing that the probability of false
alarm is below the specified false alarm constraint. Based on (30),
the optimization problem is stated as

( )
( )

∑ ∑ ∏

∑ σ

σ

| − | + −

+ ≤
( )

σ{ } = = =
( ) ( )

=

=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

l l P

C

max 1 2 1

subject to
1
2

log 1 ,
31

z N

K

c

K
z

i

K

z c i z c i D

i

K
x

m
T

1 1
, , , ,

1
2

2

2

mi i
K i

i

i

2
1

where PDi
is the probability of detection of the ith sensor, and the

value of N is equal to the minimum integer number that satisfies
α≤PFA fcfc

for the N out of K decision rule.
As a special case, the Gaussian scenario in Section 2.2 is in-

vestigated. In this case, the detection threshold is calculated based
on the given αi value by equating the probability of false alarm to
αi. Then, the probability of detection is determined for the ob-
tained detection threshold. In particular, the probability of detec-
tion for the ith sensor is calculated as follows:
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From (32), the optimization problem in (31) can be specified as
follows:
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where N is chosen as stated above. Exhaustive search with parallel
computing is used to solve the optimization problem as in ((23).
The solution of (33) results in the maximum probability of de-
tection for the given cost and false alarm constraints.

Remark 2. Neyman–Pearson hypothesis testing is employed at the
local sensors and the optimization problem is formulated for the
given fusion rule, which is the counting rule. As another approach,
the optimization problem can be formulated over the fusion rule,
local thresholds and measurement noise variances. Although the
latter optimization problem can lead to improved performance, its
computational complexity is significantly higher than that of the
former one.
4. Cost allocation for J-divergence criterion

As alternatives to the Bayesian and NP criteria, distance related
bounds can be used for quantifying detection performance. The
distance related bounds provide upper and lower bounds on the
probabilities of detection and false alarm (or, the probability of
error). Some examples of these bounds are the Bhattacharrya
bound, J-divergence and Chernoff bound [25]. These bounds be-
long to the Ali–Silvey class of distance measures [33]. In this sec-
tion, we employ J-divergence, firstly introduced by Jeffreys [34],
for the cost allocation problem. The J-divergence is a commonly
used metric for detection performance [35–38]. It introduces a
lower bound on the probability of error Pe [37] as follows:
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π π> ( )−P e , 34e
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where π0 and π1 are the prior probabilities of hypothesis H0 and
hypothesis H1, respectively, and J denotes the J-divergence, which
is the symmetric version of the Kullback–Leibler (KL) distance [39].
The J-divergence is defined between two probability densities, p
and q, as follows:

( ) = ( ∥ ) + ( ∥ ) ( )J p q D p q D q p, , 35

where ( ∥ )D p q is the KL distance between p and q, which is cal-
culated as
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According to the formula in (36), the J-divergence is obtained as
follows:
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In this section, the cost allocation problem is investigated based on
the J-divergence criterion for both centralized and decentralized
detection systems.
4.1. Centralized detection

The aim is to maximize the detection performance at the fusion
center under a total cost constraint. To this aim, the J-divergence
between ( )p y1 and ( )p y0 is to be maximized. The optimization
problem for centralized detection can be written as follows:
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Although the J-divergence is useful especially in cases where the
error probabilities cannot easily be evaluated, it is a metric that
can be employed in any scenario. Since the Gaussian distribution is
commonly encountered in practice, (38) is investigated for the
Gaussian scenario in detail as in the previous section. (The J-di-
vergence for two Gaussian distributions is considered for detection
performance optimization problems in the literature; e.g., [35].)
The J-divergence between densities p and q with distributions

μ Σ( ),0 0 and μ Σ( ),1 1 , respectively, is given as follows [40]:
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where I is the identity matrix with the same size as the covariance
matrices. For the Gaussian scenario described in Section 2.1, the J-
divergence is calculated as

μ μ μ μΣ( ( ) ( )) = ( − ) ( − ) ( )−J p py y, , 40
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1 0 T 1 01 0
1

which is the same as the objective function in (11). Therefore, the
same optimization problem as in Sections 2.1 and 3.1 is obtained.
As a result, the cost allocation strategy is determined according to
the algorithm in (12).
4.2. Decentralized detection

In this part, a decentralized detection system is examined
based on the J-divergence criterion. The aim is to maximize the J-
divergence between ( )p u1 and ( )p u0 under a total cost constraint.
The mathematical description of the problem is given by
( ) ∑
σ

σ
( ) ( ) + ≤

( )
σ{ }

=
=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟J p p Cu umax , subject to

1
2

log 1 .
41i

K
x

m
T1 0

1
2

2

2mi i
K

i

i

2
1

In order to solve this problem, the conditional density functions of
the local decisions should be determined. These densities are gi-
ven as follows:
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where PFAi
and PDi

represent the probability of false alarm and the
probability of detection at the ith sensor, respectively. The in-
formation about PFAi

and PDi
can be obtained by using the Neyman–

Pearson rule. The objective function in the optimization problem
can be expressed as follows:
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In order to examine the Gaussian scenario, PDi
is determined in

terms of the specified probability of false alarm as in (32). Then,
the given PFAi

and the calculated PDi
values can be inserted into (44)

in order to determine the J-divergence between ( )p u1 and ( )p u0 . At
this point, the obtained J-divergence between ( )p u1 and ( )p u0 is
inserted into (41) and the optimization problem is solved nu-
merically in order to obtain the optimum detection performance
in the sense of J-divergence. As the numerical solution approach in
the next section, exhaustive search is employed.
5. Numerical results

In this section, the performance of the proposed optimal cost
allocation strategies is evaluated via numerical examples. Firstly,
the results for centralized detection in the Bayesian framework are
presented. The distribution of the observation x under hypothesis
H0 is given by Σ( )0, , where = [ ]0 0, 0, 0 T . Similarly, the dis-
tribution of x under hypothesis H1 is modeled as Σ( )1, , where

= [ ]1 1, 1, 1 T . In these distributions, Σ represents the covariance
matrix, which is expressed as σ σ σ{ }diag , ,x x x

2 2 2
1 2 3

. The values of the

variances σx
2
1
, σx

2
2
and σx

2
3
are set to 0.2, 0.7, and 1.2, respectively.

Measurement noise m also has Gaussian distribution denoted by
Σ( )0, m , where σ σ σΣ = { }diag , ,m m mm

2 2 2
1 2 3

. Lastly, the hypotheses are
equally likely; i.e., π π= = 0.50 1 .

The strategies that are compared with the proposed optimal
cost allocation strategy are

� assignment of equal measurement variances to the measure-
ment devices (sensors), and

� assignment of all the cost to the sensor with the best observa-
tion.

When the measurement devices have equal measurement noise

variances; i.e., σ σ σ σ= = =m m m m
2 2 2 2

1 2 3
, the variance sm

2 can be cal-

culated by using the formula σ σ∏ ( + ) == 1 / 2i x m
C

1
3 2 2 2

i
T , where the

variance sm
2 corresponds to the smallest positive root of this
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Fig. 4. Probability of error vs. total cost constraint for Bayesian centralized detection.
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Fig. 5. Probability of error vs. total cost constraint for Bayesian decentralized
detection.
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Fig. 6. Probability of detection vs. total cost constraint for NP centralized detection.
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equation. After finding sm
2, the probability of error is calculated as

δ σ σ( ) = ( ∑ ( + ) )=r Q 0.5 1/B i x m1
3 2 2

i
. In the second strategy, all the

available cost is assigned to the measurement device having the

observation with the smallest variance. In this example, σx
2
1
has the

smallest variance; hence, all the cost is assigned to sensor 1 and

σ σ= ( − )/ 2 1m x
C2 2 2 T

1 1
. The other variances σm

2
2
and σm

2
3
are set to in-

finity, and no measurements are taken from the corresponding
measurement devices. The probability of error is obtained for this

case as δ σ( ) = ( − )r Q 0.5 2 1 / 2B
C C

x
2 2 2T T

1
. The results obtained for

the centralized detection in the Bayesian framework are presented
in Fig. 4, which illustrates the probability of error versus the total
cost constraint, CT, for the optimal cost allocation strategy and the
two strategies described above. For small values of CT, assigning all
the cost to the sensor with the best observation converges the
optimal solution since, when CT is small, the optimal strategy
allocates the total cost to the sensors with the best observations.
Moreover, the probability of error for assigning all the cost to the

sensor with the best observation converges to σ( )Q 0.5/ x
2
1
, which

is equal to ( ) =Q 0.5/ 0.2 0.1318 since σm
2

1
goes to zero as CT

increases. For high total cost constraints, the equal measurement
variances strategy converges to the optimal strategy. Similar to the
strategy that assigns all the cost to the sensor with the best
observation, when CT is high, the measurement noise variances
become low and the probability of error converges to

δ σ σ σ( ) = ( + + )r Q 0.5 1/ 1/ 1/B x x x
2 2 2
1 2 3

which is equal to 0.0889 for

the values specified above. Overall, the proposed optimal cost
allocation strategy yields the lowest probabilities of error. In other
words, the optimum performance according to the Bayesian
criterion is attained with the optimal cost allocation strategy.

For the same setting as in Fig. 4, the results for decentralized
detection in the Bayesian framework are presented in Fig. 5. As
observed from Fig. 5, assigning all the cost to the sensor with the
best observation yields the worst performance in this case since all
the sensors make their own decisions. When zero cost is assigned
to a sensor, the measurement noise variance becomes infinity and
the probability of error for that measurement device becomes 0.5.

Then, the probability of error converges to Γ σ( ) = ( )r Q0.75 0.5/ x
2
1

σ+ ( − )Q0.5 0.5/ x
2
1

for high cost constraints. For σ = 0.2x
2
1

, the
probability of error converges to 0.3159. When the cost constraint
is high, the equal measurement variances strategy converges to
the optimal strategy. For high cost constraints, the probability of
error for the equal measurement variances strategy converges to
Γ( ) = + + −r ab ac bc abc2 where σ= ( )a Q 0.5/ x
2
1
, σ= ( )b Q 0.5/ x

2
2
,

and σ= ( )c Q 0.5/ x
2
3
. For the values specified above, Γ( )r converges

to 0.1446. Overall, the optimal cost allocation strategy yields the
lowest probabilities of error for decentralized detection, as well.

In the Neyman–Pearson framework, the probability of detection
achieved by the proposed algorithm is compared with the two
strategies explained above (that is, assignment of equal measure-
ment variances to the measurement devices and assignment of all
the cost to the sensor with the best observation). In centralized
detection, the distribution of observation x is specified by Σ( )0,
and Σ( )2, for hypotheses H0 and H1, respectively. The covariance
matrix is the same as in the previous scenario; i.e.,
Σ = { }diag 0.2, 0.7, 1.2 . The probability of false alarm at the fusion
center is required to be less than or equal to α = −10fc

6. The results
obtained for centralized detection in the Neyman–Pearson frame-
work are presented in Fig. 6. Similar to the results for the Bayesian
criterion, assigning all the cost to the best observation yields similar
performance to the optimal algorithm for low cost values. When the
cost budget increases, PD converges to α μ σ( ( ) − )−Q Q /fc x

1
1 1

; hence, for
the considered parameters, the probability of detection converges to

( ( ) − ) =− −Q Q 10 2/ 0.2 0.38921 6 . On the other hand, the equal mea-
surement variances strategy converges to the same value of

α μ σ μ σ μ σ( ( ) − + + )−Q Q / / /fc x x x
1

1
2

1
2

2
2

2
2

3
2

3
2 as the optimal algorithm for high

cost values. In particular, the optimal algorithm converges to
( ( ) − + + ) =− −Q Q 10 4/0.2 4/0.7 4/1.2 0.73771 6 as the total cost
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Fig. 7. Probability of detection vs. total cost constraint for NP decentralized
detection.
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Fig. 8. J-divergence versus the total cost constraint for centralized detection.
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constraint increases. As a result, the optimal cost allocation strategy
produces the maximum probability of detection in all cases and
outperforms the other approaches.

In the next example, the optimality of the proposed algorithm is
illustrated for decentralized detection in the Neyman–Pearson fra-
mework. The distribution of observation x is denoted as Σ( )0, and

Σ( )4, for hypotheses H0 and H1, respectively, where Σ is the same
as that in the centralized detection case. All the local sensors have the
same probability of false alarm given by α α α= = = −101 2 3

4. It is
required to achieve a false alarm probability not exceeding 10�7 at
the fusion center. In order to satisfy this false alarm probability at the
fusion center, the 2 out 3 fusion rule must be used. This fusion rule
produces a false alarm probability of −10 7.5, which satisfies the re-
quirement. The results related to this scenario are shown in Fig. 7. It
is observed that assigning all the cost to the best observation has
detection probability close to zero since the sensors having zero cost
have infinite noise powers and the probability of detection for these
sensors is 10�4. When the total cost constraint is high, the equal
measurement variances strategy and the proposed algorithm con-
verge to the same probability of detection, specified by

= + + −P P P P P P P P P P2D d d d d d d d d d1 2 1 3 2 3 1 2 3
, where α μ σ= ( ( ) − )−P Q Q /d x1

1
1 1 1

,

α μ σ= ( ( ) − )−P Q Q /d x
1

2 22 2
and α μ σ= ( ( ) − )−P Q Q /d x

1
3 33 3

. For the values
given above, PD converges to 0.9240. Overall, the optimal cost allo-
cation algorithm yields the highest probabilities of detection in this
scenario.

Next, the J-divergence criterion is considered and the proposed
algorithm is compared with the other two strategies. In centralized
detection, the distribution of observation vector x is represented by

Σ( )0, and Σ( )2, for hypotheses H0 and H1, respectively, where
the covariance matrix is given by Σ = { }diag 0.2, 0.7, 1.2 . The results
for this case are shown in Fig. 8. It is observed that assigning all the
cost to the best observation and the proposed optimal strategy
achieve similar performance for low cost values. When the total cost
increases, the J-divergence converges to μ σ =/ 20x1

2 2
1

for the strategy
that assigns all the cost to the best observation, which is significantly
lower than that achieved by the optimal strategy. On the other hand,
the performance of the equal measurement variances strategy con-
verges to that of the optimal algorithm for high cost values; in par-
ticular, the J-divergence converges to μ σ∑ == / 29.0476i i x1

3 2 2
i

. Overall,
the proposed algorithm yields the maximum J-divergence for all cost
values resulting in the optimum performance.

In the final example, a decentralized detection problem is con-
sidered according to the J-divergence criterion. The distribution of
observation x is denoted by Σ( )0, and Σ( )4, for hypotheses H0
and H1, respectively, where Σ is the same as in the centralized
detection case. The probability of false alarm for the local sensors is
given by α α α= = = −101 2 3

4. The results related to this scenario are
presented in Fig. 9. It is noted that assigning all the cost to the best
observation achieves improved performance in this case compared
to the decentralized detection examples in the Bayesian and Ney-
man–Pearson frameworks Figs. 5 and 7, respectively. The main
reason for this observation is that no counting rule is applied at the
fusion center in this case. Similar to the centralized detection case,
the proposed algorithm and the algorithm that assigns all the cost
to the best observation yield similar results for low cost values. As
the cost increases, the equal measurement variance strategy and the
proposed algorithm converges to the same value of 39.177 while
assigning all the cost to the best observation leads to a convergence
to 25.466 for high cost values. From Fig. 9, it is observed that the
proposed algorithm yields the maximum J-divergence in all the
cases, and achieves the optimum detection performance.
6. Conclusions

In this manuscript, centralized and decentralized detection systems
have been investigated in the presence of cost constrained measure-
ments. Novel cost allocation strategies that achieve the optimum de-
tection performance according to the Bayesian, Neyman–Pearson and
J-divergence criteria have been proposed for both centralized and
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decentralized detection systems. A closed form expression has been
presented for the measurement noise variances by considering cen-
tralized detection in a Gaussian scenario. This expression indicates that
if the observation variance is low, using a measurement device with a
high cost is more beneficial. Also, the convexity property of the ob-
jective and constraint functions has been studied under certain con-
ditions. For decentralized detection, a general probability of error ex-
pression for the Bayesian criterion and the probabilities of detection
and false alarm expressions for the Neyman–Pearson framework have
been presented according to the counting rules at the fusion center. In
addition, the J-divergence has been employed for the distance based
criterion. The Gaussian scenario has been investigated as a special case
and the optimization problems have been proposed for all the criteria.
The optimality of the proposed cost allocation strategies has been
shown via numerical examples. Overall, the proposed cost allocation
strategies minimize the Bayes risk for the Bayesian criterion, maximize
the probability of detection (under a constraint on the probability of
false alarm) for the Neyman–Pearson criterion, and maximize the J-
divergence for the distance based criterion under given cost con-
straints, and they achieve the optimum performance.
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