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ABSTRACT

ON THE NÉRON-SEVERI LATTICE OF DELSARTE
SURFACES

Mehmet Kişiog̃lu

M.S. in Mathematics

Advisor: Alexander DEGTYAREV

September 2016

The Néron-Severi group, NS(X), of a given (non-singular projective) variety,

X, is defined in only algebro-geometric terms, however it is also known to be

an arithmetic invariant. So it is an important study that helps understanding

the geometry of the variety. However, there is no known method to compute

it in general. For this reason, one first computes the Picard number ρ(X) =

rnk NS(X) of the variety. There has been many studies which elevated the

understanding of ρ(X) in special cases. Yet the difficulty of the computation in

the general case still remains.

On the other hand, in the case of Delsarte surfaces, an explicit algorithm to

compute ρ(X) is given by Shioda [1], and Degtyarev [2] showed that a generating

set for the Néron-Severi group, NS(X) can be computed in some cases. Moreover,

Heijne [3] gives a classification of all Delsarte surfaces with only isolated ADE

singularities. We give an introduction to Delsarte surfaces, and determine which

of the Delsarte surfaces given in [3] fit in the descriptions given in [2].

Keywords: Néron-Severi group, Delsarte surface, Smith normal form.
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ÖZET

DELSARTE YÜZEYLERİNİN NÉRON-SEVERI LATİSİ
ÜZERİNE

Mehmet Kişiog̃lu

Matematik, Yüksek Lisans

Tez Danışmanı: Alexander DEGTYAREV

Eylül 2016

Verilen bir (tekilsiz izdüşümsel) çeşitlemin (X), Néron-Severi grubu (NS(X)),

sadece cebirsel geometriye ait terimlerle tarif edilir, ancak aritmetik bir deg̃işmez

olarak da bilinir. Bu yüzden çeşitlemin geometrisini anlamaya yardımcı olan

önemli bir çalışma alanı oluşturur. Ancak, bu grubu hesaplamak için genel geçer

bir yöntem bulunmamaktadır. Bu sebeple önce Néron-Severi grubunun mertebesi

olan Picard sayısı (ρ(X)) hesaplanır. Özel durumlarda ρ(X)’in anlaşılmasını

artıran çok sayıda çalışma yapıldı. Yine de bu hesaplamayı yapmanın zorlug̃u

hala geçerlilig̃ini koruyor.

Öte yandan, Shioda [1] Delsarte yüzeyleri üzerinde çalışan, ρ(X)’i hesaplayan

açık bir algoritma üretmiştir, ve Degtyarev [2] bazı durumlarda Néron-Severi

grubu için açık bir üretici küme hesaplanabildig̃ini göstermiştir. Bunun yanı

sıra, Heijne [3] sadece ayrık ADE tekillikleri içeren Delsarte yüzeyleri için bir

sınıflandırma yapmıştır. Biz Delsarte yüzeylerini tanıtıp Heijne tarafından ver-

ilen yüzeylerden hangilerinin Degtyarev’in çalışmasındaki durumlara uydug̃unu

belirledik.

Anahtar sözcükler : Néron-Severi grubu, Delsarte yüzeyleri, Smith normal formu.
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Chapter 1

Introduction

In this thesis, we will be mainly working on complex Delsarte surfaces. A Delsarte

surface is an algebraic surface XA in P3, defined by a sum of four monomials

with properties given in Definition 3.1.1. One can regard these surfaces as a

generalization of Delsarte curves (as introduced by Shioda in [1]). Likewise, one

can consider Fermat surfaces which are of the form Xm := {zm0 +zm1 +zm2 +zm3 = 0}
as covering spaces of XA (q.v. Chapter 3).

The Néron-Severi group of a nonsingular projective variety X is defined as the

group consisting of divisors on X up to algebraic equivalence. It is a desirable

work area, on any given algebraic variety, to understand its Picard and/or Néron-

Severi groups because of their close relation to many mathematical problems, like

calculation of Brauer groups. The Picard number (also called Picard rank) ρ(X)

of a given algebraic variety is defined as the rank of its Néron-Severi group,

NS(X) (q.v. Chapter 2). The Picard number is not a birational invariant, hence

one can prefer to work with the Lefschetz number λ(X) := b2(X)− ρ(X) where

b2(X) is the second Betti number of X. The Lefschetz number is, on the other

hand, a birational invariant of the surface [1]. Main reason for us to work with

birational invariants is to extend our reach to the singular Delsarte surfaces.

In general, there is no known method for calculating the Picard number of a
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given algebraic variety, even when one works over C. However, in the case of

Delsarte surfaces, Shioda gives an explicit algorithm to compute ρ(X), using the

Lefschetz number [1] for fields with arbitrary characteristic. Moreover, Degtyarev

also shows that, in some cases, one can compute the generating set for NS(X)

of a Delsarte surface [2] explicitly.

There is another useful method for defining Delsarte surfaces. Let G ∼= Z3 be a

multiplicative abelian group with generating set {ti}i=0,1,2,3. We have the relation∏3
i=0 ti = 1 between these generators. Then every epimorphism α : G� G where

|G| is finite has a corresponding Delsarte surface Xα (q.v. Definition 3.1.2). When

one is interested only in birational invariants, this description helps to focus only

on the epimorphism between abelian groups above.

1.1 Main Problem

Let α : G� G be an epimorphism with |G| finite and let Xα be the corresponding

Delsarte surface. We consider the Néron-Severi group, NS(Xα), as a subgroup of

the homology group H2(Xα)/Tors(H2(Xα)) as a consequence of Poincaré duality.

This allows one to represent a divisor D ⊂ Xα by its fundamental class [D].

With this in mind, we consider a certain ‘obvious’ divisor Vα and define Sα to be

the subgroup of NS(Xα) generated by the irreducible components of the divisor

Vα. Hence if we consider the inclusion ι : Vα ↪→ Xα, we can also state that

Sα = Im[ι∗ : H2(Vα) → H2(Xα)/Tors(H2(Xα))]. Shioda [4] shows that in some

cases we have

NS(Xα)⊗Q = Sα ⊗Q. (1.1)

This means that components of the divisor Vα generate the Néron-Severi lattice

NS(Xα) over Q. This statement is shown by independently calculating the Picard

rank of the surface and the rank of the Sα. An interesting question is to find cases

in which this property extends to hold over Z. This question leads one to inspect

cases which satisfy Tα := Tors(NS(Xα)/Sα) = 0 which gives an answer for the

question. However, the calculation of this torsion is a valid question even when we

do not have (1.1). Although showing that in general we do not have this desired
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property, Degtyarev reveals some of these special cases in [2] in a theorem. We

will state this theorem because it is of vital importance to our work.

Theorem 1.1.1 ( [2], Theorem 1.7 ). We have Tα = 0 in each of the following

cases:

1. Fermat surfaces Xα, with α = G� G/mG;

2. Delsarte surfaces Xα that are unramified at ∞, with α(t0) = 1 ;

3. cyclic Delsarte surfaces Xα, with α = G� G where G is cyclic.

We will be studying Delsarte surfaces from point of view of singularities. As

with other algebraic varieties with rational double points, there are useful classi-

fications that one can consider for Delsarte surfaces. For this purpose we relate

to a work of Heijne [3], in the Appendix of which all Delsarte surfaces with only

isolated ADE singularities are listed, along with their calculated Picard numbers.

We take the information on corresponding matrices of these surfaces, only. Our

main goal is to determine the special cases with Tα = 0, especially the cyclic Del-

sarte surfaces out of these surfaces. We intend to construct an explicit relation

between these matrices and the latter definition of Delsarte surfaces (q.v. 3.1.2)

by calculating a kernel in the matrix form for each surface and using the Smith

normal form (q.v. Chapter 4). Next theorem can be seen as the main result of

this work.

Theorem 1.1.2. The Delsarte surfaces marked with * in Appendix A are the

Delsarte surfaces with only isolated ADE singularities satisfying Tα = 0.

The groups G and G are paired with modules in order to be compatible with

our calculations(cf. Shioda [1]), then we calculate the Smith normal forms to

discern which surfaces in Appendix A are the cases that we are interested in.

3



1.2 Contents of the Thesis

In chapter 2, we give information and definitions about ADE singularities and

the Picard number of surface. Moreover, we recall how one calculates and uses

the Smith normal form of a matrix for our purposes. In chapter 3, we give

some properties of the Delsarte surfaces while making connection between the

two definitions mentioned above. We also introduce the ‘obvious’ divisor Vα.

In chapter 4, we prove our main result and give an example to depict how this

method works. The explicit results for all 83 surfaces are given in Appendix A.

4



Chapter 2

Preliminaries

In this thesis we only consider algebraic varieties defined over the field C. As a

result we assume the surfaces are oriented with the canonical complex orientation.

2.1 Singularities

There are different ways to define ADE singularities, however we will be using

the same definition Heijne used in [3].

Definition 2.1.1. An ADE singularity is a singular point P on a complex surface

S which is locally isomorphic to one of the following types of singularities:

• zn+1
0 + z2

1 + z2
2 ; i.e of type An, n ≥ 1,

• zn−1
0 + z0z

2
1 + z2

2 ; i.e of type Dn, n ≥ 4,

• z3
0 + z4

1 + z2
2 ; i.e of type E6,

• z3
0 + z0z

3
1 + z2

2 ; i.e of type E7,

• z3
0 + z5

1 + z2
2 ; i.e of type E8.
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Using this definition, Heijne manages to reduce the number of Delsarte surfaces

with only isolated ADE singularities to 83.

2.2 The Néron-Severi Group

Our main interest revolves around the Néron-Severi group of an algebraic variety

(i.e. a Delsarte surface in our case), which can be described as the group of

algebraic equivalence classes of divisors in X. This group is closely related to the

Picard group of the algebraic variety which can be seen as subgroup of Div X

under linear equivalence. Here Div X is the group of all divisors on X, which

can be regarded as the free abelian group on the prime divisors on X, and we say

two divisors are linearly equivalent if the difference of the divisors is a principal

divisor. We will also denote the subgroup of Pic X that consists of divisor classes

algebraically equivalent to zero by Pic0 X so that Pic X/Pic0 X is a finitely

generated abelian group which is the Néron-Severi group, NS(X). The fact that

the Picard rank ρ(X) of the surface (i.e. rank of the NS(X)) is finite comes from

the Néron-Severi theorem[5]. Hence we can observe this relation between Pic X

and NS(X) in the form of an exact sequence

1→ Pic0 X → Pic X → NS(X)→ 0.

Moreover, when we reduce the case to the field of complex numbers, C, the

exponential function exp yields an exact sequence of abelian groups

0→ Z→ C exp−−→ C∗ → 0

where one considers C as additive group and C∗ as multiplicative group. From

this sequence we derive the exponential exact sequence

0→ Z→ OX
exp−−→ O∗

X → 0

where Z is the constant sheaf, OX is the sheaf of holomorphic functions on X(i.e.

structure sheaf), and O∗
X is the subsheaf consisting of the non-vanishing holo-

morphic functions(i.e. invertible elements of OX under multiplication). This
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sequence gives rise to an exact sequence of cohomology groups

0→ H1(Xh,Z)→ H1(Xh,OXh
)→ H1(Xh,O∗

Xh
)→ H2(Xh,Z)→ . . . (2.1)

where Xh is a complex analytic space associated with X. We recall the fact that

H1(Xh,O∗
Xh

) ∼= Pic Xh

(for details cf. [5]). Now Serre’s theorem on coherent sheaves implies

Pic Xh
∼= H1(Xh,O∗

Xh
) ∼= H1(X,O∗

X) ∼= Pic X.

Hence the exact sequence 2.1 can be revised into

0→ H1(Xh,Z)→ H1(Xh,OXh
)
c1−→ Pic X → H2(Xh,Z)→ . . . . (2.2)

Notice thatXh are compact complex manifolds which indicates thatH i(Xh,Z) are

finitely generated abelian groups. Moreover, one can see that Im c1 is isomorphic

to Pic X/Pic0 X = NS(X). Thus NS(X) is a subgroup of H2(Xh,Z) which

makes it a finitely generated group.

2.3 Smith Normal Form

In order to understand the structures of modules that we obtain in our work,

we will use Smith normal forms of the relation matrices for the corresponding

epimorphisms.

Definition 2.3.1. Let R be a principal ideal domain and let A be a k× l matrix

with entries in R. We say that A is in Smith normal form if A is a diagonal

matrix with only nonzero elements a1, . . . , am ∈ R lying in the first m entries of

the diagonal and satisfy ai|ai+1 for each i < m. That is, A is of the form

A =



a1 0 0 . . . 0

0 a2 0 . . . 0

0 0
. . . 0

... am
...

. . .

0 . . . 0


.
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It is of immediate concern whether one has a corresponding Smith normal form

of any given matrix or not. We give an existence theorem that fits our needs.

Theorem 2.3.2 ( [6], Theorem 2.1, p.7). If M is a matrix with entries in a

principal ideal domain R, then there are invertible matrices P and Q over R such

that PMQ is in Smith normal form.

The proof of this theorem is a well-known algorithm which calculates unit

matrices P and Q by elementary row and column operations while relying on

Bézout’s identity.

At this point, we also define the so called determinantal divisors which will be

useful later.

Definition 2.3.3. The i-th determinantal divisor of a matrix A ∈ Mk×l, di(A),

is defined as the gcd of all the i-th minors of A.

Here gcd is considered among the non-zero minors only, if all i-th minors are

zero than di(A) is considered zero. It is also worth mentioning that these divisors

have this following property.

Corollary 2.3.4. For given 1 6 i 6 min(k, l), di(A) = di(B) if A = PBQ i.e.

if A and B are equivalent matrices.

Indeed, each k× k minor of A can be written as a linear combination of k× k
minors of B and vice versa [7], giving us the equivalence of greatest common

divisors.

If A is the Smith normal form of M ∈Mk×l, by Theorem 2.3.2, A is related to

M , i.e. A = PMQ, hence Corollary 2.3.4 suggests that we can calculate entries of

A by using di(M). Let us fix d0(M) = 1, then we can define ai with the relation

di(M) = aidi−1(M) for i > 1. Notice that, this also shows that there exists a

unique matrix in Smith normal form, equivalent to a given matrix M .

Remark 2.3.5. Note that this way of calculation is not efficient when working

with big matrices, however it is efficient enough for small matrices such as the
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ones that we work on. For bigger matrices most computer algortihms employ the

algorithm used in proving Theorem 2.3.2.

Smith normal form is useful for our work since one can easily determine the

structure of a given module with its help. This connection comes with the relation

matrices which correspond to the kernel of the R-module homomorphism α :

Rn →M (cf. [6]).

Proposition 2.3.6. Let M be an R-module. Suppose that A is a relation matrix

for M . If there exist unit matrices P and Q with PAQ a diagonal matrix with

entries ai, then M ∼=
⊕

R/(ai).

Proof. Notice that PAQ is also a relation matrix for the same module, being

eqivalent to A. Let {mi}ni=1 be a generating set for M . We have the corresponding

homomorphism α : Rn → M defined as (r1, . . . , rn) 7→
∑n

i=1 rimi. Notice that

the relation submodule is the kernel of α, giving us M ∼= R/Ker α. Moreover, the

relation submodule for PAQ, being diagonal, also corresponds to the kernel of

the surjection Rn →
⊕

R/(ai) defined as (r1, . . . , rn) 7→ (r1 +(an), . . . , rn+(an)).

Hence R/Kerα ∼=
⊕

R/(ai), i.e. M ∼=
⊕

R/(ai).

Now, considering Theorem 2.3.2 along with Proposition 2.3.6 we get the inter-

esting result stated below.

Corollary 2.3.7 ( [6], Corollary 2.2, p.8). If M is a finitely generated module

over a principal ideal domain R, then there are elements a1, . . . , am ∈ R such

that ai|ai+1 for each i = 1, . . . ,m − 1, and an integer t ≥ 0 such that M ∼=
R/(a1)⊕ . . .⊕R/(am)⊕Rt.

9



Chapter 3

Delsarte Surfaces

In this chapter we give information about our main study objects, Delsarte sur-

faces.

3.1 Definitions

Definition 3.1.1. A Delsarte surface is a zero set XA ⊂ P3 of a homogeneous

polynomial of the form
3∑
i=0

3∏
j=0

z
aij
j . (3.1)

We represent this polynomial with A := [aij], the exponent matrix which satisfies

the following conditions:

1. each entry aij , 0 6 i, j 6 3, is a non-negative integer;

2. each column of A has at least one zero;

3. (1, 1, 1, 1)t is an eigenvector of A, i.e.,
∑3

j=0 aij = λ = const(i);

4. A is non-degenerate, i.e., detA 6= 0.

10



Notice that a Delsarte surface cannot contain any of the coordinate planes,

seen by (2). The polynomial defining the surface is homogeneous, as desired,

(3) also confirms that the degree of this polynomial is λ, the eigenvalue of the

representing matrix A corresponding to (1, 1, 1, 1)t.

Shioda defines the cofactor matrix corresponding to a given Delsarte surface

XA in [1] as A∗ := (detA)A−1 , and

d := gcd(a∗ij), m := |detA| B := mA−1 = ±d−1A∗ (3.2)

by using these, one can define the projection mappings

πB : (zi) 7→

(
3∏
j=0

z
bij
j

)
& πA : (zi) 7→

(
3∏
j=0

z
aij
j

)
(3.3)

of the desired diagram

Xm
πB−→ XA

πA−→ X := X1. (3.4)

The covering mappings, πA and πB◦πA : (zi) 7→ (zmi ), both are ramified coverings,

and the ramification points lies in coordinate planes. These points gives us the

ramification locus R := R0 + R1 + R2 + R3 ⊂ X, where Ri := X ∩ {zi = 0}.
Hence X rR is unramified.

Moreover, the fundamental group π1(X r R) is known to be abelian which

means it is isomorphic to H1(X r R) by Hurewicz theorem. Hence, using the

Poincaré-Lefschetz duality we get H1(X r R) = H3(X,D). This means one can

obtain the following [2];

π1(X rR) = H2(R)/H2(X) = G

where G ∼= Z3 is a multiplicative abelian group generated by four generators,

say, t0, t1, t2, t3 with the relation t0t1t2t3 = 1. Additionally each generator ti ∈ G
can be assessed on fundamental classes of Rj as δij, the Kronecker delta. We see

that the topological covering πA is unramified outside any neighbourhood of the

ramification locus and is determined uniquely by a subgroup of G of finite index.

We can identify this subgroup with kernel of an epimorphism α : G� G.

11



Homogeneity property of Delsarte surfaces allows us to consider mappings

related to A and B (3.3) as endomorphisms of G, inducing endomorphisms

Am, Bm : G/mG → G/mG. Specifically, a generator ti ∈ G/mG acts on Xm

by multiplication of the i-th coordinate with a fixed m-th root of unity. Hence

we deduce;

mG ⊂ Ker α, Γ := Ker α/mG = Ker Bm = Im Am, Im Bm = Ker Am

these imply that XA is birationally isomorphic to Xm/Γ.

At this point we can give another definition for Delsarte surfaces, relying only

on α [2];

Definition 3.1.2. For a given α : G � G with finite |G|, the corresponding

Delsarte surface Xα can be defined as (any) smooth analytic compactification of

the (unramified) covering of the complement X rR.

3.2 Divisors

Initially, we consider the Fermat surface Xm as a covering, via choosing an m that

satisfies mG ⊂ Ker α. Now considering the straight lines in Xm as components

of pull-backs of Li := X ∩ {z0 + zi = 0}, we obtain m2 lines for each i. Namely;

L1(ζ, η) :(r : ωζr : s : ωηs)

L2(ζ, η) :(r : s : ωζr : ωηs)

L3(ζ, η) :(r : s : ωηs : ωζr)

where both ζ and η are m-th roots of unity, ω := exp(πi/m), and (r : s) ∈ P1.

In order to introduce Vα, we first fix an epimorphism α : G → G, along with

the covering projection mapping π : Xα → X. Then we consider the ramification

locus RΣ := R0 + R1 + R2 + R3 where Ri := X ∩ {zi = 0}. Recalling that the

3m2 straight lines in Fermat surface (which is itself a Delsarte surface, but also

a covering space of Xα for our purposes) comes from the pre-image of the lines

12



Li for i = 1, 2, 3, we also define LΣ := L1 + L2 + L3 so that we can define the

divisors on Xα;

Rς [α] := π∗Rς , Lς [α] := π∗Lς , Vα := RΣ[α] + LΣ[α]

where ς can be any one of the indexes {0, 1, 2, 3,Σ} except for the undefined L0.

Hence we see that the divisor Vα consists of the components of ramification

locus of the above covering, images of straight lines in the covering Fermat surface

Xm, and the exceptional divisors (coming from the resolution of singularities)[2].

13



Chapter 4

Main Results

We are interested in the epimorphism Bm : G/mG � G ⊂ G/mG where

G/mG := Gm is generated by < t0, . . . , t3|tmi = 1 >. On this setting, we can

replace each ti with an m-th root of unity, via fixing a primitive root ζ and

taking ti = ζki . Hence we have;

zi ζkizi

∏3
j=0 z

bij
j

∏3
j=0

(
ζkjzj

)bij .
ti

πB πB

Following this diagram, we can explicitly write the kernel of the epimorphism

as

Γ = {[ζk0 : ζk1 : ζk2 : ζk3 ] ∈ Gm|
3∏
j=0

ζkjbij = const(i)}

where const(i) is a constant w.r.t i.
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4.1 The Relation Matrix

We want to translate Gm into a module in order to be able to employ Smith

normal form method in our work. In order to do so, we use the identification of

[ζk0 : ζk1 : ζk2 : ζk3 ] with (k0, k1, k2, k3), following Shioda [1]. This enables us to

see Gm as a module

Mm := {(k0, k1, k2, k3) ∈ (Zm)4|
∑
i

ki ≡ 0 mod m}

and the image of the endomorphism Bm : Mm →Mm becomes

LA := {(k0, k1, k2, k3)B|(k0, k1, k2, k3) ∈Mm}.

Now we can consider calculating Smith normal forms of the corresponding relation

matrices to determine the structure of these modules.

Lemma 4.1.1. We have LA = Mm/Γ, where Γ is generated by (1, 1, 1, 1) and the

rows of A.

Proof. We need to show that

Γ = Ker Bm ⊃ {(k0, k1, k2, k3)A|(k0, k1, k2, k3) ∈Mm}.

Using the relation AB = BA = m14 where 14 is the 4× 4 identity matrix, we see

that any element α ∈Mm of the form (k0, k1, k2, k3)A with aij ∈ A gives us

(k0, k1, k2, k3)AB = (ko, k1, k2, k3)m ≡ (0, 0, 0, 0) mod m.

Hence elements of the form (k0, k1, k2, k3)A are in Γ. Now, take an element from

Γ, say k := (k0, k1, k2, k3), so that kB ≡ δ(1, 1, 1, 1) mod m for some δ ∈ Z. So

we get;

kB = (δ +mβ0, δ +mβ1, δ +mβ2, δ +mβ3)

kB = (δ, δ, δ, δ) + (β0, β1, β2, β3)AB.
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Since A and B are both non-degenerate, there exists a unique k s.t.

kB = (1, 1, 1, 1)δ + (β0, β1, β2, β3)AB. If we consider each row of A, rAi =

(ai0, ai1, ai2, ai3), we see that rA0 B = (m, 0, 0, 0) and similarly for other i’s. Hence

we can write an element of Γ as (1, 1, 1, 1)B−1δ+ β0r
A
0 + β1r

A
1 + β2r

A
2 + β3r

A
3 .

Thus one can build a relation matrix corresponding to Bm using (generators

of) Γ. For each B we define;

RelB =



a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a13 a23 a33

1 1 1 1


(4.1)

the relation matrix corresponding to LA. This completes the proof Theorem 1.1.2.

4.2 An Example

We give an example, in order to illustrate how we use Smith normal form on the

relation matrix 4.1 to determine if a Delsarte surface is cyclic or not.

Example 4.2.1. Take the singular Delsarte surface defined as the zero set of

zn−2
0 z1z3 + zn−2

1 z2z3 + zn2 + z2z
n−1
3 = 0.

This is the Delsarte surface with index 9 in the Appendix of [3]. It has the

corresponding matrices

A =


n− 2 1 0 1

0 n− 2 1 1

0 0 n 0

0 0 1 n− 1



B =


n(n− 1)(n− 2) −n(n− 1) 2(n− 2) −n(n− 3)

0 n(n− 1)(n− 2) −(n− 2)2 −n(n− 2)

0 0 (n− 1)(n− 2)2 0

0 0 −(n− 2)2 n(n− 2)2


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with m = n(n − 1)(n − 2)2. So we see that the module LA consists of elements

of the form;

(n(n− 1)(n− 2)k0, . . .

− n(n− 1)k0 + n(n− 1)(n− 2)k1, . . .

2(n− 2)k0 − (n− 2)2k1 + (n− 1)(n− 2)2k2 − (n− 2)2k3, . . .

− n(n− 3)k0 − n(n− 2)k1 + n(n− 2)2k3).

We see that these elements (hence LA) are generated by

α = (n(n− 1)(n− 2),−n(n− 1)2, 2(n− 2), n)

which has order (n− 1)(n− 2)2, giving us LA ∼= Z(n−1)(n−2)2 .

However, if we build the relation matrix for LA as in 4.1, calculating its Smith

normal form gives us the same information but in a more efficient way;

RelB =



n− 2 1 0 1

0 n− 2 1 1

0 0 n 0

0 0 1 n− 1

1 1 1 1


∼=



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 (n− 1)(n− 2)2

0 0 0 0


here ∼= used to imply that the right-hand side matrix is the Smith normal form

of left-hand side matrix. This matrix implies, by Corollary 2.3.7, that LA ∼=
Z(n−1)(n−2)2 .

Calculating all the Smith normal forms corresponding to each Delsarte surface

with only ADE singularities gives us:

51 out of 83 resulted in a Smith normal form of the form;
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 f


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where f |m, f < m, these are the cyclic Delsarte surfaces with LA ∼= Zf .

16 out of 83 resulted in a Smith normal form of the form;
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 m


these are cyclic with maximum possible order m, i.e LA ∼= Zm.

15 out of 83 resulted in a Smith normal form of the form;
1 0 0 0

0 1 0 0

0 0 p 0

0 0 0 q


where p|m and q|m but possibly q = m, these are the cases with LA ∼= Zp ⊕ Zq.

last case results in a Smith normal form of the form;
1 0 0 0

0 m 0 0

0 0 m 0

0 0 0 m


which is the Fermat surface of degree m, with LA = Mm

∼= Z3
m. Again, explicit

results are in the Appendix A.
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Appendix A

Data

In the below table, we give explicit results for calculated Delsarte surfaces. All

surfaces in this list are taken from [3]. To the left is just an index, as in [3] with

the slight change that the ones marked with * are the cyclic Delsarte surfaces,

in the middle are the polynomials that generate the surface and to the right are

the corresponding modules LA. Notice that 83-th case (Fermat case) has a mark

too, because it is also one of cases mentioned in [2].
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1* zn−2
0 z1z2 + zn−2

1 z2z3 + zn2 + z0z
n−1
3 Z((n−1)(n−2)2+1)

2* zn−2
0 z1z2 + zn−2

1 z2z3 + zn2 + z1z
n−1
3 Z((n−2)(n2−3n+1))

3* zn−2
0 z1z2 + z0z

n−2
1 z2 + zn2 + z0z

n−1
3 Z((n−1)(n2−4n+3))

4* zn−2
0 z1z2 + z0z

n−2
1 z3 + zn2 + z0z

n−1
3 Z((n−1)(n2−4n+3)+1)

5* zn−2
0 z1z2 + z0z

n−2
1 z3 + zn2 + z1z

n−1
3 Z((n−1)(n2−4n+3)−(n−2))

6* zn−2
0 z1z2 + z0z

n−2
1 z3 + zn2 + z2z

n−1
3 Z((n−1)(n2−4n+3))

7* zn−2
0 z1z3 + zn−2

1 z2z3 + zn2 + z0z
n−1
3 Z((n−1)(n−2)2−(n−3))

8* zn−2
0 z1z3 + zn−2

1 z2z3 + zn2 + z1z
n−1
3 Z((n−2)(n2−3n+1))

9* zn−2
0 z1z3 + zn−2

1 z2z3 + zn2 + z2z
n−1
3 Z((n−1)(n−2)2)

10* zn−2
0 z1z3 + z0z

n−2
1 z3 + zn2 + z0z

n−1
3 Z((n−1)(n2−4n+3)−(n−3))

11 zn−2
0 z1z3 + z0z

n−2
1 z3 + zn2 + z2z

n−1
3 Z2 ⊕ Z((n−1)(n2−4n+3)/2)

12* zn−1
0 z1 + zn−1

1 z2 + zn2 + z0z1z
n−2
3 Z((n−1)2(n−2))

13* zn−1
0 z1 + zn−1

1 z2 + zn2 + z0z2z
n−2
3 Z((n−1)2(n−2))

14* zn−1
0 z1 + zn−1

1 z2 + zn2 + z1z2z
n−2
3 Z((n−1)2(n−2))

15* zn−1
0 z1 + zn−1

1 z3 + zn2 + z0z1z
n−2
3 Z((n−1)(n2−3n+1)+1)

16* zn−1
0 z1 + zn−1

1 z3 + zn2 + z0z2z
n−2
3 Z((n−1)2(n−2)+1)

17* zn−1
0 z1 + zn−1

1 z3 + zn2 + z1z2z
n−2
3 Z((n−1)(n2−3n+1))

18 zn−1
0 z1 + z0z

n−1
1 + zn2 + z0z1z

n−2
3 Z(n−2) ⊕ Z(n(n−2))

19* zn−1
0 z1 + z0z

n−1
1 + zn2 + z0z2z

n−2
3 Z((n(n−2)2)

20 zn−1
0 z2 + zn−1

1 z2 + zn2 + z0z1z
n−2
3 Z(n−1) ⊕ Z((n−1)(n−2))

21* zn−1
0 z2 + zn−1

1 z3 + zn2 + z0z1z
n−2
3 Z((n−1)(n2−3n+1))

22* zn−1
0 z2 + zn−1

1 z3 + zn2 + z0z2z
n−2
3 Z((n−1)2(n−2))

23* zn−1
0 z2 + zn−1

1 z3 + zn2 + z1z2z
n−2
3 Z((n−1)(n2−3n+1))

24* zn−1
0 z3 + zn−1

1 z3 + zn2 + z0z1z
n−2
3 Z(n(n−1)(n−3))

25* zn−1
0 z3 + zn−1

1 z3 + zn2 + z0z2z
n−2
3 Z((n−1)(n2−3n+1))

26* zn0 + zn1 + zn−1
2 z3 + z0z1z

n−2
3 Z(n(n−1)(n−2))

27* zn0 + zn1 + zn−1
2 z3 + z0z2z

n−2
3 Z(n(n2−3n+1))

28* zn0 + zn1 + z0z
n−1
2 + z0z1z

n−2
3 Z(n(n−1)(n−2))

29* zn0 + zn1 + z0z
n−1
2 + z0z2z

n−2
3 Z(n(n−1)(n−2))

30* zn0 + zn1 + z0z
n−1
2 + z1z2z

n−2
3 Z(n(n−1)(n−2))

31* zn−1
0 z1 + zn−1

1 z2 + z0z
n−2
2 z3 + z0z1z

n−2
3 Z((n−2)(n2−4n+5))

32* zn−1
0 z1 + zn−1

1 z2 + z0z
n−2
2 z3 + z0z2z

n−2
3 Z((n−2)3−1)

33* zn−1
0 z1 + zn−1

1 z2 + z0z
n−2
2 z3 + z1z2z

n−2
3 Z((n−2)3)

34* zn−1
0 z1 + zn−1

1 z2 + z1z
n−2
2 z3 + z0z2z

n−2
3 Z((n−2)3−(n−1))

35* zn−1
0 z1 + zn−1

1 z2 + z0z1z
n−2
2 + z0z2z

n−2
3 Z((n−2)3)

36* zn−1
0 z1 + z0z

n−1
1 + z0z

n−2
2 z3 + z1z2z

n−2
3 Z((n−1)(n−2)(n−3))

37* zn−1
0 z2 + zn−1

1 z2 + z0z
n−2
2 z3 + z0z1z

n−2
3 Z((n−1)(n2−5n+7))
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38* zn−1
0 z2 + zn−1

1 z3 + z0z
n−2
2 z3 + z0z1z

n−2
3 Z((n−2)(n2−4n+3)+1)

39* zn−1
0 z2 + zn−1

1 z3 + z0z
n−2
2 z3 + z0z2z

n−2
3 Z((n−2)(n2−4n+3))

40* zn−1
0 z2 + zn−1

1 z3 + z0z
n−2
2 z3 + z1z2z

n−2
3 Z((n−2)(n2−4n+2))

41* zn−1
0 z2 + zn−1

1 z3 + z1z
n−2
2 z3 + z0z1z

n−2
3 Z((n−2)3)

42 zn−1
0 z2 + zn−1

1 z3 + z1z
n−2
2 z3 + z0z2z

n−2
3 Z(n−2) ⊕ Z((n−2)2)

43* zn0 + zn1 + z0z
n−2
2 z3 + z0z1z

n−2
3 Z(n(n−2)2)

44* zn0 + zn1 + z0z
n−2
2 z3 + z0z2z

n−2
3 Z(n(n2−4n+3))

45* zn0 + zn1 + z0z
n−2
2 z3 + z1z2z

n−2
3 Z(n(n2−4n+3))

46* zn0 + zn1 + zn−1
2 z3 + z0z

n−1
3 Z(n(n−1)2)

47 zn0 + zn1 + zn−1
2 z3 + z2z

n−1
3 Zn ⊕ Z(n(n−2))

48 zn0 + zn1 + z0z
n−1
2 + z0z

n−1
3 Z(n−1) ⊕ Z(n(n−1))

49 zn0 + zn1 + z0z
n−1
2 + z1z

n−1
3 Z(n−1) ⊕ Z(n(n−1))

50* zn−2
0 z1z2 + zn−2

1 z2z3 + z0z
n−2
2 z3 + z0z

n−1
3 Z((n−2)(n2−5n+7))

51* zn−2
0 z1z2 + zn−2

1 z2z3 + z0z
n−2
2 z3 + z1z

n−1
3 Z((n−2)3−(n−2)2+1))

52* zn−2
0 z1z2 + zn−2

1 z2z3 + z1z
n−2
2 z3 + z0z

n−1
3 Z((n−2)3−(n2−5n+7))

53* zn−2
0 z1z2 + zn−2

1 z2z3 + z0z1z
n−2
2 + z0z

n−1
3 Z((n−2)2(n−3))

54* zn−2
0 z1z2 + zn−2

1 z2z3 + z0z
n−2
2 z3 + zn3 Z((n−2)3−(n−3))

55* zn−2
0 z1z2 + zn−2

1 z2z3 + z1z
n−2
2 z3 + zn3 Z((n−2)(n2−4n+3))

56* zn−2
0 z1z2 + zn−2

1 z2z3 + z0z1z
n−2
2 + zn3 Z((n−2)3−2n+5))

57 zn−2
0 z1z2 + z0z

n−2
1 z2 + z0z1z

n−2
2 + zn3 Z(n−3) ⊕ Z(n(n−3))

58* zn−1
0 z1 + zn−1

1 z2 + zn−1
2 z3 + z0z1z

n−2
3 Z((n−2)(n2−3n+3))

59* zn−1
0 z1 + zn−1

1 z2 + zn−1
2 z3 + z0z2z

n−2
3 Z((n−2)3+(n2−4n+3))

60* zn−1
0 z1 + zn−1

1 z2 + zn−1
2 z3 + z1z2z

n−2
3 Z((n−1)(n−2)2)

61* zn−1
0 z1 + zn−1

1 z2 + z0z
n−1
2 + z1z2z

n−2
3 Z((n−2)(n2−3n+3))

62* zn−1
0 z1 + zn−1

1 z2 + z1z
n−1
2 + z0z2z

n−2
3 Z((n−1)(n−2)2)

63* zn−1
0 z1 + zn−1

1 z3 + zn−1
2 z3 + z0z1z

n−2
3 Z((n−1)(n−2)2)

64* zn−1
0 z1 + zn−1

1 z3 + zn−1
2 z3 + z0z2z

n−2
3 Z((n−1)(n−2)2)

65* zn−1
0 z1 + zn−1

1 z3 + zn−1
2 z3 + z1z2z

n−2
3 Z((n−1)2(n−3))

66* zn−1
0 z1 + zn−1

1 z3 + z1z
n−1
2 + z0z2z

n−2
3 Z((n−1)(n2−4n+5))

67 zn−1
0 z1 + z0z

n−1
1 + zn−1

2 z3 + z0z1z
n−2
3 Z(n−2) ⊕ Z((n−1)(n−2))

68* zn−1
0 z1 + z0z

n−1
1 + zn−1

2 z3 + z0z2z
n−2
3 Z((n−2)(n2−3n+1))

69* zn−1
0 z1 + zn−1

1 z2 + zn−1
2 z3 + zn3 Z((n−1)3)

70* zn−1
0 z1 + zn−1

1 z2 + z0z
n−1
2 + zn3 Z(n(n2−3n+3))

71* zn−1
0 z1 + zn−1

1 z2 + z1z
n−1
2 + zn3 Z(n(n−1)(n−2))

72 zn−1
0 z1 + zn−1

1 z3 + zn−1
2 z3 + zn3 Z(n−1) ⊕ Z((n−1)2)

73 zn−1
0 z1 + zn−1

1 z3 + z1z
n−1
2 + zn3 Z(n−1) ⊕ Z((n−1)2)

74* zn−1
0 z1 + z0z

n−1
1 + zn−1

2 z3 + zn3 Z(n(n−1)(n−2))
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75 zn0 + zn1 + zn2 + z0z1z
n−2
3 Zn ⊕ Z(n(n−2))

76 zn0 + zn1 + zn2 + z0z
n−1
3 Zn ⊕ Z(n(n−1))

77* zn−2
0 z1z2 + zn−2

1 z2z3 + z0z
n−2
2 z3 + z0z1z

n−2
3 Z((n−3)3+(n2−5n+7))

78* zn−1
0 z1 + zn−1

1 z2 + zn−1
2 z3 + z0z

n−1
3 Z((n3−4n2+6n−4))

79* zn−1
0 z1 + zn−1

1 z2 + zn−1
2 z3 + z1z

n−1
3 Z((n−1)(n2−3n+3))

80* zn−1
0 z1 + zn−1

1 z2 + zn−1
2 z3 + z2z

n−1
3 Z((n−1)2(n−2))

81 zn−1
0 z1 + zn−1

1 z2 + z1z
n−1
2 + z2z

n−1
3 Z(n−1) ⊕ Z((n−1)(n−2))

82 zn−1
0 z1 + z0z

n−1
1 + zn−1

2 z3 + z2z
n−1
3 Z(n−2) ⊕ Z(n(n−2))

83* zn0 + zn1 + zn2 + zn3 Zn ⊕ Zn ⊕ Zn
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