
ANALYSIS OF PARALLEL ITERATIVE
GRAPH APPLICATIONS ON SHARED

MEMORY SYSTEMS

a thesis submitted to

the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements for

the degree of

master of science

in

computer engineering

By

Funda Atik

January 2018

ANALYSIS OF PARALLEL ITERATIVE GRAPH APPLICATIONS

ON SHARED MEMORY SYSTEMS

By Funda Atik

January 2018

We certify that we have read this thesis and that in our opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Özcan Öztürk(Advisor)

Uğur Güdükbay

Süleyman Tosun

Approved for the Graduate School of Engineering and Science:

Ezhan Karaşan
Director of the Graduate School

ii

ABSTRACT

ANALYSIS OF PARALLEL ITERATIVE GRAPH
APPLICATIONS ON SHARED MEMORY SYSTEMS

Funda Atik

M.S. in Computer Engineering

Advisor: Özcan Öztürk

January 2018

Graph analytics have come to prominence due to their wide applicability to many

phenomena of real world such as social networks, protein-protein interactions,

power grids, transportation networks, and other domains.

Despite the increase in computational capability of current systems, developing

an effective graph algorithm is challenging due to the complexity and diversity of

graphs. In order to process large graphs, there exist many frameworks adopting

different design decisions. Nonetheless, there is no clear consensus among the

frameworks on optimum design selections.

In this dissertation, we provide various parallel implementations of three rep-

resentative iterative graph algorithms: Pagerank, Single-Source Shortest Path,

and Breadth-First Search by considering different design decisions such as the

order of computations, data access pattern, and work activation. We experi-

mentally study the trade-offs between performance, scalability, work efficiency of

each implementation on both real-world and synthetic graphs in order to guide

developers in making effective choices while implementing graph applications.

Since graphs with billions of edges can fit in memory capacities of modern

shared-memory systems, the applications are implemented on a shared-memory

parallel/multicore machine. We also investigate the bottlenecks of each algorithm

that may limit the performance of shared-memory platforms by considering the

micro-architectural parameters.

Finally, we give a detailed road-map for choosing design points for efficient

graph processing.

Keywords: Shared Memory, Graph Applications, Parallel Programming.

iii

�OZET

ORTAK BELLEKL_I S_ISTEMLER �UZER_INDE C� ALIS�AN
PARALEL TEKRARLAYAN C� _IZGE

UYGULAMALARININ ANAL_IZ_I

Funda Atik

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Özcan Öztürk

Ocak 2018

Çizge analiz uygulamaları; sosyal ağlar, proteinler arası etkileşimler, güç nakli

şebekeleri, taşıma ağları gibi birçok alana uygulanabilirlikleri sayesinde gittikçe

önem kazanmıştır.

Çizge veri setlerinin karmaşık ve çok çeşitli yapıda olması nedeniyle, günümüz

sistemlerinin sayısal işlem yapabilme kapasitesi artsa da etkili bir çizge algorit-

ması geliştirmek son derece zordur. Büyük çizge veri setlerini işlemek amacıyla

önceden hazırlanmış yapıların ve fonksiyonların bulunduğu farklı dizayn kararları

alan birçok çerçeveler geliştirilmiştir. Fakat bu çerçeveler arasında en iyi tasarım

seçimlerinin nasıl olacağı hakkında ortak bir karar yoktur.

Bu tezde; işlemlerin uygulanma sırası, veri erişim biçimleri ve iş aktivasyonu

gibi farklı tasarım kararları göz önüne alınarak, tekrarlayan çizge uygulamalarına

örnek teşkil eden üç algoritmanın çeşitli paralel geliştirmeleri sunulmuştur. Bu

üç algoritma şunlardır: ”PageRank”, ”Tek Kaynaklı En Kısa Yollar” ve ”Sığ

Öncelikli Arama”. Her bir uygulamanın, hem gerçek hem de sentetik çizge veri

setleri üzerinde performans, ölçeklenebilirlik ve iş verimi analizleri yapılarak bun-

lar arasında nasıl bir denge kurulabileceği deneysel olarak araştırılmıştır.

Milyarlarca düğüm ve bunları birbirine bağlayan çok sayıda bağıntıdan oluşan

çizge veri setleri her ne kadar çok büyük olsalar da modern ortak bellekli sis-

temlerin bellek kapasitesine sığabilirler. Bu nedenle, bu tezde, tüm uygulamalar

ortak bellekli paralel çok çekirdekli sistemler üzerinde tasarlanmıştır. Aynı za-

manda donanım performans sayaçları kullanılarak ortak bellekli sistemlerin per-

formansını sınırlayabilecek noktaları belirlemek için her bir algoritmanın mikro-

donanımsal değişkenleri incelenmiştir.

iv

v

Sonuç olarak; bu tezde, geliştiricilerin çizge analiz uygulamaları yazarken,

farklı tasarım kararları arasından etkili ve bilinçli seçimler yapabilmeleri hedef-

lenmiştir.

Anahtar s�ozc�ukler : Ortak Bellek, Çizge Uygulamaları, Paralel Programlama.

Acknowledgement

First, I would like to thank my advisor Özcan Öztürk for his support during my

M.S studies. He provided me with invaluable lessons.

I am also grateful to members of my thesis committee, Uğur Güdükbay and

Süleyman Tosun, for their interest on this topic.

I owe my deepest gratitude to Ali Can Atik, Şerif Yeşil, and Fulya Atik for

their continual encouragement, especially when it was most needed.

vi

Contents

1 Introduction 1

1.1 Objective of the Thesis . 3

1.2 Organization of the Thesis . 4

2 Related Work 5

3 Principal Design Decisions for Graph Applications 7

3.1 Properties of Graph Applications 7

3.2 Order of Computations . 10

3.3 Data Access Patterns . 11

3.4 Work Activation . 11

4 Implementations of Selected Graph Algorithms 12

4.1 Pagerank (PR) . 12

4.2 Single-Source Shortest Path (SSSP) 19

vii

CONTENTS viii

4.3 Breadth-First Search(BFS) . 22

5 Experiments 25

5.1 Experimental Setup . 25

5.2 Performance Results . 27

5.2.1 Runtime and Scalability 27

5.2.2 Speedups . 40

5.2.3 Work Efficiency . 44

5.3 Microarchitectural Results . 49

5.3.1 L2/L3 Miss Rates . 49

5.3.2 L1/TLB Miss Rates . 54

5.3.3 Instructions Per Cycle (IPC) 59

6 Discussion 62

7 Conclusion 66

Bibliography 68

List of Figures

3.1 Algorithm design choices in graph applications. 9

5.1 Execution time of PR with wg dataset. 29

5.2 Execution time of PR with lj dataset. 29

5.3 Execution time of PR with pld dataset. 30

5.4 Execution time of PR with rmat dataset. 30

5.5 Scalability of PR with wg dataset. 32

5.6 Scalability of PR with lj dataset. 32

5.7 Scalability of PR with pld dataset. 33

5.8 Scalability of PR with rmat dataset. 33

5.9 Execution time of SSSP with pld dataset. 35

5.10 Execution time of SSSP with rmat dataset. 35

5.11 Scalability of SSSP with pld dataset. 36

5.12 Scalability of SSSP with rmat dataset. 36

ix

LIST OF FIGURES x

5.13 Execution time of BFS with pld dataset. 38

5.14 Execution time of BFS with rmat dataset. 38

5.15 Scalability of BFS with pld dataset. 39

5.16 Scalability of BFS with rmat dataset. 39

5.17 Speedups observed for PR with pld dataset. 41

5.18 Speedups observed for PR with rmat dataset. 41

5.19 Speedups observed for SSSP with pld dataset. 42

5.20 Speedups observed for SSSP with rmat dataset. 42

5.21 Speedups observed for BFS with pld dataset. 43

5.22 Speedups observed for BFS with rmat dataset. 43

5.23 Total edges processed for PR with pld and rmat graphs. 45

5.24 Total nodes activated for PR with pld and rmat graphs. 45

5.25 Total edges processed for SSSP with pld and rmat graphs. 47

5.26 Total nodes activated for SSSP with pld and rmat graphs. 47

5.27 Total edges processed for BFS with pld and graphs. 48

5.28 Total nodes activated for BFS with pld and rmat graphs. 48

5.29 L2 miss rates for PR with wg, lj, pld, and rmat graphs. 50

5.30 L3 miss rates for PR with wg, lj, pld, and rmat graphs. 50

5.31 L2 miss rates for SSSP with wg, lj, pld, and rmat graphs. 52

LIST OF FIGURES xi

5.32 L3 miss rates for SSSP with wg, lj, pld, and rmat graphs. 52

5.33 L2 miss rates for BFS with wg, lj, pld, and rmat graphs. 53

5.34 L3 miss rates for BFS with wg, lj, pld, and rmat graphs. 53

5.35 L1 miss rates for PR with wg, lj, pld, and rmat graphs. 55

5.36 TLB miss rates for PR with wg, lj, pld, and rmat graphs. 55

5.37 L1 miss rates for SSSP with wg, lj, pld, and rmat graphs. 57

5.38 TLB miss rates for SSSP with wg, lj, pld, and rmat graphs. 57

5.39 L1 miss rates for BFS with wg, lj, pld, and rmat graphs. 58

5.40 TLB miss rates for BFS with wg, lj, pld, and rmat graphs. 58

5.41 Instructions per cycle for PR with wg, lj, pld, and rmat graphs. . 60

5.42 Instructions per cycle for SSSP with wg, lj, pld, and rmat graphs. 60

5.43 Instructions per cycle for BFS with wg, lj, pld, and rmat graphs. . 61

List of Tables

2.1 Summary of frameworks used for graph processing. 6

5.1 System details for our experiments. 25

5.2 Datasets used for evaluation. 26

5.3 Summary of application test cases. 26

xii

Chapter 1

Introduction

With the advent of big data applications, graph analytics has gained much impor-

tance in recent years. Applications of graph analytics could be applied to a wide

range of domains such as biology, robotics, machine learning, and artificial intel-

ligence [1]. Moreover, a huge amount of data can be represented as graphs such

as biological networks, social networks, road networks, item-product networks,

and so on. These networks usually have millions of vertices and billions of edges,

and each of which has different structures. Many algorithms are designed to work

on graph applications which play a vital role in several domains. For instance,

Pagerank (PR) is a popular benchmark for graph analytics applications which

is used for ordering hyperlinks as well as evaluating sentence similarity [2]. Fur-

thermore, algorithms like Breadth First Search (BFS) and Single-Source Shortest

Path (SSSP) are chiefly exercised in cognitive systems embodied various elements

from different domains such as machine learning, artificial intelligence, and data

analytics. Moreover, Stochastic Gradient Descent (SGD) and Alternating Least

Squares (ALS) are two well-known examples of matrix factorization in collabora-

tive filtering primarily utilized for personalized recommendation [3]. Additionally,

applications of belief propagation are widely adopted in several domains such as

bioinformatics, natural language processing, and pattern recognition in order to

solve inference problem by passing local messages between nodes.

1

Over the past decade, researchers have discussed various types of graph appli-

cations for finding shortest paths, optimizing routes, discovering cliques among

communities, making targeted product recommendations, clustering, and so

forth. For this purpose, they have designed many graph processing frameworks

[4–8]. However, each framework optimizes the algorithms by adopting different

design decisions. Typically, these decisions determine (1) how to order active

nodes for computation, (2) how data moves throughout execution, and (3) how

to activate nodes. For instance, Pregel [4] adopts bulk synchronous parallel ex-

ecution, whereas Graphlab favors asynchronous parallel execution. In terms of

information flow, Galois [8] prefers moving data in the push direction, that is to

say, an active node performs update operations on its outgoing neighbors. On the

other hand, in [9, 10], an active node collects data from its incoming neighbors

and updates itself. Moreover, several frameworks utilize a worklist structure for

storing nodes activated according to a predefined threshold which need to be pro-

cessed [8,11,12]. In contrast, other frameworks process each node according to the

graph topology without checking its active status [7,10]. As a consequence, due to

the aforementioned design choices for a graph algorithm, there is not a complete

and yet effective way to implement large-scale parallel graph applications.

Although the computational capabilities of the computers are increased from

teraflops to petaflops and beyond, finding an effective implementation of a graph

algorithm executed on different types of graphs has many challenges due to the

complex patterns of computation in graph analytics applications, large graph

sizes, and diversity in graph structures [13]. Not only the properties of the

graphs but also the different memory settings have a huge impact on the per-

formance of graph applications [14]. According to recent studies, shared memory

implementations show better performance than distributed implementations of

graph analytics when graphs fit in the main memory of the system [7, 15, 16].

Communication costs caused by distributed memory settings could not be amor-

tized effectively with an increase in memory bandwidth. Moreover, input graphs

with billions of edges could easily fit in the main memory of todays large shared

memory machines. Therefore, it is important to understand how parallel graph

applications can be implemented effectively on shared-memory systems.

2

1.1 Objective of the Thesis

This thesis analyzes various combinations of different in-memory implementa-

tion styles of graph applications and explores the tradeoffs between performance,

scalability, work efficiency, and computation cost of shared-memory systems. We

believe that our observations can guide researchers in making effective choices

while implementing future graph analytics applications.

Our main contributions can be summarized as follows:

� We implement 8 variants of the PR algorithm, and 4 variants of both SSSP

and BFS algorithms with regards to various design decisions such as the

order of computations, data access patterns, and work activation.

� We provide performance and scalability analysis for all implementations

using both synthetic graphs as well as real social networks.

� We analyze work efficiency of different design choices by taking the total

number of edges processed into consideration.

� Finally, a micro-architectural analysis of the algorithms is conducted so as

to reveal the bottlenecks of each algorithm that constraint performance of

the shared-memory systems.

3

1.2 Organization of the Thesis

Chapter 2 covers previous work and summarizes existing graph frameworks by

considering their characteristics. Chapter 3 reveals main properties of graph

applications and examines various design choices for implementing large-scale

graph algorithms. Chapter 4 presents different implementations of PR, SSSP,

and BFS.

Chapter 5 is divided into 3 sections. Firstly, experimental setup is presented.

In this section, we give the summary of datasets used for evaluation, the details

of application design, and the system which experiments are executed on. Sec-

ondly, performance and scalability analysis for all applications are given. Their

speedups with respect to the running time of a baseline sequential algorithm are

also reported. As work efficiency is an important metric, we give the work effi-

ciency of each application. In the third section, the performance of the system is

evaluated by using hardware performance counters.

Chapter 6 discusses our observations and conclusions from the experimental

results. Finally, we conclude the thesis with a brief overview of our work, accom-

plishments, and future remarks.

4

Chapter 2

Related Work

Recently, graph analytics applications have received considerable attention from

both industry and academic environments. Many frameworks eliminate major

difficulties of graph processing through various abstractions. In this chapter, a

short review of those frameworks will be given to illustrate their main differences

according to various design choices such as the order of computations, data access

patterns, and work activation.

An important design consideration is the target platform while choosing an

appropriate framework. While some frameworks target distributed architectures,

others focus on shared memory systems. Furthermore, some frameworks allow

users to make decisions about data flow (pull or push) and execution order (syn-

chronous or asynchronous). However, other systems might impose a limit to

utilize only a single model. For instance, Pregel [4] uses push-based implemen-

tation, while GraphLab [5] uses pull-based. Additionally, some frameworks such

as Galois [8] and GraphChi [17] are restricted to asynchronous execution, while

GraphLab [5] lets the user decide during implementation. Apart from the design

selections regarding information flow and execution order, most frameworks offer

a vertex-centric model for programming, although some others such as Ligra [7]

uses graph-centric model. Table 2.1 lists different frameworks with their proper-

ties including execution model, flow model, and programming model.

5

There is no clear consensus among the graph processing frameworks on opti-

mum design selections, thus benchmarks used for these systems depend on the

input data and design decisions that developer enforces. Proper benchmark se-

lection is critical in comparing frameworks based on performance criteria such

as runtime or scalability. There are graph processing benchmark suites such as

GAP [10] and CRONO [18] to encourage the standardization of graph processing

evaluations. Table 2.1 summarizes aforementioned graph frameworks with their

characteristics.

Table 2.1: Summary of frameworks used for graph processing.

Framework Year System
Execution

Model
Flow

Model
Programming

Model

Pregel [4] 2010 Distributed Synchronous Push Vertex-Centric

GraphLab [5] 2010-12 Both Both Both Vertex-Centric

GraphChi [17] 2012 Shared Asynchronous Pull Vertex-Centric

Giraph [19] 2012 Distributed Asynchronous Push Vertex-Centric

Galois [8] 2013 Shared Synchronous Both Vertex-Centric

Ligra [7] 2013 Shared Asynchronous Push Graph-Centric

GPS [20] 2013 Distributed Synchronous Push Vertex-Centric

We focus on in-memory implementations of graph algorithms. However,

there exist many graph frameworks executed on Flash/SSD platforms such as

GraphCHi [17], TurboGraph [21], X-Stream [22], FlashGraph [23], and Grid-

Graph [24]. Moreover, some graph frameworks like Medusa [25], Gunrock [26],

and CuSha [27] are designed to work on GPU systems. There are also some at-

tempts to design specific accelerators for graph processing such as Ozdal et al.

[28], GraphOps [29], and Tesseract [30].

6

Chapter 3

Principal Design Decisions for

Graph Applications

In this chapter, we discuss main characteristics of graph analytics applications and

examine several alternatives of design choices for implementing graph algorithms.

3.1 Properties of Graph Applications

Graph analytics applications have received considerable attention recently due to

its applicability to different domains such as web graphs, social networks, and

protein networks. Designing a large scale efficient graph processing system is a

challenging task due to the large volume and the irregularity of communication

between computations at each vertex or edge. As a result, several graph analytics

frameworks [4, 5, 8, 19, 31, 32] adopting different programming models have been

developed.

Graph frameworks process graphs either synchronously or asynchronously. The

former is easy to program since it processes data simultaneously and iteratively;

whereas, the latter needs to order data updates carefully using latest available

7

dependent state. Moreover, many graph applications are executed until a conver-

gence criterion is satisfied. This behavior is implemented simply by executing all

vertices iteratively until the convergence is reached. However, there is no need to

execute all vertices in every iteration because some vertices may converge faster

than others, causing asymmetric convergence.

We focus on graph algorithms that display three main characteristics:

� We consider vertex-centric algorithms rather than edge-centric or graph-

centric. In such applications, a vertex performs local computation on its

neighbor vertices (e.g., incoming vertices or outgoing vertices). However,

during computation, overlapping neighborhoods might become a bottleneck

since they typically need synchronization between threads.

� For each vertex an iterator iterates through its incoming and/or outgoing

edges.

� They are iterative and perform a local computation at a set of vertices

repeatedly until a convergence criterion is met.

8

Furthermore, vertex-centric executions can be specialized for different applica-

tions. For this purpose, we classify design choices in three orthogonal dimensions

as shown in Figure 3.1.

Synchronous Asynchronous

Pull Push Pull-Push

Topology Data-Driven

Execution
Mode

Data
Access
Pattern

Work
Activation

Figure 3.1: Algorithm design choices in graph applications.

When applications are designed in a data-driven manner, two additional design

choices need to be considered, namely, the structure of a frontier which tracks

active nodes and scheduling of frontiers. However, we do not consider these data-

driven choices, rather we focus on the first three dimensions. In the following

three sections, we describe the aforementioned dimensions in detail.

9

3.2 Order of Computations

The first dimension is to decide whether to use fine-grain or coarse-grain syn-

chronization. One option is synchronous execution that provides synchronization

between its iterations by placing barriers. This method eliminates fine grain syn-

chronization such as using locks for every vertex or applying atomic operations.

The second method employs fine grain synchronization in order to implement ap-

plications asynchronously. An algorithm executed asynchronously needs to per-

form update operations on the vertices and edges atomically so that sequential

consistency will be protected.

In order to avoid any conflict while updating the value of each vertex in parallel,

we can use an atomic exchange function as shown in Algorithm 3.1. The function

takes three parameters such as an array pointer, an index value, and the desired

value. The array pointer and the index value are used for pointing the atomic

object which is expected to be updated with the desired value. If the value

pointed by the atomic object (e.g., expected[index]) and the non-atomic expected

value (e.g., oldVal) are equal, the function atomically exchanges the value of the

atomic object with the desired value. Otherwise, the function atomically loads

the old value of the atomic object. Therefore, we need an additional statement

for ensuring correct exchange operation.

Algorithm 3.1 Atomic Exchange

1: function atomicExchange(�expected; index; desired)
2: oldVal = expected[index]
3: while !expected[index]:compare exchange weak(oldVal,newVal) do
4: oldVal = expected[index]
5: end while
6: end function

Moreover, built-in functions like compare-and-swap (CAS), atomic-min, fetch-

and-add can be used for accessing memory atomically. We used atomic exchange

and CAS functions in our implementations.

10

3.3 Data Access Patterns

The second dimension is to select an appropriate data access pattern in which we

have three different choices. The first one is a pull-based implementation which

indicates the direction of the data movement. An algorithm implemented in the

pull direction iterates over incoming (or outgoing) edges to gather their data and

executes a reduction with neighbors' data. Note that, this is only a read opera-

tion. On the contrary, in push-based implementations, neighbors are updated by

the vertex being processed. These write operations are implemented with atomic

operations such as compare-and-swap (CAS) primitive. And finally, the pull-push

operation has both of the characteristics of pull and push. This implementation

iterates over neighbors and reduces their data with atomic operations.

3.4 Work Activation

The third dimension is to select whether to process all vertices at every iteration

or only process those vertices with updates. In terms of work activation, imple-

mentations are classified into two main types: topology-driven or data-driven.

Topology driven implementation pretends that all graph vertices are active,

thus processing each node in every iteration without considering whether some

nodes have updates or not. As expected, this causes more computation and in-

creased irregular memory accesses, thereby causing inefficiencies. This is more

critical especially for graphs which embodies large sparsity. Despite this draw-

back, topology driven implementations eradicate the worklist usage for activation.

On the other hand, the data-driven model keeps a list of active vertices which

are recently updated. Therefore, the algorithm visits the nodes and does the

computation according to whether they are on the list or not. This optimization

typically prevents unnecessary computations and memory accesses. Data-driven

approach is preferable for multicore programming in order to ameliorate the work

efficiency. However, the management of work list structure is challenging.

11

Chapter 4

Implementations of Selected

Graph Algorithms

We implemented 8 different versions of PR algorithm by considering 3 design

choices as explained: the order of computations, data access pattern, and work

activation. Synchronous techniques used in graph traversal are generally expected

to cause performance loss due to load imbalance between bariers [33] when com-

pared to their asychronous counterparts. Also, pull-push based methods are not

suitable for SSSP and BFS algorithms. For these reasons, we implement 4 dif-

ferent versions of SSSP and BFS by considering different combinations of data

access patterns and work activations. These applications are designed to be exe-

cuted asynchronously due to performance bahaviors. In this chapter, we describe

the details of these applications with different parameters.

4.1 Pagerank (PR)

PR is a widely adopted benchmark in many frameworks [7,8,10,15,16,34] since it

displays the properties of graph applications as mentioned in the previous chapter.

In addition, it captures the irregular memory access, work scheduling, and load

12

imbalance characteristics of many graph algorithms. Algorithm 4.1 gives the

details of base PR algorithm.

Algorithm 4.1 Topology-driven Pull-based Synchronous PR

Input: G = (V,E)
Output: scores

1: scores[:] = 1:0� �
2: for i until maxIter do
3: activeNum = 0
4: parfor v 2 V do
5: sum = 0
6: for w 2 inNeighbor(v) do
7: sum += scores[w]/outDegree(w)
8: end for
9: nextScores[v]=(1:0� �) + �*sum

10: if fabs(nextScores[v] - scores[v]) � ") then
11: activeNum++
12: end if
13: end parfor
14: swap(scores, nextScores)
15: if activeNum � 0 then
16: break
17: end if
18: end for
19: scores = scores / j V j

In terms of execution, PR can be performed both synchronously and asyn-

chronously. As shown in Equation 4.1, power method [2] can be employed in

order to calculate rank values in a synchronous manner. This method holds both

current and previous ranks of each vertex. In each iteration, a vertex calculates

its new rank by using ranks which are calculated in the previous iteration.

Prt+1[u] = ��
X

w2w!u

Prt[w]

Tw

+ (1� �) (4.1)

On the other hand, PR algorithm can be performed asynchronously by employ-

ing Gauss-Seidel method [35] as shown in Equation 4.2 In this case, each vertex

updates its rank by utilizing the most recent ranks calculated. For each vertex,

13

only the most up-to-date rank is stored and iterations are not separated by bar-

riers; therefore, iterations are not clearly defined in asynchronous applications.

In parallel implementations, PR algorithm implemented by using Gauss-Seidel

formulation should synchronize threads because one thread might try to write a

recently calculated rank for a vertex while a different thread might try to read

the rank of the same vertex.

Prt+1[u] = ��

 X
w2w!u

Prt[w]

Tw

+
X

v2v!u

Prt+1[v]

Tv

!
+ (1� �) (4.2)

In terms of data access patterns, PR applications can be implemented in three

different ways, namely pull, push, and pull-push. Pull-based PR can be imple-

mented both synchronously and asynchronously; however, push-based and pull-

push based versions should be implemented by Gauss-Seidel [35]. Synchronous

pull-based applications utilize two lists for keeping current and next ranks of each

vertex, and in each iteration, a vertex can only see the ranks of its in-neighbors

from previous iterations. Moreover, each vertex pulls the ranks of its incoming

neighbors and updates itself only once per step. Therefore, pull-based applica-

tions do not require synchronization since the elements of the list are updated

only once in an iteration. In contrast, asynchronous pull-based applications use

only one list in order to keep ranks of each vertex. For this reason, they need an

exclusive lock for writing and updating data since more than one write is issued

for some vertices at the same time.

From work activation perspective, PR applications can be implemented in both

styles such as topology-driven and data-driven. We combined these two work ac-

tivation schemes with all data-access patterns as mentioned before. Algorithms

4.3 and 4.4 illustrate how an active node accesses its neighbours in the push di-

rection and pull-push direction, respectively. As can be seen in Algorithm 4.4,

after an active node accesses its in-neighbors to gather their contributions, the

active node updates its out-neighbors’ rank immediately. Therefore, total work

done in pull-push based method, is augmented. Furthermore, using a worklist, we

14

track each active vertex by utilizing bit vector structures in data-driven applica-

tions. As an alternative, we also implemented a worklist based on a central queue

structure by using lock primitives. However, in our experiments, both worklist

structures exhibit similar performance. For this reason, we only report the results

for bit vector implementation.

15

Algorithm 4.2 Data-Driven Pull-based Asynchronous PR

Input: G = (V,E)
Output: ranks

1: aRanks[:] = 1:0� �
2: frontier[:] = true
3: next[:] = false
4: for i until maxIter do
5: activeNum = 0
6: parfor v 2 V do
7: if frontier[v] then
8: sum = 0
9: for w 2 inNeighbor(v) do

10: sum += aRanks[w]/outDegree(w)
11: end for
12: oldRank = aRanks[v]
13: newRank =(1:0� �) + �*sum
14: atomicExchange(aRanks, v, newRank)
15: if fabs(newRank - oldRank) � ") then
16: for w 2 outNeighbor(v) do
17: if !next[w] then
18: next[w] = true
19: end if
20: end for
21: activeNum++
22: end if
23: end if
24: end parfor
25: swap(frontier, next)
26: next[:] = false
27: if activeNum � 0 then
28: break
29: end if
30: end for
31: ranks = aRanks / j V j

16

Algorithm 4.3 Data-Driven Push-based Asynchronous PR

Input: G = (V,E)
Output: ranks

1: parfor v 2 V do
2: ranks[v] = 1:0� �
3: aResiduals[v] = 0:0
4: frontier[v] = true
5: next[v] = false
6: for w 2 inNeighbor(v) do
7: aResiduals[v] + = 1:0= outDegree(w)
8: end for
9: aResiduals[v] = (1:0� �) � ��aResiduals[v]

10: end parfor
11: for i until maxIter do
12: activeNum = 0
13: parfor v 2 V do
14: if frontier[v] then
15: ranks[v] += aResiduals[v]
16: delta = ��(aResiduals[v]/outDegree(v))
17: for w 2 outNeighbor(v) do
18: oldRes = aResiduals[w]
19: atomicExchange(aResiduals, w, oldRes + delta)
20: if fabs(oldRes + delta � "&& oldRes � ") then
21: activeNum++
22: if !next[w] then
23: next[w] = true
24: end if
25: end if
26: end for
27: aResiduals[v] = 0:0
28: end if
29: end parfor
30: swap(frontier, next)
31: next[:] = false
32: if activeNum � 0 then
33: break
34: end if
35: end for
36: ranks = ranks / j V j

17

Algorithm 4.4 Data-Driven Pull-Push-based Asynchronous PR

Input: G = (V,E)
Output: ranks

1: parfor v 2 V do
2: aRanks[v] = 1:0� �
3: aResiduals[v] = 0:0
4: frontier[v] = true, next[v] = false
5: for w 2 inNeighbor(v) do
6: aResiduals[v] + = 1:0= outDegree(w)
7: end for
8: aResiduals[v] = (1:0� �) � ��aResiduals[v]
9: end parfor

10: for i until maxIter do
11: activeNum = 0
12: parfor v 2 V do
13: if frontier[v] then
14: sum = 0
15: for w 2 inNeighbor(v) do
16: sum += aRanks[w]/outDegree(w)
17: end for
18: newRank = (1:0� � + ��)sum
19: atomicExchange(aRanks, v, newRank)
20: delta = ��(aResiduals[v]/outDegree(v))
21: for w 2 outNeighbor(v) do
22: oldRes = aResiduals[w]
23: atomicExchange(aResiduals, w, oldRes + delta)
24: if fabs(oldRes + delta � "&& oldRes � ") then
25: activeNum++
26: if !next[w] then
27: next[w] = true
28: end if
29: end if
30: end for
31: aResiduals[v] = 0:0
32: end if
33: end parfor
34: swap(frontier, next)
35: next[:] = false
36: if activeNum � 0 then
37: break
38: end if
39: end for
40: ranks = aRanks / j V j

18

4.2 Single-Source Shortest Path (SSSP)

In the single source shortest path (SSSP) problem, we try to find minimum cost

path from a single source node to all other nodes in a weighted directed graph.

A well-known sequential algorithm to solve the SSSP problem is Dijkstra's algo-

rithm [36]. A parallel algorithm, called delta-stepping [37, 38], divides Dijkstra's

algorithm into buckets which can be executed in parallel. The alternative parallel

algorithm for solving the SSSP problem is Bellman-Ford [39] which allows nega-

tive edge weights. Our SSSP implementations are adopted from this algorithm.

We implemented four different versions of SSSP algorithm by considering dif-

ferent data access patterns and work activation choices. Note that, SSSP is im-

plemented asychronously since their synchronous implementations are expected

to show poor perforamance as explained in literature [33, 38]. As shown in Al-

gorithm 4.5, in pull-based applications, an active node updates its distance by

pulling (reading) data from its incoming neighbors. The write operation is only

performed on the active node. However, in push-based applications, data flows

from the active node to its outgoing neighbors. Since the active node updates

its outgoing neighbors distances by pushing its distance value to its outgoing

neighbors, push-based applications generate more frequent updates.

We provide the pseudo code for both pull-based and push-based versions as

shown in Algorihtms 4.5 and 4.6, respectively. Both of them employ bit vectors

in order to keep track of active vertices for each iteration. Each algorithm iterates

until there is no change in the distance value of any node. As explained before,

vertex updates are performed asynchronously.

19

Algorithm 4.5 Data-Driven Pull-based SSSP

Input: G = (V,E), source, w
Output: dists

1: aDists[:] = +1
2: frontier[:], next[:] = false
3: dists[source] = 0
4: frontier[source] = true
5: for v 2 outNeighbor(source) do
6: frontier[v] = true
7: end for
8: for i until maxIter do
9: activeNum = 0

10: parfor u 2 V do
11: minDist = +1
12: for v 2 inNeighbor(u) do
13: if minDist > aDists[v] + w(v,u) then
14: minDist = aDists[v] + w(v,u)
15: end if
16: end for
17: if aDist[u] > minDist then
18: atomicExchange(aDist, u, minDist)
19: for v 2 outNeighbor(u) do
20: if !next[v] then
21: next[v] = true
22: end if
23: end for
24: activeNum++
25: end if
26: end parfor
27: swap(frontier, next)
28: next[:] = false
29: if activeNum � 0 then
30: break
31: end if
32: if activeNum � 0 then
33: break
34: end if
35: end for
36: dist = aDists

20

Algorithm 4.6 Data-Driven Push-based SSSP

Input: G = (V,E), source, w
Output: dists

1: aDists[:] = +1
2: frontier[:], next[:] = false
3: aDists[source] = 0
4: frontier[source] = true
5: for i until maxIter do
6: activeNum = 0
7: parfor u 2 V do
8: if frontier[u] then
9: for v 2 outNeighbor(u) do

10: if aDists[v] > aDists[u] + w(u,v) then
11: newDist = aDists[u] + w(u,v)
12: atomicExchange(aDists, v, newDist)
13: activeNum++
14: if !next[v] then
15: next[v] = true
16: end if
17: end if
18: end for
19: end if
20: end parfor
21: swap(frontier, next)
22: next[:] = false
23: if activeNum � 0 then
24: break
25: end if
26: end for
27: dist = aDists

21

4.3 Breadth-First Search(BFS)

As a well-known algorithm, in breadth-first search (BFS), the goal is to find

the breadth-first order traversal of the graph vertices. BFS is similar to SSSP

in which edge weights are set to be 1 instead of using weights from the input.

Similar to SSSP, our BFS implementations also follow the logic in Bellman-Ford

[39].

We have implemented four different versions of BFS by considering two differ-

ent design choices, namely, data access pattern and work activation. As shown

in Algorithm 4.7, pull-based version executes a reduction over incoming edges

and finds the minimum level of neighbors, then corresponding vertex level is up-

dated accordingly. On the other hand, Algorithm 4.8 illustrates a push-based

implementation where outgoing neighbors update their level by using atomic op-

erations. Different BFS implementations follow the same pattern as in SSSP,

except the fact that edge weight is always 1. Moreover, BFS applications are de-

signed to be executed asynchronously since recent studies show that asynchronous

implementations show better performance than their synchronous counterparts

[40].

22

Algorithm 4.7 Data-Driven Pull-based BFS

Input: G = (V,E), source
Output: levels

1: aLevels[:] = +1
2: frontier[:], next[:] = false
3: dists[source] = 0
4: frontier[source] = true
5: for v 2 outNeighbor(source) do
6: frontier[v] = true
7: end for
8: for i until maxIter do
9: activeNum = 0

10: parfor u 2 V do
11: minLevel = +1
12: for v 2 inNeighbor(u) do
13: if minLevel > aLevels[v] + 1 then
14: minLevel = aLevels[v] + 1
15: end if
16: end for
17: if aLevels[u] > minLevel then
18: atomicExchange(aLevels, u, minLevel)
19: for v 2 outNeighbor(u) do
20: if !next[v] then
21: next[v] = true
22: end if
23: end for
24: activeNum++
25: end if
26: end parfor
27: swap(frontier, next)
28: next[:] = false
29: if activeNum � 0 then
30: break
31: end if
32: if activeNum � 0 then
33: break
34: end if
35: end for
36: levels = aLevels

23

Algorithm 4.8 Data-Driven Push-based BFS

Input: G = (V,E), source
Output: aLevels

1: aLevels[:] = +1
2: frontier[:], next[:] = false
3: aLevels[source] = 0
4: frontier[source] = true
5: for i until maxIter do
6: activeNum = 0
7: parfor u 2 V do
8: if frontier[u] then
9: for v 2 outNeighbor(u) do

10: if aLevels[v] > aLevels[u] + 1 then
11: newLevel = aLevels[u] + 1
12: atomicExchange(aLevels, v, newLevel)
13: activeNum++
14: if !next[v] then
15: next[v] = true
16: end if
17: end if
18: end for
19: end if
20: end parfor
21: swap(frontier, next)
22: next[:] = false
23: if activeNum � 0 then
24: break
25: end if
26: end for
27: levels = aLevels

24

Chapter 5

Experiments

5.1 Experimental Setup

We conducted our experiments on a multi-socket server system with specifications

given in Table 5.1. All algorithms are implemented using C++ and OpenMP, and

the datasets are stored in Compressed Sparse Row (CSR) format [41]. For each

vertex, we store their in-neighbors and out-neighbors in separate sets in order to

improve locality. The runtime is the average results of 10 runs, and it includes

the time for allocation and initialization of all data structures for each algorithm

(except initial graph itself). We use Performance API (PAPI) [42] in order to

access hardware counters in the system, thereby observing the characteristics of

underlying architecture.

Table 5.1: System details for our experiments.

Component Specification

CPU
Intel Xeon E5-2643 @3.30GHz, 8 cores,
2 sockets, 4 cores/socket, 2 threads/core

Cache
Private 32 KB L1 cache, Private 256KB L2 caches
Shared 10MB L3 cache

Main Memory 264GB

25

We evaluate the implementations of all design alternatives using the datasets

in Table 5.2. Our testbed involves both small graphs as well as large graphs. For

our synthetic data sets, RMAT graph is generated with parameters (A,B,C) =

(0.45, 0.25, 0.15) by using Graph500 benchmarks [43]. Pay Level Domain is a

hyperlink graph obtained from the Common Crawl web corpora [44]. We select

Google Web Graph (wg), and soc-LiveJournal (lj) from the SNAP datasets [45].

All graphs are directed and duplicate edges are removed.

Table 5.2: Datasets used for evaluation.

Dataset Abv. #Vertices # Edges Degree Directed

Google Web Graph wg 916K 5.1M 8.1 Y

LiveJournal lj 4.8M 68.9M 6.5 Y

Pay Level Domain pld 33.6M 623.06M 14 Y

RMAT rmat25 42.9M 536.84M 15 Y

In this work, we implement 16 different versions of 3 algorithms by consider-

ing different design decisions. The detailed summary of design choices for each

application is found in Table 5.3.

Table 5.3: Summary of application test cases.

Algorithm Application # Activation # Access Execution

pr tp pull syn topology pull synchronous

pr, sssp, bfs tp pull asyn topology pull asynchronous

pr, sssp, bfs tp push topology push asynchronous

pr td pull push topology pull-push asynchronous

pr dd pull syn data-driven pull synchronous

pr, sssp, bfs dd pull asyn data-driven pull asynchronous

pr, sssp, bfs dd push data-driven push asynchronous

pr dd pull push data-driven pull-push asynchronous

26

5.2 Performance Results

This section presents performance analysis of the implementations in terms of

execution time and scalability. Moreover, we report speedups of the algorithms

relative to the best serial execution in each dataset.

5.2.1 Runtime and Scalability

5.2.1.1 PR

Figures 5.1-4 show the performance of different implementations of PR in terms of

execution time with respect to the number of threads. These figures illustrate that

among all implementations, topology driven pull-push-based methods have poor

performance when compared to both pull-based and push-based methods. This is

expected as pull-push-based methods require reading operations on in-neighbors

as well as write operations on out-neighbors. However, in pull-based methods,

a vertex performs only one update operation on itself and performs many read

operations on its incoming edges. Likewise, push-based methods perform only

write operations on itself and its out-neighbors instead of requiring both read

and write operations on its neighbors as in pull-push-based methods.

Since pull based methods require only one write and many read operations,

they are expected to be more cache friendly. Nevertheless, as shown in Figures

5.1-4, topology driven pull-based methods give the second-worst performance

among all implementation styles. Although push-based methods require more

frequent write operations, data-driven push-based methods are the fastest among

all implementation variants for all datasets. One reason for such behavior is

that push-based methods accelerate the rate of the dissemination of information,

hence they can amortize the overhead required for frequent writes. However,

this is not the case for topology driven push-based methods. Figures 5.1 and

5.2 show that quick frequent updates on ranks do not improve the performance

of topology driven push-based methods sufficiently because they need to iterate

27

over all the nodes without checking their activation status. As a matter of fact,

these frequent updates increase the number of nodes activated in topology based

implementations of other algorithms such as SSSP and BFS.

Our observations also show that the performance of data-driven methods is

better than the performance of topology driven ones. This result is also consistent

with the observations in [46]. Data-driven methods employ a worklist in order

to keep active nodes whose ranks change more from a defined threshold, hence

they can filter out many edges instead of processing them unnecessarily. As can

be seen in Figures 5.1-4, the effectiveness of employing a frontier for tracking

active nodes can be clearly seen by looking at the performance improvement of

the pull-push based method. When utilizing an active list, the run time of the

algorithms decreases drastically compared to topology driven ones as illustrated

in Figure 5.3.

Next, we consider the choice of executing the applications with asynchronous

execution model. The results demonstrate that if we execute a method asyn-

chronously, its performance improves. Although asynchronous executions require

atomic operations, they are able to mitigate synchronization overheads by accel-

erating convergence rate of the algorithm. For instance, pull-based asynchronous

applications perform better compared to their synchronous counterparts on large

graphs as shown in Figures 5.3 and 5.4. However, on small graphs, Figures 5.1

and 5.2 show that only their topology-driven pull-based versions outperform their

synchronous versions. When applications use a worklist for tracking active nodes,

synchronous versions deliver higher performance than their asynchronous coun-

terparts on small graphs. One possible drawback of synchronous execution is due

to the slow convergence rate. In each iteration, a vertex can only see the update

from previous iteration, hence the information is disseminated more slowly when

compared to the methods executed in Gauss-Seidel way. In asynchronous models,

the order of updates is not separated with barriers and only one global list is used

for keeping rank values. As a result, each vertex can detect the most up-to-date

version of data which increases the convergence rate of the algorithms.

28

Figure 5.1: Execution time of PR with wg dataset.

Figure 5.2: Execution time of PR with lj dataset.

29

Figure 5.3: Execution time of PR with pld dataset.

Figure 5.4: Execution time of PR with rmat dataset.

30

Scalability is used as another performance metric which measures a parallel

system’s capacity to increase speedup with respect to the number of threads.

For this purpose, the scalability of different implementations of PR is given in

Figures 5.5-8. In these figures, Y-axis indicates self-relative scalability, and X-

axis represents the number of threads. For all datasets, asynchronous data-driven

pull-based methods perform the poorest scalability although other alternatives of

pull-based methods scale very well. Both synchronous and asynchronous variants

of topology driven pull-based methods exhibit good scalability. However, for

data-driven pull-based methods, asynchronous versions have much less scalability

than the synchronous ones as shown in Figures 5.5-8. This indicates that mode of

execution becomes significant when the algorithm is implemented in a data-driven

way.

As can be seen in Figures 5.7 and 5.8, for large graphs, all classes of algorithms

except the asynchronous data-driven pull-based ones are highly scalable. Interest-

ingly, although the topology-driven pull-push-based methods display the poorest

performance, they show the best scalability. Moreover, data-driven push-based

methods show slightly less scalability for pld graph. For small graphs, we observe

a different pattern in scalability when compared to the large graphs. Push-based

methods show the second-poorest scalability. One possible reason is the fact that

push-based methods require frequent write operations on out-neighbors, thereby

limiting the scalability. On the other hand, the scalability of pull-push based

methods are significantly high, especially for large graphs as shown in Figures 5.7

and 5.8.

31

Figure 5.5: Scalability of PR with wg dataset.

Figure 5.6: Scalability of PR with lj dataset.

32

Figure 5.7: Scalability of PR with pld dataset.

Figure 5.8: Scalability of PR with rmat dataset.

33

5.2.1.2 SSSP

Figures 5.9-10 and 5.11-12 indicate execution time and scalability of different

imlementations of SSSP algorithm. Among all variants of SSSP, topology-driven

based methods show less performance than data-driven methods as shown in Fig-

ures 5.9 and 5.10. By contrast, the implementations which employ topology-based

activation scheme are highly scalable. We observe that data-driven implementa-

tions are also scalable but their scalability is low compared to the topology-driven

alternatives. Although data-driven push-based methods are faster than topology-

driven pull based methods, both methods perform similar scalability.

For different data access patterns, work activation plays a significant role in

the performance and scalability of the algorithms. For push-methods, activation

scheme has a huge impact on both performance and scalability. If nodes are

activated according to the structure of a graph, then the algorithm shows less

performance but high scalability. In contrast, if nodes are activated by utilizing

a frontier, the algorithm has better performance but it shows relatively low scal-

ability. This observation is valid for all datasets except rmat graph as shown in

Figure 5.12. All variants of SSSP algorithm demonstrates similar scalability with

respect to one another on rmat graph.

34

Figure 5.9: Execution time of SSSP with pld dataset.

Figure 5.10: Execution time of SSSP with rmat dataset.

35

Figure 5.11: Scalability of SSSP with pld dataset.

Figure 5.12: Scalability of SSSP with rmat dataset.

36

5.2.1.3 BFS

BFS implementations exhibit similar performance when compared to SSSP. For

both classes, data-driven methods are faster than topology-driven methods, and

push-based alternatives outperform pull-based alternatives as illustrated in Fig-

ures 5.13 and 5.14. Moreover, Figures 5.15 and 5.16 show that scalability of

data-driven methods is lower than the scalability of topology-driven ones. The

increase in the number of threads improves the performance of all algorithms.

One interesting observation which can be seen from Figure 5.16 is that the effect

of data access patterns such as pull vs. push on scalability of the algorithms on

rmat graph is negligible.

37

Figure 5.13: Execution time of BFS with pld dataset.

Figure 5.14: Execution time of BFS with rmat dataset.

38

