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ABSTRACT

PRIVACY-PRESERVING DATA SHARING AND
UTILIZATION BETWEEN ENTITIES

Didem Demirağ

M.S. in Computer Engineering

Advisor: Erman Ayday

July 2017

In this thesis, we aim to enable privacy-preserving data sharing between entities

and propose two systems for this purpose: (i) a verifiable computation scheme

that enables privacy-preserving similarity computation in the malicious setting

and (ii) a privacy-preserving link prediction scheme in the semi-honest setting.

Both of these schemes preserve the privacy of the involving parties, while per-

forming some tasks to improve the service quality. In verifiable computation, we

propose a centralized system, which involves a client and multiple servers. We

specifically focus on the case, in which we want to compute the similarity of a

patient’s data across several hospitals. Client, who is the hospital that owns the

patient data, sends the query to multiple servers, which are different hospitals.

Client wants to find similar patients in these hospitals in order to learn about the

treatment techniques applied to those patients. In our link prediction scheme,

we have two social networks with common users in both of them. We choose two

nodes to perform link prediction between them. We perform link prediction in a

privacy-preserving way so that neither of the networks learn the structure of the

other network. We apply different metrics to define the similarity of the nodes.

While doing this, we utilize privacy-preserving integer comparison.

Keywords: Verifiable computation, link prediction, data privacy, cryptography,

homomorphic encryption, security.
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ÖZET

KURUMLARARASI GİZLİLİĞİ KORUYAN VERİ
PAYLAŞIMI

Didem Demirağ

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Erman Ayday

Temmuz 2017

Bu tezde amacımız, gizliliği koruyan kurumlararası veri paylaşımını gerçekleştirmektir.

Bu amaçla iki farklı sistem önerilmiştir: (i) kötü niyetli modelde gizliliği koruyan

benzerlik testi yapmayı sağlayacak doğrulanabilir hesaplamaya dayanan bir sis-

tem ve (ii) yarı güvenilir modelde bağlantı tahmini yapan bir sistem. Önerilen bu

sistemler, servis kalitesini arttrmak için gerekli görevleri yaparken, sistemde yer

alan tarafların gizliliğini korumayı amaçlar. Doğrulanabilir hesaplamaya dayanan

sistemimizde, bir istemci ve birden fazla sunucunun olduğu merkezi bir sistem

öneriyoruz. Bu çalışmada, farklı hastanelerde bulunan hastaların benzerliklerinin

hesaplandığı durumu ele alıyoruz. Hasta verisinin sahibi olan istemci farklı has-

tanelerde bulunan birden fazla sunucuya istek gönderir. Istemcinin amacı, bu

hastanelerdeki benzer hastaları bulmak ve onlara uygulanan tedavi yöntemlerini

öğrenmektir. Bağlantı tahminine dayanan sistemimizde ise ortak kullanıcılara

sahip olan iki sosyal ağ bulunmaktadır. Aralarında bağlantı tahmini yapmak için

iki kullanıcı seçilir. Gizliliği koruyan bir şekilde bağlantı tahmini gerçekleştirilir.

Böylece sosyal ağlardan hiçbiri karşı tarafın sosyal ağ yapısını öğrenmez. Farklı

metrikler hesaplanarak kullanıcıların benzerliği belirlenirken gizliliği koruyan sayı

karşılaştırması kullanılmıştır.

Anahtar sözcükler : Doğrulanabilir hesaplama, bağlantı tahmini, veri gizliliği,

kriptografi, şifreleme, homomorfik şifreleme, güvenlik.
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Dr. Ali Aydın Selçuk for kindly accepting to be in my committee. I owe them

gratitude for their valuable suggestions and insightful comments.

I would like to express my gratitude to Berrin Keyik Çelik whose endless
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Chapter 1

Introduction

In our research, our main concern is maintaining privacy when sharing, and

analyzing personal information. Service providers (SP) can analyze their own

databases without any problem. However, when they want to analyze other simi-

lar SPs to provide better service, concerns regarding privacy arise. Some of them

are:

• The SP which makes the query should only learn the result of this autho-

rized query and nothing more.

• The SP which makes the query should make sure that the result of the

query is computed correctly.

• The SP which receives query wants to be sure that its database is not visible

to the SP which makes the query.

To this end, this thesis introduces two systems that enable privacy-preserving

data sharing between entities: a verifiable computation scheme that performs

privacy-preserving similarity calculation in the malicious setting and privacy-

preserving link prediction in the semi-honest setting. Both systems enable in-

volving parties to maintain their privacy, while performing the required tasks to

improve their service quality.
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Our verifiable computation scheme addresses the fact that the cloud computing

service providers want to analyze personal and sensitive data like patient records,

banking information or location data, in order to provide better service to their

clients. Hence, these applications need to adopt a privacy-preserving approach to

ensure the privacy of the individuals’ data is not harmed. In our verifiable com-

putation scheme, we consider the setting, where we perform privacy-preserving

similarity check to determine patient similarity across different hospitals. Our

aim is to find similar patients that received treatment for a similar disease in

different hospitals. In order to increase the effectiveness of the treatment, data

from similar patients across other hospitals can be utilized. However, concerns

regarding privacy arise, as we need to keep the patient information in all of the

hospitals private.

In semi-honest setting, the parties follow the protocol, but they may attempt

to breach the privacy of the involving parties to learn more information that

belong to them; whereas in the malicious setting the parties can deviate from

the protocol in an arbitrary way to gain advantage. In the semi-honest setting,

homomorphic encryption would be enough to maintain the privacy of the sensi-

tive information. However, in the malicious setting, we need to combine several

concepts like verifiable computation, and secret sharing mechanisms in order to

maintain the privacy. Verifiable computation protocols help a client with limited

computational capacity to outsource a computation to another party. Because of

the concerns about privacy, the server needs to provide a proof that it made the

correct calculation and the client should be able to verify this easily. Verification

should take less effort than actually doing the computation.

Considering these privacy concerns, we also address the link prediction prob-

lem in online social networks and we propose privacy-preserving link prediction

between two social network graphs. With the increase in the amount of research

done about large networks, computational analysis of social networks is needed.

As more social networks emerge, the popularity of these sites increases and more

people start to have accounts in them. For instance, millions of users have ac-

counts in services like Facebook or Twitter and huge amount of data accumulate

each day, as users share content in their social network accounts. Therefore, the
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need to analyse those networks arise and as a result graph mining has become a

significant area as a branch of data mining.

Graph mining is used to analyze graph-structured data such as social networks.

Graphs are structures that consist of nodes and edges between the nodes. A social

network graph consists of nodes which represent entities and edges that define

the relationships between the nodes. For instance, the social network graph for

Twitter consists of nodes corresponding to users with their attributes and edges

corresponding to the follower relationship between the nodes. Social networks

are dynamic and go under change frequently. Their dynamic structure should be

considered, while doing research on social network graphs.

Social Network Analysis (SNA) is the area of study that analyzes the social

structures, social positions, and the roles. SNA is applied in the area of graph

mining. There are different social network analysis methods like centrality anal-

ysis, community detection, or information diffusion. Another significant analysis

done on social network graphs is link prediction. Link prediction defines the im-

portant linkages between the nodes. By utilizing the analysis of these linkages, we

can predict the future connections or determine missing links between the nodes.

During this analysis concerns about privacy arise, since social networks contain

personal and sensitive information that should be held secret. Threats against

privacy can be categorized into three groups [1]: identity disclosure, link disclo-

sure, and attribute disclosure. All these threats should be considered in a social

network analysis algorithm. Considering these threats, we aim to perform link

prediction without disclosing any information from both graphs. We find inter-

section and union between two neighbor sets and we use them in the calculation

of different metrics for link prediction.

Hence, we examine the link prediction problem, while preserving privacy. Our

aim is to develop algorithms for link prediction without disclosing any data from

either graph. We propose schemes to compute the common neighbors of two

nodes in order to predict whether there will be link between two nodes.

3



The thesis is organised as follows: In Chapter 2, we analyze the existing liter-

ature on the both verifiable computation and link prediction. In Chapter 3, we

define the basic concepts that are used in our proposed schemes. In Chapter 4,

the privacy-preserving similarity computation in malicious setting is explained.

While we propose several solution to this problem, we give the details for the

centralized solution by also providing the evaluation results. In Chapter 5, the

proposed solution for privacy preserving link prediction is presented. While we

discuss different use cases, we propose protocols for different metrics. In Chap-

ter 6, we present our concluding remarks.
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Chapter 2

Literature Survey

2.1 Techniques for verifiable computation

2.1.1 Privacy-preserving data analysis

Lindell and Pinkas investigated secure multi-party computation and discussed its

relation with privacy-preserving data mining [2]. Rivest et al. proposed privacy

homomorphism to make calculations on encrypted data [3]. They assumed that

the encrypted data and the computation done on the data is chosen from an

algebraic system. However, in this paper a proof about the correctness of the cal-

culation, like in verifiable computation protocol, is not provided. In our proposed

work, we make a computation on encrypted data like in this paper, but in addition

to that, we also provide a proof that shows the computation is done correctly to

the client. Gennaro and Wichs, proposed a system that anyone can do arbitrary

calculations on authenticated data using fully homomorphic message authenti-

cators [4]. They produce tags that authenticate the result of the computation.

The tag can be generated even though the secret key is not known. However,

techniques based on fully homomorphic encryption is not practical and there does

not exist any practical application. Chung et al. offered a more improved scheme

for delegating computation using fully homomorphic encryption [5] following the
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work of Gennaro et al. De Cristofaro et al. discussed the problem of privacy-

preserving sharing of sensitive information [6]. Proposed techniques serve as a

privacy shield and it prevents both sides to reveal more than the minimum in-

formation required. Private set intersection is used in this solution. However the

security proofs of the proposed solutions are done in the semi-honest setting. We

propose a solution for malicious setting, where the client and the server don’t

trust each other about the results of the computations they make. Hence, they

need to produce proofs for their computations and these proofs are verified by

the other party.

Freedman et al. worked on the problem of determining the intersection of two

private data sets [7]. They proposed a scheme based on homomorphic encryption

and balanced hash under both semi-honest and malicious settings. However, they

do not focus on the validity of the query and the inferences that can be made from

the query’s result are not considered. Moreover, this technique is limited to set

intersection. Lastly, Hazay and Toft proposed a protocol for secure multi-party

pattern matching [8]. Proposed scheme is based on ElGamal encryption and its

security is proven under standard DDH (Decisional Diffie-Hellman) assumption.

Full simulation is done under the presence of malicious adversaries. However, this

work also has some similar disadvantages with the previous work.

2.1.2 One-sided verifiable computation techniques

Some works offered protocols to delegate computation using verifiable computa-

tion. Fiore et al worked on efficient and verifiable delegation of computation [9].

In this proposed solution, client can hold his encrypted data in the server and

run statistical queries on his data. He receives the results in encrypted form and

he can verify the correctness of the results. Gennaro et al. proposed a protocol

for client to delegate his computation using garbled circuits [10]. Benabbas et

al. worked on the problem of doing computation on data that is stored on an

untrusted server [11]. Backes et al. discussed the setting that the client stores

big amount of data in an untrusted server and asks the server to do computation
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on his data [12]. Main contribution of this work is homomorphic MAC. Parno

et al. proposed a system called Pinocchio [13]. In this system, client creates a

public key that describes his computation. Worker evaluates a computation done

on input data and uses the evaluation key to produce proof of correctness. Shoen-

makers et. al. proposed a system called Trinocchio [14]. In this work, Pinoochio’s

verifiable computation scheme is improved by providing input privacy. Costello

et al. proposed a system called Geppetto [15]. Geppetto aims to reduce prover

overhead and increase prover flexibility. Lastly, Fournet et al. created a query

language called ZQL to express simple computations done on private data [16].

In this system, the party that has the private personal information can do the

computation on behalf of the other party who asks for that computation. Then,

he will provide a proof, that shows correct data is used during the computation,

to the other party. This can be done using zero-knowledge proofs. Compared to

these schemes, we work on verifiable computation techniques where two or more

parties, each keeping private data, are involved.

2.1.3 Two or more sided verifiable computation tech-

niques

Baron et al. worked on the problem of wildcard and substring matching in mali-

cious setting [17]. Server holds a text of length n and the client wants to match

a pattern of length m with server’s text. However, in this setting the practicality

of the protocol will be low if client wants to send queries to multiple servers.

Moreover, in our proposed work, we assume that both sides can be malicious.

Gordon et al. worked on multi-client verifiable computation and aimed to have a

stronger security [18]. In this work, N clients make a computation on common

data. However, the security of the system is not defined for the setting where

both of the parties act maliciously. In our proposed work, we assume that both

client and server can be malicious. Therefore, both server and the client should

provide a proof that they made the correct computations.
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2.2 Techniques for link prediction

Leicht et al. defined a measure for the similarity of vertices in networks and

they base their work on the fact that two nodes are similar if their immediate

neighbors are also similar themselves [19]. They formulate the similarity by

using an adjacency matrix. In our work, we utilize different similarity measures

to perform link prediction between two graphs in a privacy-preserving manner.

In [20], a method based on local random walk with low complexity is proposed

for missing link prediction problem. A random walk is a Markov chain that

determines the sequence of nodes visited by a random walker. They propose

two similarity indices: Local Random Walk (LRW) index and the Superposed

Random Walk (SRW) index.

Yu et al. define Gaussian Processes (GPs) for directed, undirected, and bi-

partite networks [21]. The proposed framework indicates a connection between

link prediction and transfer learning. Their algorithm can scale linearly to the

number of edges. Their model can be applied to link prediction problem.

In [22], an effective general link formation prediction framework, Mli (Multi-

network Link Identifier) is presented. This framework enhances the link predic-

tion results in partially aligned networks. They solution utilizes the meta-path

concept.

The study presented in [23], proposes a definition for link recommendation

across heterogenous networks. In addition to supervised methods, they also use

unsupervised methods like Common Neighbors, Adamic/Adar and Jaccard Index.

They propose ranking factor graph model.

In [24], link prediction in coupled networks is studied and CoupledLP is pro-

posed. They utilize the structure information of source network and the interac-

tions between source and target networks. They want to predict missing link in

the target network by using the structure information in the source.

8



Tang et al. propose a framework called TranFG to classify the social rela-

tionships by utilizing the information obtained from heterogenous networks [25].

Similar to the aforementioned work, they also try to predict the relationships in

target network by observing the source network. While we are also aiming to

perform link prediction, we also want to preserve the privacy of the involving

parties without disclosing any information to either graph. When link prediction

is applied in one network, there aren’t any concerns about privacy, as there won’t

be the problem of disclosing any information to another party. However, when

we want to perform link prediction in two different social networks, we need to

address these concerns, as we don’t want either party to learn the structure of

the other party.
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Chapter 3

Background

3.1 Verifiable computation

Verifiable computation protocols enable clients with limited computational ca-

pacity to outsource the computation of a function F on various inputs to one or

more servers [26]. The server needs to provide a proof that it made the correct

calculation and the client should be able to verify this easily. Verification should

take less effort than actually doing the computation. Verifiable computation has

several application areas. One of them can be the case of medical testing. For

instance, Alice having her sequenced genome, which is her personal data, wants

to perform a genetic testing. Hence, she provides her genome to the company

that conducts the test. However, she also wants to make sure that the test results

provided by the company are actually correct. In order to achieve this, company

provides a proof along with the test result. Alice now can make sure that she

received the correct result by verifying the proof.

Consider the example, where Alice sends her genome to a company to perform

some tests. She has to be sure that the results she received is free of errors,

otherwise the accidental errors can lead to some devastating results like wrong

treatment or detrimental psychological effects. Also, the cloud services may have

10



the strong financial incentive to return incorrect answers, as producing them may

require less computation power and the client may not have the chance to detect

the error. For instance, in the case of Alice, she will not be able to understand

the results regarding the analysis of her genome.

In order to address the aforementioned concerns, verifiable computation is

utilized. A verifiable computation scheme consists of four algorithms as VC =

(KeyGen,ProbGen,Compute,Verify) [26]:

1. “KeyGen”(f, λ)→ (PK, SK) : Randomized key generation algorithm pro-

duces a public key that encodes the function f depending on the security

parameter λ and it is used by worker to calculate f . Client keeps the

matching secret key as a secret.

2. “ProbGen”SK(x) → (σx, τx) : Problem generation algorithm encodes the

function input as public value σx using secret key SK and this value is

given to the worker. Secret value τx is kept secret by the client.

3. “Compute”PK(σx) → σy : Worker computes encoded version of function’s

output value y = f(x) using client’s public key and the encoded input.

4. “V erify”SK(τx, σy) → y : Verification algorithm converts the workers en-

coded output into the output of the function, y = f(x), using secret key

SK or the secret decoding value τx or outputs to show that σy does not

represent a valid output of f on x.

3.2 Secret sharing

In secret sharing [27], data D is divided into n pieces and it is distributed among

the parties in the protocol. Each party has a share of the secret and they have

to gather the shares together to reconstruct the secret. The secret can be recon-

structed from any k pieces. However, the data cannot be recovered even with the

complete knowledge of k-1 shares.
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3.3 Homomorphic encryption

Homomorphic encryption enables computation to be performed on encrypted

data. The research done about computation on encrypted data mainly aimed to

generalize the type of computations that can be done on encrypted data. Fully

Homomorphic Encryption (FHE), which aimed this purpose, gained more atten-

tion with Gentry’s work [28]. FHE proposes to support any kind of function that

can be performed on encrypted data. Even though FHE proved to be theoreti-

cally possible, it has some shortcomings due to lacking efficiency [29]. In order to

address the problem of efficiency, partially homomorphic encryption schemes are

emerged. These schemes only allow certain types of operations to be performed on

encrypted data. We use two partially homomorphic encryption schemes, namely

Modified Paillier Cryptosystem and DGK Cryptosystem.

3.3.1 Modified Paillier cryptosystem

The Paillier cryptosystem [30] is a public key cryptosystem that supports some

homomorphic operations. The public key is represented as (n, g, h = gx). The

strong secret key is the factorization of n = zy (z, y are safe primes), the weak

secret key is x ε [1, n2/2] and g of the order (z − 1)(y − 1)/2. By selecting a

random a ε Z∗n2 , g can be computed as g = −a2n. Encryption, decryption and

proxy re-encryption are explained as follows, where [m] denotes the ciphertext

corresponding to message m.

• Encryption: To encrypt a message m ε Zn, we first select a random

r ε [1, n/4] and generate the ciphertext pair (C1, C2) as below:

C1 = gr mod n2 and C2 = hr(1 +mn) mod n2

• Decryption: The message m can be recovered from [m], which denotes the

encryption of m, as follows:
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m = ∆(C2/C
x
1 ) where ∆(u) = (u−1) mod n2

n
, for all u ε{u < n2 | u =

1 mod u}

• Proxy re-encryption: Assume we randomly split the secret key in two shares

x1 and x2, such that x = x1+x2. The modified Paillier cryptosystem enables

an encrypted message (C1, C2) to be partially decrypted to a ciphertext pair

(C̃1, C̃2) using x1 as below:

C̃1 = C1 and C̃2 = C2/C
x1
1 mod n2. Then, (C̃1, C̃2) can be decrypted

using x2 with the decryption function to recover the original message.

3.3.2 DGK cryptosystem

The DGK cryptosystem [31] is optimized for the secure comparison of integers.

The key generation has three parameters k, t and L where k > t > L. The

parameter k represents the number of bits of the RSA modulus n, t is the size of

two small primes vp and vq, and L is the message space size in bits. Assume that

p and q are two distinct primes of equal bit length, such that p− 1 is divisible by

vp and q − 1 is divisible by vq. Then, the public key is represented as (n, g, h, u),

where u is a L-bit prime. g ε Z∗n with order uvpvq, and h is an integer with order

vpvq. Moreover, the private key is represented as (p, q, vp, vq).

3.3.3 Homomorphic properties

Both modified Paillier and DGK cryptosystems support some computations in

ciphertext domain. Both cryptosystems have the following properties:

• The product of two ciphertexts is equal to the encryption of the sum of

their corresponding plaintexts.

• A ciphertext raised to a constant number is equal to the encryption of the

product of the corresponding plaintext and the constant.
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Chapter 4

Privacy-Preserving Similarity

Computation in Malicious

Setting

In our setting, we aim to compute the similarity of a patient’s data across several

hospitals. Client is the hospital that owns the patient data about whom it will

send the query to multiple servers. The servers from different hospitals contain

data for different patients. Client’s aim is to find similar patients in these hospi-

tals so that it can learn about the similar treatment techniques applied to those

patients. However, the client wants to trust the servers that they do this com-

putation correctly and send the relevant result to the client’s query. Thus, we

utilize verifiable computation protocols among the client and the servers. After

the client runs a query in multiple servers, it also needs to verify the proofs of

those computations. If the client asks the query one by one to each server and

then collects all the proofs, it will be inefficient for the client to verify all the

proofs. In order to overcome this problem, we propose two different kinds of

solutions. In distributed solution, after the first server receives the query from

the client, it passes the result and the proof to the next server, until the result

reaches the client. In the centralized solution, there is a proxy to collect all the

results and the proofs to do the verification and pass the result to the client.
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4.1 Centralized Solution

In this setting, we have a proxy to collect and verify all of the proofs (Figure 4.1).

In this way, client will only verify one proof like in the distributed setting. Client

sends his query to the proxy and then the proxy sends the query to these servers.

Proxy collects the results and the corresponding proofs from the servers. It verifies

all of the proofs and then creates one proof based on all of the data it received

from the servers. Proxy verifies all of the results it received from the servers and

generates only one proof corresponding to the results. Proxy sends the results

and the proof to the client. As a result, the client has all the results from the

servers and it will verify only one proof. Here, we also do not trust the proxy.

That is why, the client checks proxy’s proof created on the overall result.

In this section, single-server case is explained. We define a protocol between a

server and a client. However, our scheme can easily be extended to multi-server

setting. In the multi-server setting, the proxy will collect the results gathered from

the servers. It means that the proxy will be responsible for the interaction with

all of the servers. Proxy receives the matrix from the client and communicates

with all of the servers for the results.

Client

.

.

.

Input x

Cloud Services

Output n, Proof n

Output f(x) and 
its proof

P
R
O
X
Y

Input x

Output 1, Proof 1

Input x

Figure 4.1: Centralized solution

Both client and server has medical data for patients. Client will make one
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query about a patient in his database. However, on the server side calculation for

all of the patients should be done using data that is sent by the client. Server has

more data than the client, as server contains data for different patients. Client

has only one record and server has m records. We can keep server’s data in mxn

matrix. Each row will correspond to a vector that is composed of binary numbers

as follows:


a11 a12 a13 . . . a1n

b21 b22 b23 . . . b2n

...
...

...
. . .

...

zm1 zm2 zm3 . . . zmn


Client has a vector of size 1xn, which is shown as follows:[

x11 x12 x13 . . . x1n

]
However, the client also need to have the same size of the matrix at the server

side, in order to perform the computation easily. That way, we can perform the

operation row by row. Hence, the client will also keep his data in matrix. Matrix

will again have the size of mxn and for each entry, the client will put the same

data to match the size of the server’s matrix as follows:
x11 x12 x13 . . . x1n

x21 x22 x23 . . . x2n

...
...

...
. . .

...

xm1 xm2 xm3 . . . xmn


where x11 = x21 = ..... = xm1, x12 = x22 = ..... = xm2 etc. Keeping client and

server data in matrices enhances the step where we create signatures to prove the

data is divided correctly and actually belongs to a certain party. Rather than

dividing and signing each data separately, we can divide the matrix and create a

signature over parts of the matrix.

Secret sharing is used to exchange the data. Client and server split their data

into two parts. They send each other only one part of the data. So, both client
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x = x1 ⊕ x2

Client Server a = a1 ⊕ a2

b = b1  ⊕b2

c =  c1 ⊕ c2

Proxy

Figure 4.2: Secret sharing stage

and the server cannot recover the whole data that they received from the other

party. For instance, the data at the server side can be divided as follows:
a11 a12 . . . a1k

b21 b22 . . . b2k

...
...

. . .
...

zm1 zm2 . . . zmk



and


a1(k+1) a1(k+2) . . . a1n

b2(k+1) b2(k+2) . . . b2n

...
...

. . .
...

zm(k+1) zm(k+2) . . . zmn


where k is a number between 1 and n and chosen randomly. We also divide

the client’s matrix a similar way.

Moreover, we also assume that both parts of the data at each side are signed by

an authority. It means that both parties use the data that they actually possess
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and both parts belong to the whole data. As they are signed by an authority, we

can easily verify them. For instance, let’s consider the case where the binary data

kept in the matrices correspond to sequenced DNA. In this case, the authority is

the institution that sequences the DNA and signs it.

Client and server makes the computation on their sides and send the results

to proxy. Proxy makes the rest of the computation with the partial results it

received from both parties.

x = x1 ⊕ x2

Client Server a = a1 ⊕ a2

b = b1 ⊕b2

c =  c1 ⊕ c2

Proxy

Computes:
y = a1⊕ x2

Computes:
z = x1 ⊕ a2

Computes:
t = a1 ⊕ x2 ⊕ x1 ⊕ a2

Figure 4.3: Proxy calculation

The protocol is executed as follows and the steps are also shown in Figure 4.4:

(1). Client and the server divide their data in two parts in such a way that no

one can infer the whole data by only looking at the divided data.

(2). Client proves to server that he divided the data correctly and server proves

to client that he divided the data correctly, by verifying the signatures over

the parts of their data. The signature is applied over the ID of the patient

together with the information about which part of the data is used.

(3). Client and server send each other one part of the matrix they divided.

For simplicity, let’s consider only one data row with only two elements: In

Figure 4.2, client sends x1 and server sends a1.
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(4). Client computes y = a1 ⊕ x2 and server computes z = x1 ⊕ a2, where ⊕
is the XOR operation. These computations will contribute to the overall

result of the XOR operation on these patients data to determine similarity.

As data on both sides are represented in binary format, performing XOR

entry by entry will yield to the result of the similarity.

(5). Client proves to server that he did the calculation correctly and server

creates the same proof.

(6). Client and server send the results of the computations to the proxy.

(7). Proxy checks the results that it received from the server and the client.

It also checks whether client and server used the correct data to do the

computation. If it is correct, proxy computes y⊕z. Hence, it computes the

overall result: a1 ⊕ x2 ⊕ x1 ⊕ a2 (Figure 4.3). After calculating the overall

result, proxy creates a proof of it.

(8). Proxy sends the result and the proof of its computation back to the client.

The aforementioned steps show the calculation for data with only two entries.

When we work with matrices on both sides, we need to perform one more step at

the proxy. Proxy uses the results he got from client and server in the final XOR

operation and obtains a matrix that represents the overall results. However, he

cannot send this matrix directly to the client, as client can reconstruct server’s

input from the result of the XOR operation and this would defeat our purpose

of using secret sharing and introducing proxy to our system. Hence, in order to

prevent this situation the proxy sums the entries in all of the rows and returns

this vector back to the client. The vector has the following structure, where the

entries s1 to sm correspond to the sum of each row:
s1

s2

...

sm


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The client can determine a similarity threshold and determine which rows are

higher than the threshold.

i. Divide x into x1  and x2

ii. Verifies the signature from the 
server

iv. Verifies the proof from the server

iii. Computes y = a1 x2

i. Divide a into a1  and a2

ii. Verifies the signature from the 
client

iv. Verifies the proof from the client

iii. Computes z = a2 x1

Signature that x = x1  and x2

Signature that a = a1  and a2

Client Server

vi. Computes result: a1  x2  a2    x1

v. Checks proofs of y and z

x1

a1

y, proof

z, proof

y, proof z, proof

ProxyResult, proof

Figure 4.4: Overview of the protocol

4.2 Verifiable computation scheme

QAPs (Quadratic Arithmetic Programming) are used to define arithmetic oper-

ations. In order to use the QAPs utilized in Pinocchio’s protocol, we can express

XOR operation in terms of an arithmetic function:

a1 ⊕ a2 = a1(1− a2) + a2(1− a1) (4.1)

Verifiable Computation from strong QAPs [13] is defined as follows:

(1). (EKF , V KF )← KeyGen(F, 1λ): F is a function with N input/output val-

ues from F,which is the field of discrete logarithms of generator g of the

group G. After converting F to an arithmetic circuit C, the corresponding

QAP Q is created. Q with size m and degree d is defined as follows:

Q = (t(x),V,W,Y) (4.2)
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Imid = {N + 1, ...,m} represents the non-IO-related indices. e is the non-

trivial bilinear map that is defined as e : G×G→ GT . s, α, βv, βw, βy, γ
R←− F

is chosen. Public evaluation key EKF is defined as:

({gvk(s)}kεImid
, {gwk(s)}kε[m], {gyk(s)}kε[m],

{gαvk(s)}kεImid
, {gαwk(s)}kε[m], {gαyk(s)}kε[m],

{gβvk(s)}kεImid
, {gβwk(s)}kε[m], {gβyk(s)}kε[m],

{gsi}iε[d], {gαs
i}iε[d])

The public verification key is defined as

V KF = (gl, gα, gγ, gβvγ, gβwγ, gβyγ, gt(s), {gvk(s)}kε[N ], g
v0(s), gw0(s), gy0(s))

(2). (y, πy) ← Compute(EKF , u): The worker evaluates the circuit F on input

u in order to obtain y ← F (u). Consequently, he obtains the values {ci}iε[m]

of the circuit’s wires. The worker solves for h(x) in p(x) = h(x).t(x). The

proof πy is computed as:

(gvmid(s), gw(s), gy(s), gh(s)

gαvmid(s), gαw(s), gαy(s), gαh(s),

gβvv(s)+βww(s)+βyy(s)) where vmid(x) =
∑

kεImid
ck.vk(x) =

∑
kε[m] ck.vk(x),

w(x) =
∑

kε[m] ck.wk(x), and y(x) =
∑

kε[m] ck.yk(x).

(3). {0, 1} ← V erify(V KF , u, y, πy) : Anyone who can access verification key

V KF can verify a proof. In order to do that, the pairing function e can be

used to check that α and β proof terms are correct. For term α, we require

8 pairings and for β 3.

4.3 Evaluation

In our setting, we have two hospitals each has data for patients. The data are

kept in binary format in matrices. We aim to perform XOR operation between to

patient data of the client with all of the patients in the server. XOR is performed

entry by entry and the result is again represented in a matrix. Matrices are

created on Ubuntu 14.04.2 with 2GB of RAM, that runs on a virtual machine. In

Figure 4.5, the time needed to create various-sized square matrices are shown.
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Figure 4.5: Matrix creation

We considered the case where there are 500 patients each of which has data in a

vector with 1x1000000 size. We can divide each vector into 1x500 sized vectors.

We can check 250 patients, using a 500x500 matrix whose first 250 entries are

the same data of the patient and the second 250 entries are the patients from

the hospitals. We need to create 2000 of these matrices in order to perform XOR

operation on every entry of patient data. In total, we will need 4000 matrices, as

we also need to check the rest of the patients in the hospitals. In order to obtain

efficiency, we can parallelize the operations done on matrices. After creating the

matrices, we run Pinocchio on Windows 8.1 platform with Intel(R) Core(TM)

i7-4510U CPU @2.00GHz processor and 12.0 GB RAM and use these matrices

as an input to Pinocchio.

In Figure 4.6, we show the amount of time needed to create the verification and

evaluation keys for different sizes of square matrices. Figure 4.8 shows the total

time needed to perform verifiable computation. Verification times for different

sizes of matrices are shown in Figure 4.7. The computation at the client or at the

server yield the same results in the previous figures, as they use the same-sized

matrices.

After the calculation are done at client and server sides, proxy is responsible

for doing the final calculation. He uses the results he got from client and server in

the final XOR operation and obtains a matrix that represents the overall results.
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Figure 4.6: Key generation
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Figure 4.7: Verification

As he cannot send this matrix directly to the client, the proxy sums the entries

in all of the rows and returns this vector back to the client. Figure 4.9 shows the

time needed to generate the keys at the proxy. The total time needed to perform

verifiable computation at proxy is shown in Figure 4.10.
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Figure 4.8: Total time to perform verifiable computation
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Figure 4.9: Key generation at proxy

4.4 Alternative Solutions

4.4.1 Distributed Solution

In this setting, client makes a query to one of the servers. The server prepares the

result of the query and its proof and it sends them to the next server. This server

verifies the computation and does the same computation and adds the result to

the previous result and creates a proof over those results and this process goes on

until the result and proof reaches to the client (Figure 4.11). In this way, client
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Figure 4.10: Total time to perform verifiable computation at proxy

will only verify one proof.

Client

.

.

.

Input x

Cloud Services

Output 1, Proof 
1

Output n, Proof 
n

Output f(x) 
and its 
proof

Figure 4.11: Distributed solution

4.4.2 Using Bloom Filter

Here, we can use the system proposed in [32] as an example. The hospital has

IDs of its patients in the database and it creates a Bloom filter using these IDs.

Let the length of the Bloom Filter be n and the number of hash functions be k.
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The filter is encrypted. The client also puts the ID he wants to match in a filter

and encrypts. Then they can multiply both filters and add the resulting entries.

If the sum is equal to k, number of hash functions, then it means that there is a

match. However, we need to handle the problem of false positives.

4.5 Future Work

Instead of using signatures to verify the data that involving parties possess, we

can utilize Zero Knowledge Proofs (ZKP). Zero Knowledge Proofs (ZKPs) are

used when the prover does not want to reveal anything about the proved state-

ment. Hence, the only information the prover presents to the verifier is that the

statement is true. We aim to adapt the zero knowledge proofs used in [33] and

create ZKPs to show that the correct data is used during the computation. It

is needed to prove that both sides divided the data correctly and these proofs

should be done without revealing the data to the other party. Moreover, we need

another zero knowledge proof to prove that the party actually used the other half

of the data that he did not send to the other party. Our aim is to prevent a party

from using a different data of his own and compute the digest with it.

We can also improve our system by using Geppetto [15] instead of Pinoc-

chio [13], because Geppetto aims to reduce prover overhead and increase prover

flexibility. We need to use Geppetto’s proof generation for proving the correct-

ness of the computation result. Hence, digest generation for calculations should

be specified.

Our proposed system can also be applied to similar cases with different kinds

of distributed systems. Some prominent examples of these systems can be

SETI@Home [34], Folding@Home [35] and the Mersenne prime search [36]. All

of these projects distribute computations to millions of clients in order to utilize

their idle cycles. However, a significant problem arises with this advancement:

dishonest clients who modify their software in such a way that they return results

that are similar to the correct ones without actually performing any work [37].
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These clients may be inclined to provide results without doing any computation

with different incentives.
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Chapter 5

Privacy-Preserving Link

Prediction

Given a snapshot of a social network at time t, link prediction algorithms aim to

predict the edges that will be formed in the network during the interval t − t′ ,
where t

′
represents a future time [38]. By defining the similarity between two

nodes, link prediction algorithms will determine whether there will be a link

between two nodes.

There exists two approaches to solve the link prediction problem: (i) In the first

approach, the proximity of nodes the nodes are considered in the social networks.

(ii) In the second approach, Bayesian probabilistic models, and probabilistic re-

lational models are used [39] [40]. In Table 5.1, several different measures for

calculating proximity is given.

Moreover, Common Neighbours, Jaccard’s Coefficient and Adamic-Adar In-

dex are regarded as the node-dependent indices and they are based on the node

degree and the nearest neighborhood, whereas the Katz Index is defined as a

path-dependent index that consider the global knowledge of the structure of the

network [20].

Given two social networks, we have some common users in both of them. We
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pick two nodes and apply different metrics to perform link prediction between

these nodes. We aim to prevent the other network from having the knowledge of

the whole graph. To this end, we propose a privacy-preserving approach to link

prediction problem.

There can be several applications of privacy-preserving link prediction algo-

rithms. Since we are performing similar computations on two different graphs,

the graphs should have similar structures. For instance, there may be a phone

operator that wants to propagate an advertisement about a service in one of the

networks. The company wants to know which nodes are likely to form links be-

tween them, so that it can decide which nodes it will send the advertisement. It

wants to maximize the number of nodes to whom it can offer a certain service.

For this purpose, phone operator can utilize the similarity of certain nodes in a

social network graph like Twitter or Facebook. Hence, we can perform privacy-

preserving link prediction using a phone operator graph and a social network.

We can also perform link prediction operation between a service provider that

provides streaming service such as Netflix, Amazon or Spotify and an online social

network like Facebook. In order to make a good recommendation, we may utilize

the information of what his friends on Facebook watch and how they rate them,

while not revealing the friendship graph of Facebook to the Netflix network or

vice versa.

5.1 Problem Definiton

In our problem setting, there are two social network graphs and they want to

perform a graph mining task on their graphs without violating privacy. Both

graphs contain nodes that correspond to users and edges between them that

represent the relationship between them. They will compute the desired result

without sharing their graphs. Our proposed system, prevents link disclosure and

attribute disclosure attacks [1], as we don’t let any party to learn the structure

of the other party’s graph. Moreover, in the Netflix use case, Section 5.3, we also
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don’t disclose the attributes, which are the movies that are watched and rated

by a user, to Facebook graph.

We aim to execute link prediction algorithms in a privacy-preserving manner.

Given two social networks, we want to find the similarity of two users, without

either party disclosing their graphs to each other. We do the similarity computa-

tion by considering the structure of the graph. We mainly use privacy-preserving

integer comparison [41], homomorphic encryption [30], and privacy-preserving set

operations like intersection [42] [43]. The main technical challenge for privacy-

preserving data mining is to make its algorithms scale and achieve higher accuracy

while considering privacy [44].

Table 5.1: Similarity Metrics

similarity metric definition
common neighbors |Γ(x) ∩ Γ(y)|
Jaccard’s coefficient |Γ(x)∩Γ(y)|

|Γ(x)∪Γ(y)|
Adamic/Adar

∑
zε|Γ(x)∩Γ(y)|

1
log(|Γ(z)|)

Katzβ

∑∞
l=1 β

l.|path〈l〉x,y|
where path

〈l〉
x,y := { paths of length exactly l from x to y}

weighted: path
〈l〉
x,y := weight of the edge between x and y

unweighted: path
〈l〉
x,y := 1 iff x and y are 1-hop neighbors

5.2 Proposed Solution

In link prediction, our aim is to predict whether there will be a link between two

users. In order to achieve this, we need to define the similarity between these two

nodes. Given two social networks, we have some common users in both of them.

We pick two nodes, namely x and y, and define the common neighbors of them.

The number of common neighbors will help us to perform link prediction. For

this purpose, we apply different metrics to determine the similarity of two nodes.

In Table 5.1, the similarity metrics that we use are shown. Here, the definitions
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for different metrics to define the similarity of node pair 〈x, y〉 is given. Γ(x)

denotes the set of the neighbors of the node x [38].

A trivial solution for privacy-preserving link prediction can be holding a sorted

list containing all of the nodes in the social network. If x is neighbor with a certain

node, put one to the corresponding position of the that node otherwise put zero.

However, this is not practical, since we need to keep a list which has a large size.

The list contains many zeros, so it will be redundant to keep such a list. Moreover,

it will not be practical to encrypt a big list and send it to the other party. Hence,

we propose a more practical solution which does not include keeping a list of all

nodes in a graph.

Networks are not independent of each other. In order to prevent the other

network from having the knowledge of the whole graph, we can only send the

subgraph containing the specific user with his neighbors. Therefore, we send the

encrypted neighbor list of nodes to the other graph. We use different measures

to determine links between nodes, while considering privacy. By trying these

methods, we define whether privacy-preserving link prediction is computationally

feasible.

While creating our scheme, we make the following assumptions:

(i). We assume that x and y are not neighbors in both of the graphs. Even if

they are neighbors in one of the graphs, we do not consider that link.

(ii). The user IDs in both lists should match, otherwise we cannot make compar-

ison between the neighbor lists of two graphs. We can use email or phone

number to identify the users in both graphs.

(iii). Both graphs know that they are performing link prediction algorithm for

nodes x and y.

In our setting, we have two online social network graphs. Let us denote our

first graph as G1〈V,E〉 and second graph as G2〈V,E〉 where V denotes the set

of nodes and E denotes the set of edges, i.e. follower relationship, between the
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nodes (Figure 5.1). Let us represent the set of neighbors of a node i as Γ(i).

G1〈V,E〉 belongs to the client and G2〈V,E〉 belongs to the server. The client is

the party that does the link prediction, namely Netflix and phone operator in our

examples. The server is Facebook.

x

z

ab

y

n

ma

x

z

cd

y

c

be
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Figure 5.1: The neighbors of x and y in both graphs

We need to compare the IDs of the users in both graphs, as we will need to

find the intersection and the union of the set of neighbors for calculating the

similarity techniques which will be explained in the following sections in detail.

For making comparison between the encrypted IDs in both networks, we use

privacy-preserving integer comparison.

5.2.1 Privacy-preserving integer comparison

Here, we can compare two encrypted values without revealing the values to ei-

ther side that is involved in the protocol. The result of the comparison is also

encrypted.

We have f(Enc(z), Enc(b)), which denotes the comparison function between

Enc(z) and Enc(b). f(Enc(z), Enc(b)) = Enc(0) if Enc(z) ≥ Enc(b) and

f(Enc(z), Enc(b)) = Enc(1) if Enc(z) < Enc(b).The details of the protocol

is explained as follows:
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Server’s secret key x is randomly divided into x1 and x2, such that x = x1 +

x2. x1 is given to the server and x2 is given to the client. Public and private

keys of the server for the DGK cryptosystem are generated. The public key is

shared with client. We also need to set symmetric keys to protect the message

exchange between client and server from eavesdroppers. Let us denote the Paillier

encryption of a as Enc(a) and DGK encryption as EncDGK(a). The protocol is

as follows:

(i). At client: Client computes Enc(z) = Enc(2L + a − b). zL−1 represents

the most significant bit of z. zL−1 = 0 if a < b and zL−1 = 1 if a ≥ b.

Hence, the client needs to compute Enc(zL−1) = (z − (z mod 2L)). Since

client can’t compute this, it needs to start a privacy-preserving comparison

protocol with the server. Client generates a random number r and computes

Enc(d) = Enc(z + r). Then, the client partially decrypts Enc(d) using x2

to obtain d̃ and sends it to server.

(ii). At server: Server decrypts Enc(d̃) using x1 and obtains d. Then, it com-

putes (d mod 2L), encrypts it to obtain Enc(d mod 2L). It uses client’s

public key and the modified Paillier cryptosystem. It sends the encrypted

value to the client.

(iii). At client: Client computes (r mod 2L) and encrypts it to ob-

tain Enc(r mod 2L). After that, it computes Enc(z mod 2L) =

Enc(d mod 2L − r mod 2L).

Enc(z mod 2L) = Enc(z mod 2L) if Enc(d mod 2L) ≥ Enc(r mod 2L).

If Enc(r mod 2L) > Enc(d mod 2L) underflow occurs, since the com-

putation is done in modulo n. In order to prevent underflow, client

should compute Enc(z mod 2L) = Enc(z mod 2L + λ2L), where λ = 0

if (d mod 2L) ≥ (r mod 2L), λ = 1 if (r mod 2L) > (d mod 2L). Client

needs to compute Enc(λ) with the help of the server.

(iv). Computation of Enc(λ): Here, DGK is used instead of Paillier, since it has

an efficient multiplicative masking. Let d̂ = (d mod 2L), where d̂i represents

the ith bit of d̂, where i ε {0, 1, ..., L− 1}.
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Server encrypts the bits of d̂ using DGK to obtain EncDGK(d̂0), ..., EncDGK( ˆdL−1)

and sends them to client. Also, let r̂ = (r mod 2L) where r̂i represents the ith

bit of r̂, where r ε {0, 1, ..., L−1}. Client encrypts the bits of r̂ using public

key of server and DGK encryption to obtain EncDGK(r̂0), ..., EncDGK( ˆrL−1).

Then,client chooses an integer s from the set {1,−1} randomly and com-

putes C = {EncDGK(c0), ..., EncDGK(cL−1)}, where

EncDGK(ci) = EncDGK(d̂i − r̂i + s+ 3
L−1∑
j=i+1

wj) (5.1)

where wj = d̂j ⊕ r̂j. EncDGK(d̂j ⊕ r̂j) = EncDGK(d̂j + r̂j − 2(r̂j)d̂j). This

can be computed by the client. For each EncDGK(ci), the client selects

random number αi from Zu and computes EncDGK(ei) = EncDGK(ciαi),

which masks EncDGK(ci) values. Client sends permuted EncDGK(ei) to

server.

Server decrypts EncDGK(ei) with its private key. If all EncDGK(ei) are

non-zero, server sets a = 1. If exactly one EncDGK(ei) value is different

than zero then a = 0. Then server encrypts a and sends Enc(a) to client.

If a = 1 and s = 1, where s is randomly selected by client, it means that

d̂ ≥ r̂ and λ = 0 and if a = 0 and s = 1 it means that r̂ > d̂ and

λ = 1. Hence, if s = 1, client sets Enc(λ) = Enc(1 − a). If s = −1, it

sets Enc(λ) = Enc(a). Client can compute Enc(z mod 2L) and Enc(zL−1)

using Enc(λ).

5.2.2 Common neighbors

We want to find the common neighbors of nodes x and y in both graphs. In

order to compute this, we need to first create a list of neighbors of x and a list

of neighbors of y in both graphs and according to those lists and we compute

common neighbors as follows:

common neighbors = |Γ(x) ∩ Γ(y)| (5.2)
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Figure 5.2: Finding list of neighbors of x and y and removing common neighbors

(i). When we find the common neighbors, we remove the common neighbors

from the list, so that they are not counted twice as neighbors in the second

graph. The common neighbors are added to the list. This procedure is done

on both graphs as shown in Figure 5.2.

(ii). After the lists are created, client encrypts those lists with its public key and

sends the encrypted lists to the server.

(iii). Server takes the encrypted neighbor list of x and makes a privacy-preserving

integer comparison protocol (Section 5.2.1) with the neighbor list of y in

its graph and adds to |Γ(x) ∩ Γ(y)|. It does the same comparison between

the encrypted neighbor list of y from the client with the neighbor list of x
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in his graph. |Γ(x) ∩ Γ(y)| was equal to the number of common neighbors

of x and y in server.

(iv). Before it sends the result to obtain the number of common neighbors of x

and y in both graphs, one more step is needed. If the client adds both results

directly, it might count common neighbors twice. For instance, assume a

is also the common neighbor of x and y in the server. If the client directly

adds two result, it will obtain the wrong value. In order to prevent this, we

need another step.

(v). Client makes a list of common neighbors of x and y, in this case only a, and

encrypts the list. Client sends the encrypted list to the server.

(vi). Server makes a privacy-preserving integer comparison with its own list of

common neighbors of x and y and obtains the updated value of |Γ(x)∩Γ(y)|
which does not contain the duplicate values.

(vii). Server sends the result back to client. Client can decrypt the result add to

|Γ(x) ∩ Γ(y)|. Here server obtains an encrypted result: Enc(|Γ(x) ∩ Γ(y)|).
Therefore, server does not learn anything about the structure of the client.

(viii). Client decrypts the value it received from the server and adds to his previ-

ously computed value of |Γ(x) ∩ Γ(y)|.

Let f be the comparison function, λ be an element from the set of neighbors

in the neighbor list of the client and φ be an element from the set of neighbors

in the neighbor list of the server. f takes two inputs and computes comparison

protocol on them. So we can denote Enc(|Γ(x) ∩ Γ(y)|) as follows:

Enc(|Γ(x) ∩ Γ(y)|) =
∑

λεΓ(x),φεΓ(y)

f(Enc(λ), Enc(φ)) (5.3)

In our work, we use the privacy-preserving integer comparison scheme proposed

in [41]. According to this scheme, we have f(Enc(z), Enc(b)), which denotes

the encrypted result of the comparison protocol between Enc(z) and Enc(b).
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f(Enc(z), Enc(b)) = Enc(1) if Enc(z) ≥ Enc(b) and f(Enc(z), Enc(b)) =

Enc(0) if Enc(z) < Enc(b).

In our case, f(Enc(z), Enc(b)) consists of two functions f1 and f2 such that

f(Enc(z), Enc(b)) = f1(1− f2) (5.4)

where f1 and f2 denote the privacy-preserving integer comparison protocol

for Enc(z) ≥ Enc(b) and Enc(z) < Enc(b + 1) respectively. By evaluating

two inequalities, we will obtain the result for equality check. For instance, if

Enc(z)
.
= Enc(b), f1 will yield 1 and f2 will yield 0 to obtain f as 1.

5.2.3 Jaccard’s Coefficient

Another measure for calculating common neighbors is Jaccard’s coefficient. It is

computed as follows:

Jaccard′s coefficient =
|Γ(x) ∩ Γ(y)|
|Γ(x) ∪ Γ(y)|

(5.5)

We can use the same procedure in the previous part to compute |Γ(x)∩Γ(y)|.
However, we need another scheme to compute the union. First of all, client needs

to create the list of all neighbors of x and y. x and y should also be included

in their respective lists. x compares each element in its list with y’s list and

eliminates the same nodes. In this case it is node a. Then client combines both

lists to compute |Γ(x) ∪ Γ(y)|. Server does the same procedure for x and y

(Figure 5.3).

Then client encrypts the union list and sends to the server. Server compares

its list with the list it received from the client. It obtains an encrypted result and

sends back to the client.
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Figure 5.3: Union operation

5.2.4 Adamic/Adar

In Adamic/Adar, we find |Γ(x)∩Γ(y)|, with the same method in common neigh-

bors. Then for each element in |Γ(x) ∩ Γ(y)|, we sum the reciprocal of the log-

arithm of the number of neighbors of that element. In order to find the total

number of neighbors of z in both graphs, namely client and server, we need to

use the algorithm to find common neighbors in Section 5.2.2.

Adamic/Adar =
∑

zε|Γ(x)∩Γ(y)|

1

log(|Γ(z)|)
(5.6)
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In order to compute Adamic/Adar, we need to find the union of the neighbors

of each z, which is in the neighbor set of x, in both of the graphs. We can use the

same algorithm proposed in Section 5.2.3 to find the union of the neighbors of z.

5.2.5 Katzβ

Katzβ depends on computing the sum of all l-length paths between the nodes x

and y. It is defined as follows:

Katzβ =
5∑
l=1

βl.|path〈l〉x,y| (5.7)

Here, path
〈l〉
x,y denotes the set of all l-length paths from x to y. We choose β

in such a way that longer paths contribute less to the summation. According to

[45], the average distance between two nodes is 4.7 for Facebook users and 4.3

for U.S. users. Hence, it will be enough to set l to at most 5.

For each l we find the following:

Nn = |x′s an − hop neighbors| ∩ |y′s bn − hop neighbors| (5.8)

where l = an+ bn, 1 ≤ an, bn ≤ l−1 and 1 ≤ n ≤ l−1. If any of the Nn values

is greater than 0, then it means that x and y are l-hop neighbors of each other.

For example, in order to find whether x and y have 3-hop neighbors, we need to

find the value of N1 for a1 = 1, bn = 2 and the value of N2 for a1 = 2, bn = 1. If

at least one of N1 or N2 is greater than 0 then it means that x and y are 3-hop

neighbors of each other. In order to find n-hop neighbors, we need to first find

the neighbors of our node. Then for each node in the neighbor set, we need to

find their neighbors. We continue until we find n-hop neighbor list.

In order to find the number of l-length paths, we need to find the number of

paths in the client and the server separately and then combine them to eliminate

the duplicate ones (Figure 5.4). The algorithm is as follows:
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Figure 5.4: Finding and combining all possible list of neighbors

(1). At the client, we find all values of Nn. We find
∑l−1

n=1Nn. Client keeps the

list of the nodes for each Nn.

(2). At the server too, we find all values of Nn. Server also keeps the list of the

nodes for each Nn.

(3). We should also find the values for Nn for x from G1 and y is from G2 and

vice versa.

(4). We can’t directly add the two results together, since we should first elim-

inate the duplicate results. Client encrypts the lists. Client sends the

encrypted lists to the server.
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(5). Server makes a privacy-preserving integer comparison with its own lists and

obtains the updated value of l-length neighbors which does not contain the

duplicate values. In our example, we will have 4 in total, since the values

we obtained at the server side are for duplicate paths.

5.3 Netflix and Facebook Case

In Netflix, we have the users as nodes and the edges between movies and users,

as ratings. We can assume that the users have the same IDs in both networks,

as they can be identified from their email addresses or phone numbers in both

networks. Let’s assume we want to recommend a movie to the user A. In order

to make a good recommendation, we may utilize the information of what his

friends on Facebook watch and how they rate them. However, we also do not

want to reveal the friendship graph of Facebook to the Netflix network. Hence,

we encrypt both the user IDs and the ratings corresponding to the users in the

Netflix network (Figure 5.5a) and send the list to the Facebook (Figure 5.5b). We

assume that the information that the person who will receive the recommendation

is known by Facebook and it is user A in this case. However, we aim to hide A’s

friend from Netflix and hide his likes from Facebook. On Facebook graph, we

can make a privacy-preserving integer comparison between the user IDs. If there

is a match, we add the corresponding encrypted ratings for the movies rated by

those users. We send the encrypted total amount back and in the Netflix network

we decrypt the value to decide whether the movie is worth recommending to the

user A. However, we need to prevent the case, where Netflix graph figures out

which friends that a user has in Facebook. This can be understood when the

user has only one friend. When Facebook sends the total rating back to Netflix

, it will decrypt and see that the rating belongs to a certain user in the graph.

Hence, we need to utilize differential privacy and add a certain amount of noise

to the total rating, that is calculated at the Facebook side. Common neighbors,

Jaccard’s coefficient, Adamic/Adar and Katzβ can also be applied to this use

case as different similarity metrics.
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5.4 Evaluation

We present the evaluation results in addition to the number of comparisons and

complexity of the different similarity metrics. First, we define the initialization of

the parameters of the encryption schemes that we use, namely Paillier and DGK.

The size of the security parameter n in Paillier cryptosystem is 4096 bits. The

security parameters of the DGK cryptosystem are set to the following values: L

= 16, t = 160, k = 1024.
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5.4.1 Comparisons and Complexity

In this section, we determine the number of comparisons that are needed to

calculate the different techniques and accordingly, we define the complexity for

each metric. According to [45], on average a person can have 214 friends in

Facebook and the average distance is 4.7 for Facebook users. We can set number

of friends as n = 214 and the longest distance between two nodes as m = 5. Now,

we can define the number of comparisons needed for each metric:

5.4.1.1 Common Neighbors

For G1, x and y can have at most n number of friends. For each element in x’s

neighbor list, we need to make comparison against all elements in y’s neighbor

list. In total, we will have n2 comparisons for G1. We have the same situation for

G2 too. In total, we will have n2 comparisons for G2 too. We also make another

comparison between the neighbor lists of x and y in both graphs to eliminate

the duplicate ones. It will also be n2 comparisons. In total, we will have 3n2

comparisons. This algorithm runs in O(n2).

5.4.1.2 Jaccard’s Coefficient

Since, we find |Γ(x) ∩ Γ(y)| first, we will have the same number of number of

comparisons with the previous part which is 3n2. For |Γ(x)∪Γ(y)|, we will again

have 3n2 comparisons. In total, we will have 6n2 comparisons. This algorithm

runs in O(n2).

5.4.1.3 Adamic/Adar

Since, we find |Γ(x) ∩ Γ(y)| first, we will have 3n2 comparisons. Then for each z

in the set Γ(x) ∩ Γ(y), we will find the total number of neighbors in G1 and G2.

We need to compare the neighbor set of z in G1 with the neighbor set of z in G2.
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It consists of n2 comparisons. Hence, in total we will have 4n2 comparisons. This

algorithm runs in O(n2).

5.4.1.4 Katzβ

l = 1: 0 since we assumed that x and y are not neighbors. l = 2: n2 l = 3: 2n3 l

= 4: 3n4

Let C be:

C =
m∑
l=1

(l − 1)nl (5.9)

Value of C is for only one graph, so for two graphs we will have 2C compar-

isons. We should add the number of comparisons that are made to eliminate the

duplicate neighbors to 2C.

This algorithm runs in O(nm).

5.4.2 Performance

We perform our test on Windows 8.1 platform with Intel(R) Core(TM) i7-4510U

CPU @2.00GHz processor and 12.0 GB RAM. Both of the graphs are generated

in MATLAB as an adjacency matrix. Each graph has 1000 nodes. Later, this

matrix is converted to the list of the IDs of all nodes in the network and their

corresponding neighbors. We determined intervals for the possible number of

neighbors of a node. For instance, 5-10 means that every node has a random

number of neighbors between 5 and 10. We implemented the metrics in Java

and the relevant codes can be found in github1. In Figure 5.6, the performance

of common neighbor’s metric is shown and in Figure 5.7 the performance of

Jaccard’s coefficient is shown for the same intervals for the degree of each node.

1https://github.com/ddm3/linkprediction
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In can be deducted from the results that computing Jaccard’s coefficient takes

more time than computing common neighbors, as in addition to the privacy-

preserving calculation of intersection in common neighbors, we also have to per-

form privacy-preserving calculation for union.
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Figure 5.6: Performance of common neighbors
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Figure 5.7: Performance of Jaccard’s coefficient

5.5 Future Work

In our scheme, server learns the nodes on which the client performs link prediction.

In order to prevent this, a scheme that allows the server to ask the client to
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compute common neighbors of x and y without letting it know which nodes it

wants to find common neighbors can be proposed.
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Chapter 6

Conclusion

In this thesis, we proposed two systems that can perform data sharing between

entities without violating privacy. We define a system under malicious setting

that is based on verifiable computation and a privacy-preserving link prediction

scheme under semi-honest setting.

The system that is based on verifiable computation aims to help the cloud

computing services to analyze personal and sensitive data without violating the

privacy of the involving parties, as such data like patient records, banking or

location information, can reveal sensitive information about the individuals; and

their disclosure may end up in serious problems about privacy. The system per-

forms privacy-preserving similarity check of patients across different hospitals.

By utilizing secret sharing and signature schemes, we obtained a system that can

preserve privacy in the malicious setting.

Privacy-preserving link prediction scheme addresses the fact that there is an

increase in the analysis done on social network graphs and link prediction is one

of the prominent areas. Moreover, the privacy concerns about performing link

prediction in two different graphs should be addressed. Therefore, we proposed

a privacy-preserving link prediction scheme. Given two social network graphs,

we computed different similarity metrics of two nodes. For this computation,
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we used privacy-preserving integer comparison. Using this scheme, we created a

protocol that finds the neighbor lists in both graphs and combines them without

violating privacy.
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