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ABSTRACT

JOINT REPLENISHMENT PROBLEM IN TWO
ECHELON INVENTORY SYSTEMS WITH

TRANSPORTATION CAPACITY

Nasuh Çağdaş Büyükkaramıklı

M.S. in Industrial Engineering

Supervisor: Prof. Ülkü Gürler , Asst. Prof. Osman Alp

December, 2006

In this study, we examine the stochastic joint replenishment problem in the pres-

ence of a transportation capacity. We first study the multi-retailer and single-

echelon setting under a quantity based joint replenishment policy. A limited

fleet of capacitated trucks is used for the transportation of the orders from the

ample supplier in our setting. We model the shipment operations of the trucks

as a queueing system, where the customers are the orders and trucks are the

servers. Consequently, different transportation limitation scenarios and meth-

ods of approach for these scenarios are discussed. We then extend our model

to a two-echelon inventory system, where the warehouse also holds inventory.

We characterize the departure process of the warehouse inventory system, which

becomes the arrival process of the queueing system that models the shipment

operations between the warehouse and the retailers. This arrival process is then

approximated to an Erlang Process. Several numerical studies are conducted in

order to assess the sensitivity of the total cost rate to system and cost parameters

as well as the performance of the approximation.

Keywords: Stochastic Joint Replenishment Problem, Queueing Theory, Trans-

portation Limitation, Inventory Theory.
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ÖZET

ULASIM KISITLI İKİ DÜZEYLİ ENVANTER
SİSTEMLERİNDE TOPLU SİPARİŞ PROBLEMİ

Nasuh Çağdaş Büyükkaramıklı

Endüstri Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Ülkü Gürler , Yard. Doç. Dr. Osman Alp

Aralık, 2006

Bu çalışmada ulaşım kapasiteli envanter sistemlerindeki toplu sipariş problemi

incelenmiştir. Önce tek düzeyli çok perakendecili bir ortamda miktar bazlı

toplu sipariş politikaları incelenmiştir. Siparişlerin, kapasitesi sınırsız olan bir

tedarikçiden perakendeciye taşınmasında kapasiteli kamyonlardan oluşmuş bir filo

kullanılmaktadır. Toplu siparişlerin kamyonlar tarafindan taşınması işlemleri,

kamyonların birer işgoren, siparişlerin de birer müşteri olduğu bir kuyruk sis-

temi ile modellenmiştir. Bu model altında sisteme ait toplam maliyet fonksiy-

onu yazılmış, farklı ulaşım kısıtı senaryoları için çeşitli çözüm yaklaşımları

geliştirilmiştir. Daha sonra model, tedarikçide de envanter tutulan iki düzeyli

bir envanter sistemine genişletilmiştir. Depo envanter sisteminin çıkış sürecinin,

depo ile perakendeciler arasındaki taşıma sisteminin modellenmesinde kullanılan

kuyruk sisteminin giriş sürecine eşdeğer olduğu gözlemlenmiş ve bu süreç karak-

terize edilmiştir. Bu giriş sürecini bir Erlang süreci ile yaklaşıklayarak, sisteme

ait toplam maliyet fonksiyonu türetilmiştir. Yapılan yaklaşıklamanın perfor-

mansını ölçmek ve sistem parametrelerinin duyarlılığını gözlemlemek amacıyla

çeşitli sayısal çalışmalar yürütülmüştür.

Anahtar sözcükler : Rassal Toplu Sipariş Problemi, Kuyruk Kuramı, Ulaşım

Kısıtlamaları, Envanter Kuramı.
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Chapter 1

Introduction and Literature

Review

Current research trend in logistics management stresses the importance of in-

tegration of different functional operations within a firm throughout the supply

chain. By the integration of the supply chain, many companies have succeeded

in reducing costs and increasing service levels. Recent advances in the infor-

mation technology enable the sharing of available information among different

parts of the supply chain more effectively, which facilitates the coordination of

the different functional areas within a firm.

Inventory and transportation costs comprise the bulk of the total operating

costs of a distribution system. Substantial reduction in total costs is achiev-

able by incorporating transportation and inventory control decisions carefully. In

general, there is a trade-off between the inventory and transportation costs in a

logistics system. Hence, coordinated planning of the inventory and transportation

decisions can greatly reduce the total operating costs of the system.

In this study, we focus on coordinated replenishment policies in single-echelon

and two-echelon single-item/multi-location inventory settings under transporta-

tion capacity. In particular, we study Stochastic Joint Replenishment Problem

(SJRP) in settings, where transportation is capacitated.

1



CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 2

SJRP is the determination of replenishment and stocking decisions for dif-

ferent items (or retailers) to minimize total expected operating (i.e. holding,

shortage and order setup/transportation) costs per unit time, when demands are

random and joint ordering cost structures are present. In most of the real world

systems, the ordering cost structure presents an opportunity to benefit from the

economies of scale in replenishment by giving orders jointly. This is possible

when the items are purchased from the same supplier or they share the same

transportation vehicle.

In most of the distribution systems, the transportation of items are capac-

itated. Most of the firms have their own limited fleet for their transportation

operations. (e.g. Shell, BP, etc...), whereas some of the firms contract with a

3PL provider for running of their transportation operations. In both of the cases,

the transportation is not unlimited. The fleet size and the capacity of the trucks

have their own kind of cost structures. Hence, the size of the fleet that is used

in the transportation of the orders and the capacity of the vehicles are also the

challenging decisions companies have to make. So, considerable cost savings can

be achieved by coordinating the joint replenishment policy decisions with these

aforementioned transportation related decisions in the supply chain systems.

The stochastic joint replenishment problem (SJRP) differs from the determin-

istic joint replenishment problem greatly in modelling methodologies and policy

structures. We refer the reader to Aksoy and Erengüc [1] and Goyal and Satir

[20] for the extensive review of the works about the deterministic JRP .

To our knowledge, Ignall [23] is the only study that analyzes the optimal

joint replenishment policy in the SJRP . The optimal policy, even for a two-item

case and zero lead-times has a very complicated structure. As the number of

items in the system increases, the structure of the optimal policy would be more

complicated. Therefore, the control and the implementation of the optimal joint

order policies in practice would be even more challenging. This is one of the

main reasons why most of the existing studies in the literature is mostly focused

on finding and evaluating intuitive heuristic policy classes, which are easier to

control and implement in practice.
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Balintfy [6], which is the earliest study in the stochastic joint replenishment

problem literature, develops a continuous-review joint ordering policy: (S, c, s),

which is referred to as the can-order policy. This policy determines the reorder,

s = (s1, s2, ..., sN) and can-order, c = (c1, c2, ..., cN) points as well as the order

up-to levels, S = (S1, S2, ..., SN) for each item i. The policy operates as follows:

a demand to item i triggers a replenishment order whenever the inventory po-

sition of that item drops to its reorder point si. After the replenishment order,

the inventory position of item i is increased to its order up-to level Si. At the

same time, any other item j whose inventory position is less than or equal to

its can-order point, cj (sj < cj < Sj) is also included to the joint replenishment

order, and their inventory positions are raised to their order up-to levels Sj. The

implementation of the policy seems to be simple, however the calculation of op-

erating characteristics under this policy is very difficult, even in the presence of

unit Poisson demands.

Silver [34] studies a special case of the can-order policy. In his study, the lead-

time is zero, the items face unit Poisson demands, shortages are not allowed and

c = S-1 and s=0. With the objective of minimizing the expected total cost per

unit per time, Silver [34] proves that the can-order policy performs better than the

individual control policy if the cost of ordering an item is equal to that of ordering

two items jointly. If these ordering costs are not equal, he shows that there exists

a critical value for the fixed item ordering cost above which joint replenishment

policy becomes more profitable compared to individual replenishment policy.

Silver [36] also develops a new approximation technique for the analysis of

the can-order policies. In this approximation technique, the N -item problem is

decomposed into N single-item problems. This single-item problem is first ana-

lyzed by Silver [35] and solved optimally by Zheng [44]. Subsequently, Thompson

and Silver [39], Federgruen et al. [16], Silver [37], Van Eijs [42] and Schultz and

Johansen [33] focus on the different aspects of can-order type policies.

The difficulties in the analytical treatment of the can-order policy as well as



CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 4

the size of the optimization problem (for an N-item setting, can-order policy em-

ploys 3N policy parameters) call for the need for more parsimonious continuous-

review control policies.

The continuous-review (Q,S) policy, one of the most frequently used policies

in the industry, is first proposed by Renberg and Planche [30]. In this policy,

whenever a total demand of Q units accumulate for all items, a joint order of size

Q is given to the supplier, and the inventory positions of each item is raised to

the vector of order-up-to levels S=(S1, S2, ..., SN). This policy uses N + 1 policy

parameters for an N -item setting. Pantumsinchai [29] subsequently presents the

exact analysis of the (Q,S) policy and compares the performance of it with that

of (S, c, s) policy. The numerical results indicate that the (Q,S) policy performs

better than the can-order policy if the fixed ordering cost is high and the backorder

cost is low, whereas the can-order policy only performs better if the fixed ordering

cost is low.

Atkins and Iyogun [2] suggest two periodic review replenishment policies for

unit Poisson demands. In the first proposed policy, which is referred as P , inven-

tory positions of all items are raised to their order up-to levels S at the end of

each period of length T . In the second policy, which is represented by MP , the

review periods are integer multiples of a base period and review periods can differ

for each item. From the numerical results, Atkins and Iyogun [2] assert that P

and MP type policies outperform the (S, c, s) policy as the fixed ordering cost

increases.

Nielsen and Larsen [26] suggest a new policy referred to as the Q(S, s) policy.

This policy functions as follows: whenever a total demand of Q units are accu-

mulated since the last review, a replenishment order is triggered and the items

whose inventory positions at or below s in this review epoch are raised to their

order-up-to levels S.

Cachon [10] proposes a new policy for the dispatchment of the trucks in a

single-echelon distribution system, and compares the performance of this new

policy with those of (Q,S) and P type policies. This new policy, which is referred

to as the (Q,S|T ) policy operates as follows: the retailer reviews its inventory
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every T time units and trucks are dispatched if the accumulated retailer orders

can fill the trucks in such a way that one of the trucks has at least Q units and

others are full. Note that Q can take a value less than or equal to the truck

capacity in this particular policy.

In a recent study, Özkaya et. al [28], suggest a new parsimonious policy

for unit Poisson demands as well as for the batch demands. This policy, which

is referred to as (Q,S, T ) policy, is a sort of hybrid of the continuous review

(Q,S) and periodic review P policies. It performs as follows: the items are

reviewed continuously and the inventory positions of all items are raised to S =

(S1, S2, ..., SN) whenever a total Q demands accumulate for the items or T time

units have elapsed, whichever occurs first. It is shown numerically that (Q,S, T )

policy performs better than the other joint replenishment policies under most

of the settings. Next, we elaborate on the multi-echelon joint replenishment

literature.

There is a vast literature on multi-echelon inventory systems. For a general

review of the literature, the reader is referred to Federgruen [15]. The analytical

treatment of the policies for the SJRP in two-echelon inventory systems is more

difficult compared to single-echelon inventory systems. Therefore the studies

about SJRP in single-echelon inventory systems outnumber the studies in multi-

echelon inventory systems. Among the related works, Axsäter and Zhang [5] and

Cheung and Lee [13] study the SJRP for continuous review models in two-echelon

divergent inventory systems.

Özkaya [27] provides a modeling methodology for a general policy class for

the SJRP in two-echelon inventory systems. Via this modeling methodology, she

analyzes most of the joint replenishment policies in the literature in two-echelon

distribution systems and compares the performance of these policies in various

parameter settings.

Lastly, we mention about Vendor Managed Inventory (VMI) systems, which is

a related topic in the multi-echelon inventory management. The recent studies by

Çetinkaya and Lee [11] and Kiesmüller and de Kok [24] focus on different aspects

of consolidation policies in the V MI systems. In the V MI systems, small retailer
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orders are combined to larger shipments at the warehouse level according to a

consolidation policy. In most of the V MI literature, the problem is analyzed

from the warehouse perspective, though the impact of the consolidation policies

on the retailers’ performance is mostly neglected.

Existing literature in SJRP overlooks some important transportation matters

such as the effects of a limited fleet size and cargo capacity constraints. To our

knowledge, Cachon [10] and Gürbüz [21] are the only studies that incorporate the

truck capacity considerations with the analysis of the joint replenishment policies,

but in their studies, they both assume that there is an unlimited availability of

transportation vehicles. However, unlimited availability of transportation vehicles

is not possible in most of the real life applications. Therefore, the transporta-

tion limitation problem has been analyzed in the supply chain literature both

in deterministic and stochastic demand cases. In some of these studies, system

parameters are optimized for a given truck capacity and/or fleet size, whereas

there are some studies, where they are taken as decision variables, too. Next, we

briefly review the relevant supply chain literature on the transportation limitation

problem.

In both deterministic and stochastic demand cases, there are various models

that handle the truck/cargo capacity problem under the assumption of an unlim-

ited fleet size similar to Cachon [10]. In such a case, truck capacity constraint

greatly determines the ordering cost structure of the system.

In the deterministic demand case, Toptal et al.[41], Çetinkaya and Lee [12]

study different types of coordination problems in the presence of cargo capac-

ity constraints. Also, Benjamin [8] considers a joint production, transportation

and inventory problem with deterministic demand, allowing supply capacity con-

straints.

In the random demand case, Yano and Gerchak [43], Henig et al. [22] and

Ernst and Pyke [18] analyze different types of models with the truck capacity

consideration. Note that truck capacity is also considered to be one of the decision

variables in these aforementioned studies.
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In the literature, fleet size consideration is generally taken into account in

inventory-vehicle routing problems. Ball et al. [7] address the problem of finding

an optimal fleet size as well as determining the vehicle routes where the demand is

deterministic. In the stochastic demand case, Federgruen and Zipkin [17] study an

integrated vehicle routing and allocation problem with a given fleet of capacitated

vehicles. For a broader review of inventory-vehicle routing problems, we refer the

reader to Dror and Ball [14] and Ben-Khedher and Yao [9].

In a recent paper, Sindhuchao et al.[38] develop a mathematical programming

approach for the multi-item joint replenishment problem in an inventory-routing

system with a limited vehicle capacity. In this study, the demand is assumed

to be deterministic. Although the motivations behind this work are parallel to

ours, the methodology of the approach differs greatly in our problem due to the

random demand structure.

In this study we study a specific kind of a control policy for the SJRP, which

is (Q,S) policy, in the presence of a truck capacity and fleet size limitation in

both single and two-echelon divergent multi-retailer systems with unit Poisson

demands. To our knowledge, our study is the first one that incorporates the

decisions of the truck capacity and fleet size in the stochastic joint replenishment

problem.

The shipment operations of the trucks is modelled as a queueing system,

where the customers are the orders and trucks are the servers. By using some

of the key results in the queueing theory, we derive the operating characteristics

of the single-echelon inventory systems in the presence of the limited fleet size

of the capacitated trucks analytically. We investigate the characteristics of the

total cost rate function and construct methods of approach for different kinds

of transportation limitation when there is a maintenance/depreciation cost rate

factor per truck. We also present the results of our numerical study to assess the

sensitivity of decision variables to the system parameters.

The analysis for the single-echelon inventory system is extended to a two-

echelon system, where the upper echelon also holds inventory. In this two-echelon
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system, a joint retailer order has to be satisfied by the warehouse inventory sys-

tem before it is dispatched by the trucks. Since the operations of the trucks are

modeled as a queueing system, the departure process of the warehouse inventory

system constitutes the arrival process for this queueing system. This problem

in our setting leads us to a more general problem, and we derive the general

characteristics of the departure process of an (S-1, S) inventory system where

the arrivals occur according to a renewal process. From these general results, we

obtain the first two moments of the inter-departure times of the warehouse inven-

tory system. Working with the original departure process, which has dependent

increments is analytically intractable due to its complicated nature, therefore, we

approximate the departure process to an Erlang Process, and derive the operat-

ing characteristics of the system according to this approximation. We compare

the approximation results with the simulation results and present the sensitivity

of the system to the decision and system variables in the numerical study part.

We observe that our approximation method works fairly well except for very high

traffic rate. (ρ > 98%)

The remainder of the thesis is organized as follows:

In Chapter 2, we analyze the SJRP with transportation limitation in the

single-echelon inventory systems. In Chapter 3, the analysis is extended to a two-

echelon inventory system, where the upper echelon also holds inventory. Finally,

in Chapter 4, we conclude the thesis by giving an overall summary of our work, our

contribution to the existing literature and its practical implications with future

research directions.



Chapter 2

Single-Echelon Environment

In this chapter we present an analytical model for the coordination of inventory

and transportation decisions in a single echelon, single item, multi-retailer dis-

tribution system under transportation capacity. Main assumptions of the model

are presented in Section 2.1. Section 2.2 presents a preliminary analysis, which

is followed by the derivation of the expressions for the key operating character-

istics and the statement of the optimization problem in Section 2.3. In Section

2.4, we discuss some of the characteristics of the total cost rate function of the

system, which we use in Section 2.5, while constructing the search algorithms

according to different scenarios of transportation limitation. Finally in Section

2.6, we present the numerical results, where we assess the total cost rate of the

system with respect to the system parameters.

2.1 Model Characteristics

We consider a single item, multi-retailer inventory setting under continuous re-

view. (The model presented in this Chapter can be easily adopted to a multiple-

items/single-retailer setting). The retailers face stationary and independent unit

Poisson demands with rate λi (i = 1, 2, ..N), and all unmet demands are fully

9
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Figure 2.1: Illustration of the environment

Ample
Supplier

………

N retailers

li

D/2

Cross-dock

….

K trucks

backordered. Retailers are supplied from an ample supplier via a fleet of K iden-

tical trucks of capacity C that are used in the transportation of retailer orders.

When a truck is available, units are carried from the ample supplier to a cross-

dock station, which takes D/2 time units. The truck returns back to its base at

the ample supplier after unloading at the cross-dock station. At the cross-dock

station, items destined to each retailer are transferred to smaller sized vehicles

to be conveyed to the retailers. We do not allow for any re-allocation of items

to the retailers at the cross-dock station. We assume that the transportation

is not capacitated after the cross-dock point. The lead time between retailers

and the cross-dock point, which we refer as minor lead time, is li for retailer i.

Therefore, the order delivery lead time for retailer i is Li, where Li = li + D/2.

Figure 2.1 illustrates the considered system. Holding cost per unit per time is

charged at each retailer with rate hi. There is a common fixed order setup cost



CHAPTER 2. SINGLE-ECHELON ENVIRONMENT 11

for each order, which is linear to the truck capacity, A(C) = a × C for a > 0.

The shortage cost per unit per time at retailer i is incurred at a rate of βi. Any

possible additional costs for monitoring the inventory system continuously are

ignored. The joint orders are satisfied based on the first come-first serve (FCFS)

rule at the ample supplier. Under this policy and cost structure, the objective is

to minimize the expected total cost per unit time.

Due to the ordering cost structure, retailers implement a joint replenishment

policy to manage their inventory and replenishment decisions. Since we are con-

sidering an ample supplier, the orders received from the retailers constitute a

compound renewal process, where inter-order time, Y , and the order quantity,

Q0, have a joint density, fY,Q0(y, q). Joint orders received by the ample supplier

are shipped immediately by trucks if there are sufficiently many trucks available

to hold the existing order. In such a case, any given loaded truck spends a total

of D time units to reach to the cross-dock point, unload the item and return

back to its base. If there are not sufficiently many trucks available at the time of

an order trigger at the base, then the order waits until enough number of trucks

become available. Hence, the shipment operations of the retailer orders at the

ample supplier can be modeled as a queueing model where the orders are the

customers in the system and the trucks are the servers which are busy while

carrying the materials to the cross-dock point and return back.

We assume that the retailers use (Q,S) policy of Renberg and Planche [30]

as the joint replenishment policy for controlling their inventory in this study. In

this continuous review policy, whenever a total demand of Q units are accumu-

lated at the retailer level, a joint order of size Q is given to the supplier, and

the inventory positions of the retailers are raised to the vector of order-up-to

levels S=(S1, S2, ..., SN). We ignore the truck loading and unloading times, how-

ever they could be easily incorporated to our model by modifying the existing

parameters.
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2.2 Preliminary Analysis

In this section we present the methods that we use in our analysis. First, we

introduce our notation. Let ri be the probability that the demand is for retailer

i, given that a demand arrival has occurred. Since demand process is Poisson, we

have ri = λi/λ0, where λ0 = ΣN
i=1λi. Under the (Q,S) policy, a cycle is defined

as the time between two consecutive joint order placements, where the inventory

positions of all retailers are raised to S = (S1, S2, ..., SN). Inter-order time, which

is denoted by X is the cycle length. Since the last epoch, total of Q retailer

demands must be accumulated to place an order again. Hence, fX,Q0(x, q) = 0 for

q 6= Q, which means that Q0 is always equal to Q, where f denote the joint density

of X and Q0. Since the inter-arrival times of the demands are exponential, X has

an Erlang Q distribution with scale parameter λ0. Let F (x, k, λ) and f(x, k, λ)

denote the probability distribution and density functions of an Erlang random

variable with shape and scale parameters k and λ, respectively and F (·)= 1−F (·)
is the complementary distribution for any distribution function. For clarity and

later use, we have the following definitions. At any given time t, IPi(t) denotes

the inventory position at retailer i and IP (t) denotes the total inventory position

at the retailer level. IP (t) = ΣN
i=1IPi(t) ≤ ΣN

i=1Si = S0. Also, let NIi(t) denote

the net inventory level at retailer i, and NI(t) = ΣN
i=1NIi(t) denote the total

inventory level at any given time t. A joint order is placed by the retailers when

IP (t) falls to S0−Q. If there are enough trucks on hand to meet the joint order

that is placed at time t, the order is immediately dispatched, otherwise it waits

until a truck becomes available.

A typical realization is depicted in Figure 2.2. In this particular realization

we ignore minor lead times li, and assume there are K = 2 trucks, S0 = 10,

C = 8 and Q = 5. Figure 2.2a shows the total inventory position IP (t) and

net inventory NI(t) at the retailer level and Figure 2.2b shows the number of

available trucks on hand. First joint order occurs at t1, and it is dispatched

immediately since there are enough trucks available. Second order occurs at t2,

and it is dispatched without any delay, too. However the third joint order placed

at time t3 is not dispatched immediately, since there is no available truck at
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Figure 2.2: Realization of the model
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time t3. After the placement of the third joint order, number of trucks on hand

decreases from 0 to −1. When the number of trucks on hand is negative, there

is at least one order that is waiting for a truck to be dispatched. The third joint

order in this illustration is dispatched at t1 + D = t3 + w, when a truck returns

back to the ample supplier.

Let W denote the time a joint order waits for dispatching. In our particular

realization, W = 0 for the first and the second joint orders, and W = w for

the third one. The lead-time (total transit time) for retailer i, (Li), with the

waiting time for a truck W constitute the effective lead-time for retailer i, which
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is denoted by Li = Li + W . W is a random variable and its distribution function

is denoted by FW (w) for w ≥ 0.

As mentioned above, joint orders are received from the retailers with an

Erlang − Q distributed inter-arrival time with scale parameter λ0 in a (Q,S)

policy. If Q ∈ (C/2, C] and there is an order integrity constraint, each joint order

occupies exactly one truck. Hence, dispatching operations act as an EQ/D/K

queue when more than a 50% truck utilization is guaranteed. Enforcing a min-

imum truck utilization may result in suboptimal policy parameters, however it

is a common practice in industry due to the transportation limitations and high

order set-up costs. Hence, FW (w), which is essential for deriving the operating

characteristics of our system, is identical to the waiting time distribution of an

EQ/D/K queue.

2.3 Derivation of the Operating Characteristics

In this section, the operating characteristics of our system are derived, and these

expressions are used in calculating the total cost rate. Total cost of the system

consists of two parts. The first part is the order setup cost and the latter is the

holding and backorder costs. We begin with expected cycle length, E[X]. As

noted in Section 2.2, X has an Erlang Q distribution with scale parameter λ0.

Therefore, expected cycle length is simply Q/λ0. In each cycle, the fixed ordering

cost of a joint retailer order is incurred once, and order setup cost rate is simply

A(C)× λ0/Q. The evaluation of the expected costs under the (Q,S) policy with

capacitated trucks and unlimited fleet size is analyzed by Cachon [10]. Note that

W = 0 and the lead-times (L1, L2, ..., LN) of the system are constants if there is

no limit on the fleet size. On the contrary, when the fleet size is limited, effective

lead-times, Li = Li + W , are random variables which may take any value on the

interval [Li,∞).

Axsater [3] presents an approach, which can be used to evaluate the expected

holding and backorder cost rate of a two-echelon inventory system consisting of
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Figure 2.3: Illustrations of how backordering and holding costs per unit are in-
curred
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a single depot and multiple retailers, both following base-stock policies with base

stock levels Si and deterministic lead-times. This approach is based on the obser-

vation that in such distribution systems, a unit ordered by retailer i is used to fill

the Sth
i subsequent demand following this order. Accordingly, expected time for a

unit that is held in the inventory and the expected time a unit is backordered can

be evaluated by relating the arrival time of the order and the arrival time of the

Sth
i subsequent demand. The illustrations of how the backordering and holding

costs are incurred for a unit are given in Figure 2.3a and Figure 2.3b, respectively.

The unit demand that occurs at time t arrives after the Sth
i subsequent demand

in Figure 2.3a. Therefore backorder cost per time is incurred for that unit. On
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the contrary, the unit demand that occurs at time t arrives before its Sth
i subse-

quent demand in Figure 2.3b. and holding cost per time is incurred for that unit.

Cachon [10] adopts this approach to a similar environment, where the retailers

use the (Q, S) policy in a coordinated fashion; there is an ample supplier, and

an unlimited number of capacitated trucks are used for the distribution of items

from the supplier to the retailers. We also use the same approach in our analysis.

We first define the function gi(Si, li), which corresponds to the expected hold-

ing and backorder costs incurred per time per unit for retailer i with a base-stock

level Si and a given effective lead time Li = Li+W = li, which is constant. Then,

gi(Si, li) = βi

∫ li

0

(li − x)f(x, Si, λi)dx + hi

∫ ∞

li

(x− li)f(x, Si, λi)dx. (2.1)

The expected backorder time a unit would face is expressed by the first integral

above, whereas the expected time a unit is stored in the inventory is expressed by

the second one. From the properties of the gamma distribution, we can rewrite:

∫ li

0

xf(x, Si, λi)dx = Si/λi

∫ li

0

f(x, Si + 1, λi)dx (2.2)

which corresponds to the probability that Sth
i demand occurs before li. The

probability of this event is identical to the probability that Si or more demands

occur in [0, li]. Therefore we can write

∫ li

0

f(x, Si, λi)dx = (1− FP (Si − 1, λili)) (2.3)

where FP (y, λli) denotes the cumulative probability distribution of a Poisson

process with rate λ. Hence, we can rewrite Equation (2.1) as follows:

gi(Si, li) =
1

λi

[
Si(hi + βi)FP (Si, λili)− λili(hi + βi)FP (Si − 1, λili) + βi(λili − Si)

]
.

(2.4)

Equation (2.4) gives the expected holding and backorder costs a unit demand

from retailer i faces when that unit demand triggers a joint replenishment de-

cision. When Q = 1 in a (Q,S) policy, a unit demand always triggers a joint

replenishment decision. Now we consider the general case when a unit demand

to retailer i is arrived, but a joint replenishment decision is not triggered until a
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total of Q ≥ 1 demands are accumulated. Let a unit demand to retailer i occurs

at time τ , and the trigger of a joint replenishment decision that contains this unit

demand to retailer i is delayed until τ + t. That joint order arrives at the retailer

at τ + t + li. Let Mi denote the total number of the demands occur at retailer

i between τ and τ + t. When Mi = mi, the unit demand occured at τ is used

to fill the (Si − mi)
th subsequent demand after τ + t. Therefore, the expected

holding and backorder cost that we incur for a unit demand from retailer i is

simply gi(Si −mi, li). It must be noted that, when mi ≥ Si, gi(Si −mi, li) still

gives the expected holding and backorder cost that is incurred for a unit demand

from retailer i. However, Equation (2.4) should be used for the calculation. The

reader is referred to Axsäter [4] for a detailed proof.

Let M0 ≥ Mi be the total number of retailer demands (including i) that have

occurred in (τ, τ + t]. When M0 = n, the probability that mi of these n demands

are from retailer i is the probability of having mi successful draws out of n, where

ri = λi/λ0 is the probability of success. Let Z(mi|n) be the probability mass

function of the number of successful ones from n draws. Then,

Z(mi|n) = Pr(Mi = mi|M0 = n) = (n
mi

)(ri)
mi(1− ri)

n−mi .

It is known that M0 is a uniformly distributed integer on the interval [0, Q − 1]

(see Axsäter [4]). Finally, we can derive the expected holding and backorder cost

per time per unit demanded from retailer i for a given effective lead-time Li = li

as below:

1

Q

Q−1∑
n=0

n∑
mi=0

Z(mi|n)gi(Si −mi, li). (2.5)

After the expected holding and backorder cost rate for retailer i is analyzed

for a given effective lead-time, we need the distribution function of the effective

lead-time in order to calculate the expectation of the holding and backorder cost

rate over effective lead-time. Since Li is constant, the distribution function of

the effective lead-time, Li = Li + W is determined by the distribution function

FW (w) of the waiting time W of an order for a truck to be procured.
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2.3.1 Derivation of the Waiting Time Distribution of an

Order for a Truck

In this subsection, we derive FW (w), which is essential for analyzing the operating

characteristics of our system. As mentioned in Section 2.2, the dispatching of the

orders via trucks operates as a queueing system and FW (w) is identical to the

waiting time distribution of this EQ/D/K queue. The following theorem provides

a basis for the method that we use to derive FW (w).

Theorem 1 (Tijms [40], p.321): The waiting time distribution FW (w) in the

multi-server GI/D/c queue is the same as in the single-server GIc∗/D/1 queue

in which the inter-arrival time is distributed as the sum of c inter-arrival times

in the GI/D/c queue.

The theorem has the following important corollary.

Corollary 1 (Tijms [40], p.321): The waiting time distribution (FW (w)) in the

Ek/D/c queue is identical to the waiting time distribution in the M/D/ck queue

with the same server utilization.

The dispatching of the trucks operate as an EQ/D/K queue. Due to the Corrol-

lary 1, in order to find the distribution of the time an order waits for dispatching,

we need the waiting time distribution of an M/D/c queue where c = Q×K. We

use the solution method that Franx [19] proposes to find FW (w) in an efficient

manner for such queues. In order to be coherent with the terminology, we use

customer and server instead of joint order and truck, respectively, from now on.

First, let pi(t) denote the probability of the system holding i customers at

time t. Since the service time is deterministic, all the customers in the service

will have left the system at time t + D. Consequently, customers in the system

at time t + D either have arrived during the time interval (t, t + D] or they were

waiting for service at time t. Therefore the following expression can be written
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by conditioning on the number of customers present at time t:

pi(t + D) = Σc
j=0pj(t)

(λ0D)i

i!
e−λ0D + Σi+c

j=c+1pj(t)
(λ0D)i+c−j

(i + c− j)!
e−λ0D, t ∈ R, i ∈ N .

(2.6)

When there are less than c customers in the system at time t, all customers

present at time t will be served at time t+D. If i customers arrive between t and

t+D then the number of customers at time t+D will be i. However, when there

are j > c customers in the system at time t, c of the customers will be served by

time t + D. If there are i ≥ 0 customers in the system at t + D, then j − c + i

customers must have arrived between t and t + D.

As t → ∞, we can obtain the stationary state probability of the number of

customers in the system, which is denoted by pi = limt→∞ pi(t) as

pi = Σc
j=0pj

(λ0D)i

i!
e−λ0D + Σi+c

j=c+1pj
(λ0D)i+c−j

(i + c− j)!
e−λ0D, i ∈ N . (2.7)

These expressions of pi’s constitute an infinite system of linear equations with

the normalization equation
∑∞

i=0 pi = 1. This infinite system of linear equations

can be reduced to a finite system of linear equations by the following theorem:

Theorem 2 (Tijms [40],p.289): The state probabilities (pj) of the M/D/c queue

exhibit geometric tail property:

pj ≈ δγ−j

for large j, where γ ∈ (1,∞) is the unique solution of the equation:

λ0D(1− γ) + c ln(γ) = 0.

Also, the constant δ is given by

δ = (c− λ0Dγ)−1

c−1∑
i=0

pi(γ
i − γc).

Via this geometric tail property, the infinite system of linear equations for the

pj’s is reduced to a finite system by replacing pj by pM(1/γ)j−M for j > M and

an appropriately chosen M . Gaussian Elimination method is one of the possible
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methods in the literature, which can be used to solve finite systems of linear

equations. The computational complexity of this method is O(M3)

We apply an iterative method for choosing the appropriate M with a predeter-

mined error bound, ε. The algorithm of the iterative method is demonstrated in

the Appendix A. 1. After deriving stationary state probabilities pi, we can derive

the stationary probability qi of the queue containing i customers, by q0 = Σc
0pi

and qi = pi+c for i > 0. Also we define the cumulative probability that there are

j or less customers in the queue as Gj =
∑j

i=0 qi. Finally, the following theorem

provides an expression for the Waiting Time Distribution in the queue.

Theorem 3 (Franx, [19]): For a M/D/c queue,

FW (w) = e−λ0(awD−w)

awc−1∑
j=0

Gawc−j−1
λj

0(awD − w)j

j!

where aw is the greatest integer less than or equal to the w
D

+ 1 for w ≥ 0.

A critical point for our analysis is whether this random structure of the effective

lead-time Li permits order-crossing or not, because in the stochastic lead time

environments, order crossing considerably complicates the situation. Considering

that the time a unit-demand is held in the inventory (or backordered) is calculated

based on the observation that a unit-demand from retailer i is used to fill the

Sth
i subsequent demand, no order crossing is the sine qua non condition of the

approach that is employed by Axsäter [3]. Since the joint orders are served based

on the FCFS rule and the service times are deterministic, the no-order-crossing

condition is satisfied at all times, which enables us to use the approach employed

by Axsäter [3] in our system.

2.3.2 Objective Function

After the analysis for a given effective lead-time and the derivation of the distri-

bution FW (w) of the waiting time W for truck that a joint order encounters, we

take the expectation of the holding and backlogging costs over effective lead-times

for each retailer i.
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The waiting time of an order before dispatching is a mixed distribution. Let

C and D denote the sets, where FW (w) is continuous and discrete respectively.

Recall that FW (w) is dependent on K, because the number of servers is c = K×Q

in Theorem 3. By taking the expectation of the cost expression in Equation (2.5)

with respect to W , we can derive the expected unit holding and backorder cost

of retailer i as below:

U(Q,S, K)i =

∫

w∈C

1

Q

Q−1∑
n=0

n∑
mi=0

Z(mi|n)gi(Si −mi, Li + w)dFW (w)+

∑
w∈D

1

Q

Q−1∑
n=0

n∑
mi=0

Z(mi|n)gi(Si −mi, Li + w)P (Wq = w)

(2.8)

Finally, the expected cost rate of the the whole system is given by:

AC(Q,S, K, C) = λ0
A(C)

Q
+

N∑
i=1

λiU(Q,S, K)i. (2.9)

The first part of the equation above represents the order setup cost rate and the

second part represents the expected holding and backorder costs incurred per

unit time of our distribution system that is using a (Q,S) policy with a fleet of K

trucks, each having a capacity of C. Considering the truck utilization constraint,

the optimization problem of our system can be stated as follows:

Min AC(Q,S, K, C)

s.t. Q ∈ (C/2, C].
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2.4 Analysis of the Total Cost Rate Function

In this section, some characteristics of the function AC(Q,S, K,C) and the rela-

tions between the decision variables are discussed. We use these relations in our

search algorithms that are constructed for different problem scenarios.

Axsäter [4] demonstrates that the unit holding and backorder cost rate func-

tion, which is given in Equation (2.5), is convex in Si for each retailer. Recall

that the U(Q,S, K)i is the expectation of the unit holding and backorder cost

rate function over effective lead-times. Since expectation is a linear operator,

U(Q,S, K)i is also convex in Si. Therefore, the optimal order-up-to levels for

each retailer i (S∗i (Q,K)) for a given joint-order quantity Q and a fleet size K

can easily be found. Let S∗(Q,K) = (S∗1(Q,K), S∗2(Q,K), ..., S∗N(Q,K)). When

the number of the fleet size and the capacity of the trucks are given, the total cost

rate function AC(Q,S∗(Q,K), K,C) is not necessarily convex in Q. Therefore

we need to search over the feasible interval (C/2, C] to find the optimal shipment

quantity Q∗ for given K and C. Next, we analyze the effects of K on the total

cost rate of our distribution system.

It is important to note that the total cost rate of the system goes to infinity

if the M/D/KQ queue blows up. Hence, there is a minimum number of trucks,

say Kmin(Q), that will guarantee that the queueing system operates at the steady

state in the long run for a given Q value. Kmin(Q) is the smallest positive integer

K that satisfies ρ = (λ0 ×D/K ×Q) < 1.

Also as K increases, the system begins to behave as if there is no transporta-

tion limitation. In our numerical results, we observe that each truck added to

Kmin(Q) brings a lower decrease in the total cost rate. Although this observation

is parallel to that of Rolfe [31], who shows that the average waiting time in the

queue is a convex decreasing function of the number of servers, we could not

prove it analytically in our problem due to the intricacy of the expressions in our

problem.

A graphical illustration of the change of AC(Q, (S∗(Q,K)), K,C) in K is
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demonstrated in Figure 2.4 for Q = 2, 3, 4 when λ0 = 16, D = 8, N = 16,

A(C) = C, h = 1 and βi = 2 for all retailers.

Figure 2.4: Illustration of the change of AC(Q, (S∗(Q,K)), K, C) in K
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Recall that the trucks of the system operate as an EQ/D/K queue while the

system uses a (Q,S) policy and posseses K trucks. Also, recall that the wait-

ing time distributions of EQ/D/K queues and M/D/KQ queues are identical.

Therefore, in a system that uses (Q,S) policy for a given fleet size K, when one

more truck is purchased, the waiting time distribution for a truck F (w) is the

waiting time distribution of a M/D/(K + 1)Q queue. So, buying one more truck

changes the waiting time distribution of the system as if we buy Q more servers

to a M/D/KQ queue. On the other hand if the system used (Q′,S) policy for

Q′ > Q, buying one more truck would change the distribution of the system as

if we bought Q′ more servers to a M/D/KQ′ queue. Therefore, the traffic rate ρ

of the system decreases more slowly with K, when the system uses (Q,S) policy

for Q′ > Q.

Let AC(Q, (S∗(Q)), C) denote the average total cost rate function, when there

is no fleet size limitation and where the joint order quantity is Q and the goods are
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dispatched with trucks of capacity C. In parallel to the discussion above, we ob-

serve in our numerical results that AC(Q′, (S∗(Q′, K)), K, C) approaches quicker

to AC(Q′, (S∗(Q′)), C) as K increases compared to AC(Q, (S∗(Q,K)), K,C) ap-

proaches to AC(Q, (S∗(Q)), C) when Q < Q′.

Note that Kmin(4) < Kmin(3) < Kmin(2) in Figure 2.4. Since Kmin(Q) is

the minimum integer value of K that makes ρ = (λ0D/KQ) < 1, Kmin(.) is a

non-increasing function of Q. Next, we analyze the effects of Q and C on the

total cost rate for a given fleet size K.

We now define Qmin(K), which is the minimum joint order size to carry on

a (Q,S) policy for a given fleet size K. Qmin(K) is the smallest positive integer

Q that satisfies ρ = (λ0 × D/K × Q) < 1. We also note that Qmin(K) is non-

increasing in K, that is Qmin(K) ≤ Qmin(K ′) if K ′ < K. Figure 2.5 sketches

the effects of Q over the total cost rates for a given K = 2 and when we have

two truck capacity options C = 16 and C = 32 with λ0 = 16, D = 1, N = 4,

A(C) = 4 × C, h = 1 and βi = 4. When there is no fleet size limitation, the

Figure 2.5: Illustration of the change of AC(Q, (S∗(Q, K)), K,C) in Q for a given
K
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holding and backorder cost rates increase as Q increases in (Q,S) policy. However,

as we can observe from Figure 2.5, the holding and backorder cost rate faces a

decrease, while we increase Q at the beginning. This decline in the holding and
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backorder costs is due to the decrease in the traffic ratio of the M/D/KQ queue.

In general, we notice a decrease in the holding and backorder cost rate at the

beginning when the traffic ratio λ0×D
K×Qmin(K)

is greater than 0.8 in our numerical

results. An increase in Q leads to a decrease in the traffic ratio, which leads to

a decrease in the holding and backorder cost rate when the traffic ratio is high.

In other words, the effect of decreasing the traffic ratio on holding and backorder

costs is more dominant than the effect of increasing the joint order quantity when

the traffic ratio is high.

Here we observe from Figure 2.5 that the order setup cost decreases as Q

increases for a given C, since the order setup cost is A(C) × λ0/Q and A(C)

is a linear function of C. The order setup cost rates are the same for different

truck capacities as long as they are utilized with 100% utilization. Let QC =

(C1, C2, ..., Cm), with C1 < C2 < ... < Cm denote the possible values of the

order quantities for a given C. The following proposition suggests that using

trucks with a higher utilization is always more profitable without changing other

decision variables whenever it is possible.

Proposition 1: Suppose C < C ′. If the intersection of QC and QC′ is

non-empty, it is always more profitable to choose C as a truck capacity for the

intersecting Q values.

Proof: Referring to Subsection 2.3.2, AC(Q,S, K,C) consists of two parts:

the order setup cost rate, which is λ0 × A(C)
Q

, and the holding and backordering

cost rates, which do not change with C when the other parameters are the same.

So for C < C ′, if there is a Q such that Q ∈ QC and Q ∈ QC′ , then the holding

and backorder cost rates of C and C ′ are the same. However,

λ0 × A(C)
Q

< λ0 × A(C′)
Q

since A(C) < A(C ′).¤

2.5 Different Scenarios and Solution Procedures

Firms can face the problem of transportation limitation in different forms. For

instance the firm may not have the chance to choose the capacity if there is solely
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one kind of truck. In this section, we list different transportation scenarios that

firms can encounter. In each of these scenarios, firms have to make decisions

about the parameters of the joint order policy and about the features of their

means of transportation. In order to help this decision-making process of the

managers, we develop solution procedures based on the results that we discuss in

Section 2.4. In this section, we take a new cost parameter into account: φ(C),

which is the depreciation and maintenance cost rate per time we incur to a truck

with a capacity C. We assume that φ(C) is a linear function of C, and our

solution procedures are based upon this assumption.

Single Truck Capacity Option

This case can be frequently encountered in the industry. For instance, suppose

that the truck to be used in the transportation is very specific to the unit sold

in the retailers and that’s why it is not vended often in the market and product

diversity does not exist for that truck of interest (e.g. hazardous materials). In

this case, K, Q and S∗(Q, K) are jointly optimised for a given truck capacity

option C. Hence, built on our discussions in Section 2.4, Search Algorithm 1,

given in Appendix A.2 is suggested.

Several Truck Capacity Options

This type of limitation is the most common type that the firms encounter in the

market. Suppose that there are many truck producers, and they are providing

trucks of different capacities. Therefore, there is a capacity option set, C =

(C1, C2, ..., Cm), which consists of m truck capacity options (C1 < C2 < ... < Cm)

that a firm can choose. Besides the fleet size K, order quantity Q and order-up to

levels S∗(Q,K), the firms also have to decide upon the truck capacity C in order

to minimize their total cost rates. Therefore, we suggest the Search Algorithm 2,

given in Appendix A.2.

Since the single truck capacity option scenario is a special case of the several

truck capacity options scenario, we only mention about Search Algorithm 2 in

this section. In this search algorithm, we first obtain the possible values of the

order quantities QCi
for each Ci ∈ C. Due to the Proposition 1, we delete the

intersecting elements of QCi
and QCj

from QCj
for each i < j. Then, for each
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Ci ∈ C, we find the minimum number of the trucks needed Kmin(Q) as well as

the critical number of the fleet size, Kmax(Q, φ(Ci)) that is given by Equation

(A.2), where buying one more truck increases the total cost rate (in the presence

of maintenance/depreciation cost rate) for the first time for every Q ∈ QCi
.

Since the truck/maintenance cost is assumed to be linear with K, Kmax(Q, φ(Ci))

would give the optimal fleet size K∗ for a given joint order quantity Q if the

conjecture on the convex decreasing behavior of the AC(Q,S∗(K, Q), K,Ci) holds

true. Subsequently, we search for the best joint order quantity Q∗
i for a given

capacity Ci first, and then we choose the capacity C∗ that brings the minimum

cost rate among all of the capacity options. Hence, this algorithm finds K∗, C∗,

Q∗ and S∗(K∗, Q∗) accordingly.

Next, we consider the case, where the firm decides on the capacity of the

trucks for a given number of the fleet size. The motivation behind a given fleet

size number can be the area restriction of the hangar as well as the investment

constraints. First, suppose that the truck producer guarantees to provide trucks

with the capacity that the firm demands. Since the order setup cost rate is A(C)×
λ0/Q, the firm aims to use the trucks with 100% utilization. In other words, the

firm would like to purchase the trucks with capacity C = Q. In addition, we

consider that the truck producer firm can have an upper limit for the capacity

of the trucks, and no trucks with a capacity more than Cmax can be produced.

The firm has to revise the fleet size (K) decision, if Qmin(K) > Cmax. Otherwise,

the firm has to decide upon the joint order quantity Q∗ ∈ [Qmin(K), Cmax] and

the order-up to levels S∗(Q∗, K), for a given fleet size K in order to minimize

the total cost rate of the system. After deciding the order quantity Q∗, the firm

requires trucks with capacity C = Q∗ from the truck producer.

Now, rather than full flexibility on the capacity, we consider the case when

there is a capacity option set, C = (C1, C2, ..., Cm), with (C1 < C2 < ... < Cm).

Suppose that the fleet size is K. Similar to the previous setting, the firm has to

revise the fleet size (K) decision, when Qmin(K) > Cm. We suggest the Search

Algorithm 3, given in Appendix A.2 for this limitation scenario.
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2.6 Numerical Study

This section details a numerical study that illustrates the general behavior of

the optimal policy parameters and the average cost rate with respect to different

cost and system parameters. For the sensitivity analysis, all combinations of the

following sets are analyzed: λ0={2, 4, 8, 16, 32}, D={1, 2, 8}, C={2, 4, 8, 16,

32}, a = A(C)/C={0.25, 1, 4}, hi={1}, βi={2, 4, 16, 32}, N={2, 4, 16}.

In all of the scenarios, the retailers are identical (same mean demand, holding

and backorder cost rates and lead-times). Note that we ignore the truck mainte-

nance and depreciation cost rate φ(C) as well as the minor lead times, li = 0, in

our numerical analysis part.

Table 2.1: The Effects of the Change in a = A(C)/C and K on Total Cost Rate
A(C): 0.25C C 4C

K AC* (Q*,S*) Q*/C% AC* (Q*,S*) Q*/C% AC* (Q*,S*) Q*/C%
5 14.337 (8,7) 100% 17.337 (8,7) 100% 29.337 (8,7) 100%
6 14.180 (8,7) 100% 17.180 (8,7) 100% 29.180 (8,7) 100%
7 14.177 (8,7) 100% 17.177 (8,7) 100% 29.177 (8,7) 100%
8 14.114 (6,6) 75% 17.177 (8,7) 100% 29.177 (8,7) 100%
9 14.088 (5,6) 62.5% 17.177 (8,7) 100% 29.177 (8,7) 100%
10 14.062 (5,6) 62.5%
11 14.060 (5,6) 62.5%
12 14.060 (5,6) 62.5%

The influence of A(C) and K on the performance of the system

In Table 2.1, we tabulate how the average cost rate changes with A(C) = a× C

and fleet size K, where N = 4, λ0 = 4, C = 8, βi = 4 for all i and D = 8. We

observe that for a given capacity C, truck utilization Q∗/C has a non-increasing

structure when the fleet size K increases, because the system is enforced to have

a higher utilization when there is a scarcity of trucks. In addition, as a increases,

Q∗/C increases as well. This is due to the fact that the savings from the order set-

up costs dominate the increase in holding and backorder costs as A(C) increases.

Hence, the truck utilization increases as A(C) increases. Also, note that S∗ has

a non-increasing behavior with the fleet size. We can assert that the retailers try

to balance the delay due to the absence of enough trucks with higher order up-to
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levels. Parallel to the conjecture that we made in Section 2.4, we observe the

convex decreasing behavior of the total cost rate with K in Table 2.1 as well as

in all of our numerical studies for the same system parameters.

The influence of backorder cost rate and K on the performance of

the system

Table 2.2 illustrates the impacts of backorder cost rate βi and fleet size K on the

total cost rate where N = 4, λ0 = 4, C = 8, A(C) = C and D = 8.

Table 2.2: The Effects of the Change in βi and K on Total Cost Rate
βi: 4 16 32
K AC* (Q*,S*) Q*/C% AC* (Q*,S*) Q*/C% AC* (Q*,S*) Q*/C%
5 17.337 (8,7) 100% 24.041 (8,9) 100% 27.358 (8,10) 100%
6 17.180 (8,7) 100% 23.797 (8,9) 100% 26.908 (8,9) 100%
7 17.177 (8,7) 100% 23.793 (8,9) 100% 26.870 (7,9) 87.5%
8 17.177 (8,7) 100% 23.793 (8,9) 100% 26.862 (7,9) 87.5%
9 17.177 (8,7) 100% 23.793 (8,9) 100% 26.862 (7,9) 87.5%

From the numerical results, we observe that the retailers respond to higher

backorder cost rates by increasing their order up-to levels. Also, contrary to the

Table 2.1, truck utilization is nonincreasing in βi, because the savings from the

holding and backorder costs begin to dominate the increase in order set-up costs

while having a lower truck utilization as βi increases.

Joint Effects of K and C

Suppose that the truck capacity is exogenous to our system. In such a case, C has

a great influence over the performance of our system, since it sets the limits for

Q. Note that the order set-up cost rate is identical for all C as long as the trucks

are utilized 100%, since A(C)×λ0

Q
= a × λ0 when Q = C. Next, we present Table

2.3, which depicts the effects of C and K jointly on total cost rate where N = 4,

λ0 = 2, βi = 8, A(C) = C and D = 8. As expected, truck utilization percentage
100×Q∗

C
decreases whereas order up-to levels increase for bigger C. Notice that

in some of the cases in Table 2.3, there can be an insignificant decrease in cost

rates with respect to K. This is due to the fact that in these cases the traffic rate

ρ = λ0D
KQ

is not that much high for the smallest K that makes ρ < 1. In addition,

as we have discussed in Section 2.4, the cost rate of the system decreases more
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quickly to its lower bound for bigger C. Recall that the lower bound of AC is

the cost rate of a system with the same parameters, where there is no limitation

at all on the fleet size. If truck maintenance and depreciation cost rate φ(C) is

taken into consideration, Kφ(C) must be added to each of the cost rates given

in Table 2.3 and the decisions must be made accordingly.

Table 2.3: The Effects of C and K on Total Cost Rate for C = 2, 4, 8, 16 and 32
C=2 C=4

K AC* (Q*,S*) Q*/C% K AC* (Q*,S*) Q*/C%
9 13.246 (2,4) 100% 5 11.682 (4,4) 100%
10 11.494 (2,3) 100% 6 11.330 (4,4) 100%
11 10.897 (2,3) 100% 7 11.309 (4,4) 100%
12 10.735 (2,3) 100% 8 11.307 (4,4) 100%
13 10.687 (2,3) 100% 9 11.307 (4,4) 100%
14 10.674 (2,3) 100%
15 10.670 (2,3) 100%
16 10.669 (2,3) 100%
17 10.669 (2,3) 100%

C=8 C=16
K AC* (Q*,S*) Q*/C% K AC* (Q*,S*) Q*/C%
3 12.332 (8,4) 100% 2 14.212 (12,5) 75%
4 12.182 (7,4) 87.50% 3 14.147 (11,5) 68.75%
5 12.179 (7,4) 87.50% 4 14.147 (11,5) 68.75%
6 12.179 (7,4) 87.50% 5 14.147 (11,5) 68.75%

C=32
K AC* (Q*,S*) Q*/C%
1 18.129 (21,7) 65.63%
2 17.095 (17,6) 53.13%
3 17.095 (17,6) 53.13%

Effects of D/2 and λ0

The impacts of the distance between the ample supplier and the cross-dock point

D/2 on total cost rate AC are similar to those of the total demand rate λ0.

Both D and λ0 increase the traffic ratio ρ as well as the expected demand during

lead-time. Hence, the system’s reactions to higher D and λ0 are higher order

up-to levels at the retailer level and a bigger fleet size. Note that only holding

and backorder costs at the retailer level increase as D increases, whereas order

setup, holding and backorder costs increase as λ0 increases for the same Q. In
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our numerical results, we observe that truck utilization Q∗/C increases with both

D and λ0. Our observations are consistent with Cachon’s [10] suggestions, which

claim that Q∗ is increasing in both lead-time L and λ0. Figure 2.6 depicts how the

total cost rate AC∗, order up-to level S∗ and truck utilization percentage Q∗/C

change with λ0 where C = 8, A(C) = C, βi = 4, N = 4 and D = 8 provided that

there is an ample number of trucks.

Figure 2.6: Illustration of the change of AC∗, S∗ and Q∗/C with λ0
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Effects of the number of retailers N

Table 2.4 tabulates how the optimal system parameters (Q∗, S∗, C∗) change with

K for different N , where we have a capacity option set C = 2, 4, 8, 16, 32, λ0 = 4,

βi = 4, A(C) = C and D = 8. In our numerical results, we observe an increase

in holding and backordering costs as N increases. This increase is due to the

fact that we enjoy the benefits of risk pooling when N is smaller. Note that the

total demand rate λ0 is remained fixed for all N . When N is greater, a bigger

amount of inventory is held at the retailer level for the same λ0. When there is no

fleet size limitation, we expect that an increase in N lead to a decrease in truck

utilization percentage (See Cachon [10]). However, we observe that (Q∗/C)%

increases as N increases when K = 2 in Table 2.4. In this specific case, limited

fleet size brings about a longer effective lead time, which increases Q∗/C%, and

the impact of a longer effective lead-time dominates that of a bigger N on truck
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utilization percentage.

Table 2.4: The Effects of K on Optimal Cost Parameters for different N
N=2 N=4 N=16

K (Q*, S*, C*) (Q*, S*, C*) (Q*, S*, C*)
2 (21, 17, 32) (21,9,32) (23,3,32)
3 (16, 15, 16) (16,8,16) (14,2,16)
4 (16, 15, 16) (15,8,16) (11,2,16)
5 (8, 13, 8) (8,7,8) (8,2,8)
6 (8, 12, 8) (8,7,8) (8,2,8)
7 (8,12,8) (8,7,8) (8,2,8)
8 (8,12,8) (8,7,8) (8,2,8)
9 (4,11,4) (4,6,4) (4,2,4)
10 (4,11,4) (4,6,4) (4,2,4)
11 (4,11,4) (4,6,4) (4,2,4)
12 (4,11,4) (4,6,4) (4,2,4)
13 (4,11,4) (4,6,4) (4,2,4)
14 (2,11,2) (2,6,2) (2,2,2)
20 (2,11,2) (2,6,2) (2,2,2)
21 (2,11,2) (2,6,2) (2,2,2)
22 (2,11,2) (2,6,2) (2,2,2)
23 (2,11,2) (2,6,2) (2,2,2)
24 (2,11,2) (2,6,2) (2,2,2)
25 (2,11,2) (2,6,2) (2,2,2)
26 (2,6,2) (2,2,2)
27 (2,6,2) (2,2,2)



Chapter 3

Two-Echelon Environment

In this chapter we extend our analytical model to a single-item, multi-retailer

distribution system, where the upper echelon also holds inventory.

Main characteristics of this extended model and the ordering policies for both

of the echelons are given in Section 3.1. In Section 3.2, the framework of our

analysis for each installation is explained, and necessary analytical tools for the

derivation of the operating characteristics are presented. Afterwards, we derive

the key operating characteristics of our two-echelon distribution system in Section

3.3.

3.1 Model Characteristics

We consider a single-item, divergent two-echelon inventory system with a single

warehouse and N retailers, where the system is continuously reviewed. The

retailers face stationary and independent unit Poison demands with rates λi (i =

1, 2, ..N), and all unmet demands are fully backlogged. Retailer demands are

supplied from the warehouse, which is located at the upper echelon. A cross-dock

station is situated at a distance of D/2 time units from the warehouse. Similar

to the single-echelon case, no order-allocation takes place in this cross-dock. A

33
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Figure 3.1: Illustration of the extended model
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fleet of K identical trucks with capacity C are used in the transportation of

retailer orders from the warehouse to the cross-dock station. We assume that the

transportation between the cross-dock station and the retailers and between the

warehouse and the ample supplier are not capacitated and the lead time between

the retailers and the cross-dock point is li for retailer i. The warehouse gives

orders to an external supplier with ample stock and the lead-time for warehouse

deliveries is Lw. Figure 3.1 illustrates the extended model.

Holding cost per unit per time is charged at each retailer with rate hi, and at

the warehouse with rate hw. The ordering costs associated with the distribution
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system are the warehouse fixed ordering cost Kwh for each warehouse order and

the fixed retailer setup cost, A(C), for each retailer order. Fixed retailer order

setup cost is linear in truck capacity, that is A(C) = a×C for a > 0. In addition,

a shortage cost per unit per time is incurred at a rate of βi for each retailer i.

Any possible additional costs for monitoring the inventory system continuously

are ignored. The retailer orders are satisfied based on the first come-first serve,

FCFS rule at the warehouse, and the integrity of the orders must be sustained.

As in the single-echelon distribution system that is analyzed in the previous

chapter, the retailers implement a joint replenishment policy to manage their

inventory and replenishment decisions. The orders received from the retailers

constitute a compound renewal process, where inter-order time, X, and the order

quantity, Q0, have a joint density fX,Q0(x, q). Joint orders received by the ware-

house are shipped immediately by trucks if there are both sufficiently many trucks

and sufficiently many units available in the inventory. In that case, loaded trucks

spend a total of D time units to reach the cross-dock point, unload the item and

return back to its base. Therefore, the order delivery lead time for retailer i is

constant, Li = li + D/2, provided that there is no delay encountered. However,

if there are not sufficiently many units available in the warehouse inventory at

the time of a retailer order, then the retailer order waits until enough number of

units in the warehouse inventory becomes available. After the retailer order is

satisfied by the warehouse, it should be loaded onto the trucks for transportation

to the cross-dock station. If there are not sufficiently many trucks available at

the base, then the retailer order waits until a truck becomes available. Hence,

the shipment operations of the retailer orders at the warehouse can be modeled

as a queueing model like in the single-echelon case. However, this time the sat-

isfied retailer orders by the warehouse inventory system are the customers and

the trucks are the servers which are busy while carrying the materials to the

cross-dock point and returning back. Figure 3.2 depicts the shipment operation

of the joint retailer orders in our setting.

The joint replenishment policy that retailers use for controlling their inventory

decisions in this setting is the same as the joint replenishment policy that is used in

the single-echelon setting, which is the (Q,S) policy. In our setting, the warehouse
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Figure 3.2: Illustration of the Shipment Operations of the Retailer Orders
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employs an inventory control policy, too. It is assumed that the continuous review

installation base-stock, (S − 1, S) ordering policy is employed for controlling the

warehouse level inventory and ordering decisions. When Kwh > 0, (S − 1, S) is a

sub-optimal policy, nevertheless, we consider this policy for analytical tractability.

Under this policy, whenever a demand from the lower echelon arrives at the

warehouse, a replenishment order is placed at the ample supplier. Hence the

inventory position of the warehouse is always equal to its order-up-to level, which

is Sw in our setting. Under these model assumptions and the cost structure that

are defined above, our objective is to minimize the expected total cost per unit

time. Next, we present the framework of our method and give the necessary

analytical derivations to obtain the operating characteristics of our system.

3.2 Preliminary Analysis

In this section, we present a general framework of our analysis and explain some

of the analytical derivations that we need in order to derive the operating char-

acteristics of our two-echelon distribution system.

We use the same notation as in the previous chapter with a few additions.

Let W denote the random delay that a joint retailer order encounters before it is

dispatched by the trucks. W consists of two parts. These are the random delay

due to the lack of sufficient inventory, Ws at the warehouse and the random delay

due to the lack of sufficient trucks, Wq at the transportation base. The lead-time
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Li (total transit time) for retailer i with the random delay, W = Ws + Wq, an

order encounters constitute the effective lead-time for retailer i, which is denoted

by Li = Li + W . In our derivations, we assume that Ws and Wq are independent

random variables, however there may be an implicit dependence between Ws and

Wq. As mentioned before, the joint retailer orders form a compound renewal

process, where inter-order time, X, and the order quantity, Q0, have a joint

density fX,Q0(x, q). Since the SJRP that the retailers use is the (Q,S) policy,

Q0 = Q and X has an Erlang(Q, λ0) distribution. A joint retailer order that

is received at a warehouse is perceived as a batch demand to be satisfied by the

warehouse. Next, we focus on the analysis of the operations at the warehouse

level.

The warehouse uses an (S − 1, S) policy with an order up to level Sw. Since

partial shipments are not allowed, the optimal Sw value would be an integer

multiple of the batch size Q. Therefore, we assume that the order up to level

of the warehouse is Sw = 4 × Q for 4 ≥ 0. The distribution function of the

random delay due to the lack of sufficient inventory at the warehouse is given

by Özkaya [27] for various stochastic joint replenishment policies. The following

equation provides an expression for the distribution function FWs(τ) of Ws, where

the retailers use the (Q,S) policy with an order quantity of Q and the warehouse

order up to level Sw is equal to 4×Q:

FWs(τ) =





0 τ < 0

(1− F (Lw − τ,4×Q, λ0) 0 ≤ τ ≤ Lw

1 τ ≥ Lw.

(3.1)

Note that Ws is always Lw when the warehouse does not hold any inventory; in

other words, when it employs cross-docking.

As mentioned before, the shipment of the joint retailer orders can be con-

sidered as a queueing system. Therefore, the waiting time Wq a joint retailer

order encounters at the transportation base is the waiting time in the queue of a

customer in a queueing system, which consists of k servers (trucks) with a deter-

ministic service time D = 2 ×D/2. In order to derive the distribution function

of Wq, we need to characterize the arrival process of the queueing system. After
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the joint retailer orders are satisfied by the warehouse, they are perceived as the

arriving customers by the trucks, and the departure process of the (S − 1, S)

inventory system at the warehouse level constitutes the arrival process of the

queueing system that is mentioned above. Next, we analyze the characteristics

of the departure process of the (S − 1, S) inventory systems.

3.2.1 General Characteristics of the Departure Process of

a (S − 1, S) Inventory System

In this subsection, we analyze the general characteristics of the departure process

of (S−1, S) inventory systems with unit renewal demand arrivals. The lead-time,

L between the inventory system and the ample supplier is deterministic. Let Xi

denote the inter-arrival time between the (i− 1)th and ith consecutive demands.

Since the inter-arrival times are i.i.d random variables, density and distribution

functions of Xi, fX(·) and FX(·) are same for each i and the nth demand arrival

time, X(n) is the sum of the durations of n inter-arrival times and the density

function of X(n) is the nth convolution of FX(·). Let fX(n)(·) and FX(n)(·) be the

density and distribution functions of X(n) for any integer n ≥ 0. Note that X(0)

is 0 with probability 1 and we take FX(x) = 0 and fX(x) = 0 when x < 0 for

convenience. Also, recall that F= 1−F connotes the complementary distribution

for any distribution function.

A unit demand departs the inventory system immediately if there is enough

inventory on hand, otherwise it waits for the inventory on road to arrive. We

present an illustration of the departures of consecutive demands in Figure 3.3.

First, we analyze the case when S > 0. Suppose a demand arrives at the inventory

system at time τ . Since the (S−1, S) policy is employed, a demand always triggers

an order. The Sth subsequent demand is satisfied by this triggered order. If there

are sufficient number of items in the stock, it is immediately satisfied, hence its

departure time will be : τ +
S∑

i=1

Xi. Otherwise, it waits for the arrival of the

triggered order to be satisfied and hence its departure time will be: τ + L. Now

let DS be the departure time of the Sth subsequent demand after τ . According
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Figure 3.3: Illustration of the Consecutive Demand Departures
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to the discussions above, DS can be written as follows:

DS = τ + max

(
S∑

j=1

Xj, L

)

Now, consider the ith subsequent demand that arrives after time τ . This demand

triggers another order, which arrives at time τ +
i∑

j=1

Xj + L. Likewise the previ-

ously triggered orders, this one meets the Sth subsequent demand after its trigger

time. Hence we can write the departure time, Di+S of the (i + S)th subsequent

demand after τ as

Di+S = τ + max

(
i+S∑
j=1

Xj,

i∑
j=1

Xj + L

)
.

Similarly, the departure time, Di+S−1 of the (i + S − 1)th subsequent demand is

given below:

Di+S−1 = τ + max

(
i+S−1∑

j=1

Xj,

i−1∑
j=1

Xj + L

)
.
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We define the inter-departure time as the time between two consecutive depar-

tures from the inventory system. Let Yi+S be the time between the departures

Di+S−1 and Di+S. Hence, we can write Yi+S as:

Yi+S = Di+S −Di+S−1

= τ + max

(
i+S∑
j=1

Xj,

i∑
j=1

Xj + L

)
−

(
τ + max

(
i+S−1∑

j=1

Xj,

i−1∑
j=1

Xj + L

))

= max

(
i+S∑
j=i

Xj, Xi + L

)
−max

(
i+S−1∑

j=i

Xj, L

)

Let Zi =
i+S−1∑
j=i+1

Xj. Since the inter-arrival times are i.i.d random variables, the dis-

tribution FZ(·) and density fZ(·) functions of Zi are identical to the distribution

FX(S−1)(·) and density fX(n)(·) functions of X(S−1) for all i.

Hence, the following expression for Yi+S provides a more convenient represen-

tation for the derivation of the distribution of inter-departure times:

Yi+S =





Xi+S if (L− Zi) ≤ min(Xi, Xi+S)

Xi + Zi + Xi+S − L if Xi < (L− Zi) ≤ Xi+S

L− Zi if Xi+S < (L− Zi) ≤ Xi

Xi if (L− Zi) > max(Xi, Xi+S)

. (3.2)

The expression of the inter-departure times in Equation (3.2) can be generalized

for every integer index i, solely by changing of the variables. Note that Yi+S and

all Yj for j < i are independent, because all of the constituents of Yj and of Yi+S

are independent for j < i. In the next theorem we present the probability density

function fYi
(y) of the inter-departure times. Recall that the inter-arrival times,

Xj are i.i.d random variables and fX(.) and FX(.) denote the density and the

distribution functions of the inter-arrival times.

Theorem 4 The probability density function fY (y) = fYi
(y) of the inter-

departure time Yi of an (S − 1, S) inventory system with deterministic lead time
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and unit renewal demands is identical for all i, which is given as follows.

fY (y) = fX(y)

{
FZ(L− y)FX(y) + FZ(L− y)FX(y) +

∫ y

x=0

fX(x)FZ(L− x)dx

+

∫ ∞

x=y

fX(x)FZ(L− x)dx

}
+ fZ(L− y)FX(y)FX(y)

+

∫ L+y

x2=y

∫ min(y,L+y−x2)

x1=0

fZ(L + y − (x1 + x2))fX(x1)fX(x2)dx1dx2

(3.3)

for y ≥ 0

Proof: See Appendix B.

Since the distribution of Yi is identical for all i, E[Yi] = E[Y ] and V ar[Yi] =

V ar[Y ] are identical for all i, too. From the Equation (3.2), we can see that the

departure process has a recursive structure and each departure is dependent on

the S + 1 arrivals before that departure. Hence, the covariance Cov(Yi, Yj) of Yi

and Yj is identical to Cov(Yi+k, Yj+k) for every k ∈ N . Also, Cov(Yi+S, Yj) = 0

for j < i, since Yi+S and all Yj for j < i are independent. Next, we analyze the

characteristics of the mean, E[Y ] and the variance, V ar[Y ] of the inter-departure

times.

Theorem 5 Let E[X] and Var[X] be the expectation and the variance of the inter-

arrival time X, respectively. Similarly, E[Y] and Var[Y] are the expectation and

the variance of the inter-departure time Y.

Then, E[Y ] = E[X], V ar[Y ] ≤ V ar[X] and

V ar[X]− V ar[Y ] = 2

∫ ∞

z=0

{(∫ ∞

x=L−z

FX(x)dx

) (∫ L−z

x=0

FX(x)dx

)}
fZ(z)dz

Proof: See Appendix B.

Let ND(t) represent the total number of departures that have occurred up to

time t. In the light of the discussions above, we can conclude that the departure

process, (ND(t), t ≥ 0) of an (S − 1, S) inventory system is a counting process,
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where the elapsed time between the consecutive departures, Yi are identical but

not independent random variables.

Returning back to the analysis of our model, the warehouse in our distri-

bution system uses (S − 1, S) policy, too. An order is placed immediately to

the ample supplier as a joint order from the retailer level arrives at the ware-

house. Since Sw = 4Q, the departure process of the warehouse is identical to

a (4− 1,4) inventory system where the unit demands arrive in batches of size

Q with Erlang(Q, λ0) distributed inter-arrival times X. Thus, E[X] = Q
λ0

and

V ar[X] = Q
λ2
0
. Also, the probability density function of the inter-departure times

of the warehouse with SW = 4Q in our system can be simply found by using

Theorem 4 for y ≥ 0. Next, we analyze the shipment operations of the retailer

orders at the truck base.

3.2.2 Analysis of the Shipment Operations of the Retailer

Orders at the Truck Base

As mentioned in Section 3.1, the shipment operations of the retailer orders at the

truck base operate as a queueing system with multiple servers and deterministic

service time, and the arrival process of the customers of this queueing system is

the departure process of the warehouse inventory system, whose characteristics

are analyzed in the previous subsection.

In order to derive the operating characteristics, we need the distribution of

the second constituent of the total random delay, Wq which is the random delay

due to the lack of sufficient trucks. Wq is identical to the waiting time a customer

encounters in a G/D/K queue with dependent inter-arrival times, where the

inter-arrival times of the customers are same as the inter-departure times of the

(S − 1, S) warehouse inventory system.

The behavior of the distribution function of the waiting time in the queue of

this G/D/K queueing system is analytically intractable. Therefore, we approxi-

mate the arrival process of the customers to a simpler one so that we can analyze
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the behavior of the Wq

As we have developed an analytical tool that generates the FWq(τ) of any

Ek/D/c queue with a predetermined error bound in Subsection 2.3.1, we next

examine how to approximate the original arrival process of the customers,

(ND(t), t ≥ 0), to a renewal process with Erlang distributed inter-arrival times.

First note that Yi+S = Xi+S, when L = 0 and Yi+S = Xi when L = ∞ as can

be observed from Equation (3.2). In our numerical results, we also observed that

when Lw is much longer or shorter than the depletion time of the 4th inventory

batch, the distribution of the queue inter-arrival time is almost identical to that

of an Erlang(Q, λ0) random variable. If however Lw is close to the depletion time

of the 4th inventory batch, the distribution function of the queue inter-arrival

time deviates from the density of Erlang (Q, λ0). The following method approx-

imates the arrival process of the queue by a renewal process with Erlang(Q′, λ′)

distributed inter-arrival times using the moments E[Y ] = E[X] = Q
λ0

and V ar[Y ],

which we derive from Theorem 5:

Approximation Method

1. Find E[Y ] and V ar[Y ]

2. Set Q′ = [E[Y ]2/V ar[Y ]] where [x] is the nearest integer to x.

3. Set λ′ = Q′/E[Y ].

Using this method, we approximate the arrival process of the queue to a

renewal process with Erlang(Q′, λ′) inter-arrival times with mean E[Y ] = Q/λ =

Q′/λ′ and variance Q′/(λ′)2

In Figures 3.4 and 3.5, some examples are presented to illustrate the perfor-

mance of our Erlang approximation. In Figure 3.4, we present the exact distri-

bution function and the Erlang Approximation of the queue inter-arrival times

with Q = 4, λ0 = 4, 4 = 5 and Lwh = 4. In this particular example, the ap-

proximated scale, λ′ = λ0 and shape Q′ = Q parameters are not changed, and

parallel to the observation that is mentioned above, the queue inter-arrival time
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Figure 3.4: Comparison of the Erlang Approximation with the Queue Inter-arrival
Times

distribution is almost identical to the distribution of an Erlang(Q, λ0) random

variable. On the contrary, for the instances, where Lw = 6, given in Figure 3.5,

the adjusted scale, λ′ = 5 and shape Q′ = 5 parameters are different from λ0

and Q. In this example, the variance difference, V ar[X]−V ar[Y ] transforms the

queue inter-arrival time to a random variable with the same mean and a smaller

variance. The approximated scale, λ′ = λ0 and shape Q′ = Q parameters are not

changed for Lw > 6 and Lw < 4 as well.

The performance of the Erlang distribution to approximate the queue inter-

arrival time distribution increases when the Lw is much more larger or smaller

than the depletion time of the 4th inventory batch. However, the Erlang distri-

bution is good enough to approximate the queue inter-arrival time distribution

with adjusted shape and scale parameters when Lw is around the depletion time

of the 4th inventory batch, too. In addition, the effect of the approximation

on the operating characteristics is very negligible in most of the cases as will be

mentioned in the subsequent sections of this chapter.
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Figure 3.5: Comparison of the Erlang Approximation with the Queue Inter-arrival
Times

After the approximation of the arrival process of the queue to a renewal process

with Erlang(Q′, λ′) inter-arrival times, we can derive the distribution function

of the random delay due to the lack of sufficient trucks by following the steps

described in the Subsection 2.3.1. Therefore, the distribution FW (·) of the total

random delay W = Ws + Wq can be derived as follows:

FW (x) =

∫ Lw

y=0

FWq(x− y)dFWs(y). (3.4)

After deriving the distribution function of the total random delay a joint

retailer order encounters before it is dispatched, we present the derivation of the

operating characteristics in the next section.
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3.3 Derivation of the Operating Characteristics

In this section, the operating characteristics of the two-echelon distribution sys-

tem is derived, and these characteristics are used in calculating the total cost rate.

Similar to the single-echelon model, total cost of the two-echelon model consists

of two parts. The first part is the order setup costs and the latter is the holding

and the backorder costs. We begin with the expected cycle length. We define the

cycle length as the time between two consecutive joint order replenishments, X

for the retailer part, and as the time between two consecutive warehouse order

placements for the warehouse part. Since the warehouse uses (S− 1, S) policy, it

places an order to the ample supplier as a joint retailer order arrives, therefore the

expected cycle length of the retailer part and the warehouse part are the same.

So, the expectation of X, which is an Erlang(Q, λ0) distributed random variable

is simply Q/λ0. In each cycle, the fixed ordering cost of a joint retailer order,

A(C) and the fixed ordering cost of a warehouse order, Kwh are incurred once,

and the order setup cost rate is simply (A(C) + Kwh) × λ0/Q. Next, we derive

the backlogging and holding cost rate at the retailer level.

Note that the no-order-crossing condition is also satisfied in this two-echelon

model, since both the warehouse and the queue serve based on the FCFS prin-

ciple. Therefore the backorder and the holding costs incurred at each retailer

can be evaluated in a similar fashion to our single echelon model. Equation (2.5)

that is given in Chapter 2 can be used to evaluate the expected backorder and

holding costs incurred at retailer i for a given effective lead-time li. After deriving

the distribution function FW (·) of the total random delay W , which is given in

Equation (3.4), we can take the expectation of the holding and backorder cost

rate of a unit demand to retailer i over effective lead-times. Hence, the expected

holding and backorder cost expression of a unit demand to retailer i per unit time

is given by:

U(Q,S, K,4)i =

∫

w

1

Q

Q−1∑
n=0

n∑
mi=0

Z(mi|n)gi(Si −mi, Li + w)dFW (w). (3.5)

Recall that FW (w) is dependent on K, which affects the FWq(·) and on Swh =
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4× Q, which affects FWs(·). Hence, the holding and backorder cost rate of the

whole retailer level is:
N∑

i=0

λi × U(Q,S, K,4)i. Next, we derive the holding cost

rate incurred in the warehouse.

We use a similar method to that of Axsäter [3], while calculating the holding

cost rate at the warehouse level. We incur holding cost for a joint retailer demand

of size Q that arrives at the warehouse at time τ , if the 4th subsequent joint

retailer demand arrives before τ + Lw. Therefore, the expected time a joint

retailer order is incurred a holding cost at the warehouse is as follows:

∫ Lw

x=0

(Lw − x)f(x,4Q, λ0)dx. (3.6)

Using Equations (2.2) and (2.3), Equation (3.7) can be reduced to the expression

below:

Lw − 4Q

λ0

+
4Q

λ0

FP (4Q, λ0Lw)− LwFP (4Q− 1, λ0Lw). (3.7)

In addition to the time expression above, holding cost is incurred during Wq,

while it waits for dispatching. Therefore, E[Wq], which can be computed via

Theorem 3 with adjusted shape, Q′ and scale λ′ parameters inserted to Equation

(3.7). Hence, we can derive the holding cost rate incurred in the warehouse level,

WH(Q,4, K):

WH(Q,4, K) = hwQ
λ0

Q

{
E[Wq] + Lw − 4Q

λ0

+
4Q

λ0

FP (4Q, λ0Lw)

−LwFP (4Q− 1, λ0Lw)} .

Finally the expected cost rate of the whole distribution system is given by:

AC(Q,S, K, C,4) = λ0
(A(C) + Kwh)

Q
+

N∑
i=1

λiU(Q,S, K,4)i + WH(Q,4, K).

(3.8)

The first part of the equation above represents the retailer and warehouse

order setup cost rate and the second part represents the holding and backorder

cost incurred per time in the retailer level of our distribution system that is using

a (Q,S) policy with a fleet of K trucks, each having a capacity of C, and finally
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the third part represents the holding cost incurred per time in the warehouse

level.

Considering the truck utilization constraint the optimization problem of our

system can be stated as follows:

Min. AC(Q,S, K,C,4)

s.t. Q ∈ (C/2, C]

3.4 Numerical Study

This section consists of two parts. The first part details a numerical study that

illustrates the general behavior of the optimal policy parameters and the average

cost rate with respect to different cost and system parameters. Moreover, we

discuss the possible reasons of these behaviors in this subsection. In the second

part, we discuss the performance quality of our approximation method that we

mention in Subsection 3.2.2.

3.4.1 Sensitivity of the Total Cost Rate to Cost and Sys-

tem Parameters

In this subsection we conduct a sensitivity analysis. The computations and op-

timization study are carried out according to the approximations we made. We

search over a vast interval that consists of positive integers while searching for

4∗ for a given Q and S∗(Q). For the sensitivity analysis, all combinations of the

following sets are analyzed: λ0={2, 4, 8, 16, 32}, D={8}, C={2, 4, 8, 16, 32},
A(C)/C={0.25, 1, 4}, hi={1}, βi={2, 4, 16, 32}, N = 4, hw = 0.5, Lw = {2}
and Kwh = {1}. In all of the scenarios, the retailers are assumed to be identical

in their cost, lead-time and demand parameters and N = 4, hw = 0.5. Also we

neglect the maintenance and depreciation cost factor φ(C) in our numerical study

similar to Section 2.6.
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While commenting on the behavior of the total cost rate under different para-

meters in the two-echelon system, the warehouse holding and order set-up costs

must be taken into the consideration as well. In the two echelon system, ware-

house order up-to level, Swh = 4Q is a decision parameter like the retailer order

up-to levels S. Therefore, we also discuss the impacts of the cost and system

parameters on 4∗ in this subsection.

Note that the effective lead-times increase as Swh decreases due to the Equa-

tion (3.1), and higher effective lead-times bring about higher S∗. Parallel to the

discussion above, we observe that S∗ is non-increasing in 4 in our numerical

resulus.

Recall that in the single echelon case, there is a trade-off between the order

set-up costs and holding and backorder costs in the retailer level. For a given C,

order set-up costs decrease whereas holding and backorder costs increase if the

joint order quantity Q is accrued. In the two echelon case, this trade-off can be

generalized to systemwide order set-up and systemwide holding and backorder

costs.

The Impact of A(C) and K on the Performance of the System

Next, we examine the impact of a = A(C)/C and K on the performance of

our system. In Table 3.1, we tabulate how the optimal system parameters

(Q∗, S∗,4∗, C∗) changes with A(C) and fleet size K jointly, where we have a

capacity option set C = {2, 4, 8, 16, 32}, N = 4, λ0 = 4, D = 8, Lw = 2 and

βi = 32 for all i.

Table 3.1: The Effects of the Change in A(C) and K on Total Cost Rate
A(C)= 0.25C C 4C

K (Q*,S*, 4*, C*) (Q*,S*, 4*, C*) (Q*,S*, 4*, C*)
2 (20,15,0,32) (21,15,0,32) (21,15,0,32)
3 (13,11,1,16) (14,11,1,16) (16,14,0,16)
4 (11,10,1,16) (11,10,1,16) (11,10,1,16)
9 (5,9,2,8) (8,10,1,8) (8,10,1,8)
14 (4,9,2,4) (4,9,2,4) (4,9,2,4)
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Parallel to our observations in Section 2.6, we note that, truck utilization

Q∗/C∗% has a non-increasing structure when the fleet size K increases for a

given capacity C. Also, the order up-to level S∗ decreases with K and increases

with A(C). Moreover, Q∗/C∗% increases as the order setup cost rate A(C)/C

increases. The reasons of these behaviors are similar to those that are discussed

in the single echelon case. Note that with a higher fleet size, trucks with a

smaller capacity can be used for the transportation of the goods. Hence, as

K increases, Q∗ decreases until the increase in the warehouse order setup cost

rate Kwhλ0

Q∗ dominates the savings from systemwide holding and backorder costs.

Recall that in the single echelon systems, using the smallest C (which is 2 in

our numerical test bed) with a 100% truck utilization is the best choice when we

ignore the φ(C) cost factor. However, this may not hold true for the two-echelon

case due to the warehouse order set-up cost. Figure 3.6 depicts the behavior of

AC∗ = AC(Q,S∗(Q)) with regards to Q when D = 8, N = 4, A(C) = 0.25C and

provided that there is an ample number of trucks in the truck base. Notice that

AC∗ is minimum when Q = 8.

Figure 3.6: Illustration of the change of AC∗% with Q
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Next, we consider how the warehouse is affected by Q. From the numerical

results we observe that the response of the warehouse to bigger Q is to decrease
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its order up-to level Swh. For instance, consider the case when K = 3 in Table

3.1. For A(C) = 0.25C, optimal joint order quantity is Q∗ = 13 with 4∗ = 1, for

A(C) = C, Q∗ is raised to 14 with the same 4∗. However Q∗ becomes 16 when

A(C) = 4C. In this case, 4∗ = 0. This decrease in 4 is due to the fact that

the savings from the warehouse holding costs dominate the extra costs the higher

effective lead-time brings when 4∗ = 0 for Q = 16.

Joint Effect of C and K

Next, we consider the case when C is exogenous to the system. Figure 3.7

Figure 3.7: Illustration of the change of AC∗ with K for different C
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illustrates the impact of the capacity constraint C on AC∗ when λ0 = 4. In Figure

3.7, AC∗ is minimum when C = 4 with full truck utilization (Q = 4), provided

that there are abundant number of trucks. We observe that 4∗ decreases as

C increases, although S∗wh = Q4∗ remain same for C = 2, 4 and 8. Since the

batch demands of size Q arrive at the warehouse, after some Q, it begins to

be unprofitable to hold stock in the warehouse. Hence, we can explain why the

warehouse serves as a cross-dock point when C = 16 and 32. The other impacts of

C on AC∗ and on other system parameters are similar to those that are mentioned

in Section 2.6.

The Impacts of the Change in βi and K
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Next, we present Table 3.2, which tabulates the impacts of backorder cost rate

βi and fleet size K jointly on the optimal system parameters where we have a

capacity option set C = {2, 4, 8, 16, 32}, N = 4,λ0 = 2, A(C) = C and D = 8.

Table 3.2: The Effects of the Change in βi and K on Total Cost Rate
βi=2 βi=4 βi=16 βi=32

K (Q*,S*,4*,C*) (Q*,S*,4*,C*) (Q*,S*,4*,C*) (Q*,S*,4*,C*)
1 (22,7,0,32) (21,8,0,32) (21,10,0,32) (21,11,0,32)
5 (4,3,1,4) (4,4,1,4) (4,6,1,4) (6,6,1,4)
9 (4,3,1,4) (4,4,1,4) (4,5,1,4) (4,6,1,4)
11 (4,3,1,4) (4,4,1,4) (2,5,2,2) (2,5,3,2)
15 (4,3,1,4) (4,4,1,4) (2,5,2,2) (2,5,3,2)

Similar to the single-echelon case, the retailers react to higher βi with higher

order up-to levels S∗ and lower truck utilization percentage, Q∗/C∗%. Also, we

observe that smaller Q∗ leads to higher 4∗ in Table 3.2. As we have a higher

βi, retailer holding and backorder costs gain more importance and the warehouse

order setup cost rate ,Kwhλ0

Q
becomes dominant over the other cost rates for the

first time when Q∗ is smaller. For instance in Table 3.2, Q = 4 with a fleet size

of K = 15 gives the minimum cost if βi = 2. However, Q = 2 with the same fleet

size brings about the minimum AC∗ when βi = 32.

The Impact of D on the Performance of the System

Next we present Table 3.3, which tabulates how D affects AC∗ and other system

parameters when C = 8, λ0 = 8, A(C) = C, βi = 4 and N = 4. Note that the

holding costs during the lead time are not incurred in Table 3.3. Also, it is obvi-

ous that as D increases, number of the arrivals during service time increases as

well. Hence, the number of servers must be augmented in order to cope up with

the increased service time. Notice that K values for D = 1 and D = 8 are not

same in the table, however AC∗, Q∗, S∗ and 4∗ do not change for K > 3 where

D = 1. We observe that an increase in D leads to higher retailer order up-to

levels S∗ from the table. The reasons of higher S∗ for D = 8 can be explained by

the reasons that are discussed in the single echelon case. Also, we observe that

the warehouse order up-to level S∗wh is rather invariant to a change in D compared

to other system parameters. For instance in Table 3.3, 4∗ = 1 for both D = 1

and D = 8.
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Table 3.3: The Effects of the Change in D and K on Total Cost Rate and Other
System Parameters

D=1
K AC* (Q*,S*) Q*/C% 4*
1 13.4927 (8,3) 100% 1
2 13.4599 (8,3) 100% 1
3 13.4599 (8,3) 100% 1

D=8
K AC* (Q*,S*) Q*/C% 4*
5 19.0293 (8,7) 100% 1
6 18.6708 (8,7) 100% 1
7 18.6621 (8,7) 100% 1
8 18.6621 (8,7) 100% 1

The effects of λ0

Another system parameter which increases the number of the arrivals during

service time D is the total demand arrival rate λ0, hence the number of the

servers must be augmented in order to handle an increase in λ0, too. AC∗, Q∗,

S∗ and 4∗ do not change for K > 9 where λ0 = 4. Table 3.4 tabulates how λ0

affects AC∗ and other system parameters when C = 8, D = 8, A(C) = C, βi = 4

and N = 4. Similar to the single echelon case, we observe that higher λ0 leads

to a higher S∗. As we can observe from the table, 4∗ is more sensitive to an

increase in λ0 compared to D.

Table 3.4: The Effects of λ0 on AC∗ and Other System Parameters
λ0=4

K AC* (Q*,S*) Q*/C% 4∗

5 19.0293 (8,7) 100% 1
6 18.6708 (8,7) 100% 1
7 18.6621 (8,7) 100% 1
8 18.6621 (8,7) 100% 1
9 18.6621 (8,7) 100% 1

λ0=16
K AC* (Q*,S*) Q*/C% 4∗

17 46.8618 (8,22) 100% 4
18 44.0647 (8,21) 100% 4
19 43.7391 (8,21) 100% 4
20 43.7009 (8,21) 100% 4
21 43.6976 (8,21) 100% 4

The effects of N and Kwh

The retailer backorder and holding costs increase as N increases due to the fact

that the system enjoys the risk pooling effect when N is smaller. From the nu-

merical results, we also remark that 4∗ is rather insensitive to the changes in N ,

compared to other parameters. Note that the warehouse holding cost hw affects

4∗, and as hw increases, 4∗ decreases. This leads to an increase in effective lead-

times, which brings about higher S∗. Also, the effects of Kwh are very similar to

those of A(C)/C. An increase in Kwh leads to an increase in Q∗. In addition,
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when we have a truck capacity option set C, we observe that Q∗, (or C∗) that

gives the minimum cost AC∗ increases with Kwh.

The effects of the warehouse lead-time Lw

Table 3.5 tabulates how AC∗ and other parameters change with Lw when C = 8,

λ0 = 4, βi = 4 and D = 8.

Table 3.5: The Impacts of Lwh on AC∗ and Other System Parameters
Lw = 1

K AC* (Q*,S*) Q*/C% 4∗

5 19.1202 (8,8) 100% 0
6 18.8040 (8,8) 100% 0
7 18.7964 (8,8) 100% 0
8 18.7963 (8,8) 100% 0

Lw = 4
K AC* (Q*,S*) Q*/C% 4∗

5 19.5415 (8,7) 100% 2
6 19.3039 (8,7) 100% 2
7 19.3007 (8,7) 100% 2
8 19.3007 (8,7) 100% 2

From the Table 3.5, we can observe that the warehouse reacts to bigger Lw

with higher 4∗. Since the effective lead-times increase as Lw increases, our ex-

pectation of the response of the retailers to a higher Lw would be higher S∗.

However, the behavior of S∗ contradicts with our expectation in some of the pa-

rameter settings. For instance, when Lw = 1, which is considerably smaller than

D = 8, the warehouse employs a cross-docking policy 4∗ = 0, and S∗ = 8, which

is higher than the S∗ value when Lw = 4. This can be explained by the dom-

inance of the savings from warehouse holding costs on the effects of the higher

effective lead-time when Lw = 1 and 4∗ = 0. However the complicated structure

of the AC∗ hinders us to make generalizations on the behaviors of AC∗. In the

next subsection, we discuss how robust our approximation is, which is given in

Subsection 3.2.2.

3.4.2 Accuracy of the Approximation

In this subsection, we examine the accuracy of the approximation that is made

in Subsection 3.2.2. Recall that we approximate the departure process of the
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(Swh− 1, Swh) inventory system by a renewal process with Erlang(Q′, λ′0) distrib-

uted inter-arrival times. In order to examine the performance of the approxima-

tion on the operating characteristics, we simulated this distribution system to

obtain the true operating characteristics.

In our simulations, we used a run length of 100, 000 warehouse ordering in-

stances and 20 replications to obtain the corresponding operating characteristics.

The distribution system is simulated for more than 250 different scenarios and

ACsim obtained from the simulation are compared with ACapp that we obtain

from Equation (3.8). Since the simulation of the system takes a long time, we do

not optimize the parameters.

Table 3.6: The Accuracy of the Approximation for different ρ
ρ %µ|err| min % err median % err max % err

ρ ≤ 0.5 0.030 -0.059 0.009 0.077
0.5 < ρ ≤ 0.6 0.035 -0.005 0.030 0.089
0.6 < ρ ≤ 0.7 0.037 -0.100 0.008 0.121
0.7 < ρ ≤ 0.8 0.101 -0.012 0.042 0.469
0.8 < ρ ≤ 0.9 0.269 -0.200 0.013 1.817
0.9 < ρ ≤ 0.95 0.938 -0.930 0.048 10.775
0.95 < ρ ≤ 0.98 2.500 -2.211 2.057 7.890

0.98 < ρ 10.853 3.532 9.985 18.899

From the simulation results, we observe that the accuracy of the approximation

is strongly correlated with the traffic rate ρ of the queue. When ρ < 0.95, we

observe that the approximation works very well. Let

%err = 100× ACsim.−ACapp.

ACsim.

denote the relative error of the approximation with regards to the AC obtained

from the simulation. Note that %err can take both positive and negative values,
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that’s why we take the average %µ|err| of the absolute values of the %err. In

Table 3.6, we present how the sample mean of the absolute value of %err, %µ|err|
and the minimum, median and maximum values of %err change with ρ.

Notice that our approximation works better for lower ρ. Even when ρ is as

high as 0.98, our approximation works reasonably well. Figure 3.8 illustrates how

the simulation results deviates from the approximated ones as ρ approaches to

1. The approximation method does not perform well for ρ > 0.95, hence we

recommend to use the simulation methods to obtain the total cost rate of the

system and optimum parameters when the traffic rate is higher than 0.95.

Figure 3.8: Illustration of the change of the difference between simulated AC and
approximated AC with ρ
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Chapter 4

Conclusion and Future Studies

In this study, we have examined the effect of the transportation capacity on the

performance of the joint replenishment policies in single and two echelon inventory

systems. Particularly we have focused on quantity based (Q, S) replenishment

policies. Different from the previous work in the literature, we have considered

the fleet size limitation in our analysis. We model the shipment operations of

the joint orders at the truck base as a queueing system, and we employed the

Axsatër’s [3] method to derive the unit holding and backorder cost rate per unit

time. We constructed the expected cost rate expression for unit Poisson demands.

Consequently, weinvestigated the characteristics of the expected cost rate of the

system with other system parameters, and we discussed methods of approach for

different kinds of transportation limitation scenarios in the existence of a main-

tenance/depreciation cost rate factor per a truck. An extensive numerical study

has been conducted for the single echelon case in order to assess the sensitivity of

the expected cost rate to various system parameters. Afterwards, the analysis is

extended to a two-echelon system. In this setting, the fleet is used for the trans-

portation of the orders between the warehouse and the retailers. A joint order

placed by the retailers must be first satisfied by the warehouse inventory before

being loaded onto the trucks. Therefore the departure process of the warehouse

inventory system, which uses (S-1,S) policy constitutes the arrival process of the

queueing system where the trucks are the servers and the satisfied joint orders are

57
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the customers. Afterwards, we characterize the departure process of an inventory

system with deterministic lead times which uses (S-1,S) policy, and where the ar-

rivals occur according to a renewal process. Consequently we apply these results

to our setting, and we obtain the arrival process of the queueing system. Then we

approximated this arrival process to an Erlang Process and derived the expected

cost rate of the system accordingly. A numerical study has been conducted for

this two-echelon system, and the sensitivity of the system parameters and the

accuracy of our approximation method is assessed.

We observe that the management of the transportation capacity and the fleet

size in conjunction with the joint replenishment policies can lead to substantial

savings. We believe that our study may have important applications for sup-

ply chain design. In addition our study can be extended to contractual design

agreements especially for the 3PL provider firms which supply logistic service to

retailer chains.
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[11] S. Çetinkaya and C. Y. Lee. Stock replenishment and shipment scheduling

for vendor managed inventory systems. Management Science, 16; 217–232

2000.
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[41] A. Toptal, S. Çetinkaya and C. Y. Lee. The buyer-vendor coordination

problem: modeling inbound and outbound cargo capacity and costs. IIE

Transactions, 35; 987–1002 2003.

[42] M. J. G. Van Eijs. On the determination of the control parameters of the

optimal can-order policy. Zeitschrift of Operations Research, 39; 289–304

1994.

[43] C. A. Yano and Y. Gerchak Transportation contracts and safety stocks for

just-in-time deliveries. Journal of Manufacturing and Operations Manage-

ment, 2; 314–330 1989.

[44] Y. S. Zheng. Optimal conrol policy for stochastic inventory system with

markovian discount opportunities. Operations Research, 42; 721–738 1994.



Appendix A

Algorithms Part

A.1 Accuracy Check Algorithm

The accuracy check is based on alternative expressions for the mean queue length,

(E[Lq]). The pseudocode for the search algorithm is presented below:

begin

Set Mmin = kQ

Set E[Lq](0)=0

Set ε (a small enough value, which is our error bound)

Set 4(a big enough value)

Set i=1

while(4 > ε) do

Set M = Mmin + i× d20 + (kQ/10)e
Compute pj’s for j ∈ 0, 1, ...M

Compute E[Lq](i)

4 = |E[Lq](i)− E[Lq](i− 1)|
i++

end

end

Here E[Lq(i)] denotes the expected queue length when M = Mmin + i× kQ/10.
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One can derive E[Lq] in two ways:

1. By choosing a large enough value (Θ), E[Lq] ≈ ΣΘ
j=c+1(j − c)pj

2. A formula for E[Lq] is suggested in Tijms,ref. no,p.290 as below:

E[Lq] =
1

2c(1− ρ)

[
(cρ)2 − c(c− 1) +

c−1∑
j=0

{c(c− 1)− j(j − 1)} pj

]
(A.1)

where ρ = λ0D/c is the traffic intensity, and ρ < 1, otherwise queue would blow

up. Both of these expressions can be used for computing E[Lq(i)].

A.2 Search Algorithms for Different Types of

Transportation Limitation Scenarios

We define Kmax(Q, ε), which is frequently used in our algorithms, for an arbitrar-

ily small ε as below:

Kmax(Q, ε) = min{K ≥ Kmin(Q) : AC(Q, (S∗(Q,K)), K, C)−
AC(Q, (S∗(Q,K + 1)), K + 1, C) ≤ ε}

where K is a positive integer.

Search Algorithm 1: Search Algorithm for Single Truck Capacity

Step 1. Find QC = (dC/2e , dC/2e+ 1, ..., C).

Step 2. Find Kmin(Q) for every Q ∈ QC .

Step 3. Find Kmax(Q, φ(C)).

Step 4. The recommended order quantity, Q∗, is equal to

arg min
Q∈QC

AC(Q, (S∗(Q, Kmax(Q, φ(C)))), Kmax(Q, φ(C)), C) + Kmax(Q, φ(C)) ×
φ(C)

The recommended fleet size and order-up to levels are Kmax(Q
∗, φ(C)) and

S∗(Q∗, Kmax(Q
∗, φ(C)), respectively.



APPENDIX A. ALGORITHMS PART 66

Search Algorithm 2: Search Algorithm for Multiple Truck Capacities

Step 1. Find QCi
= (dCi/2e , dCi/2e+ 1, ..., Ci) for every Ci ∈ C.

Step 2. If QCi
∩QCj

is not an empty set for every (i, j) ∈ (1, 2, ..., m) such that

i < j, eliminate the intersecting elements from QCj
.

Step 3. For every Ci ∈ C, repeat the following steps (from Step 3.1 to Step 3.3):

Step 3.1. Find Kmin(Q) for every Q ∈ QCi
.

Step 3.2 Find Kmax(Q, φ(Ci)) for every Q ∈ QCi
.

Step 3.3 The recommended order quantity for a given capacity Ci, is Q∗
i such

that:

Q∗
i = arg min

Q∈QCi

AC(Q, (S∗(Q,Kmax(Q, φ(Ci)))), Kmax(Q, φ(Ci)), Ci)+Kmax(Q, φ(Ci))×
φ(Ci)

For a given Ci, the recommended fleet size and optimal order-up to levels are

Kmax(Q
∗
i , φ(Ci)) and S∗(Q∗

i , Kmax(Q
∗
i )) respectively.

Step 4. Decide upon the best capacity option C∗ such that

C∗ = arg min
Ci∈C

AC(Q∗
i , (S

∗(Q∗
i , Kmax(Q

∗
i , φ(Ci)))), Kmax(Q

∗
i , φ(Ci)), Ci)+Kmax(Q

∗
i , φ(Ci))×

φ(Ci)

Search Algorithm 3: Search Algorithm for a Given Fleet Size (There

is a Capacity Option Set)

Step 1. Find Qmin(K) for K.

Step 2. Eliminate all Ci such that Ci < Qmin(K) from C.

Now we have a set C = (Ck, Ck+1, ..., Cm) and Ck is the smallest capacity such

that Ck ≥ Qmin(K)

Step 3. Find QCi
= (dCi/2e , dCi/2e+ 1, ..., Ci) for every Ci ∈ C, .

Step 4. If QCi
∩QCj

is not an empty set for every (i, j) ∈ (k, k + 1, ..., m) such

that i < j, eliminate the intersecting elements from QCj
.

Step 5 Find the recommended order quantity (denoted as Q∗
i ) for every Ci ∈ C

for a given K is as follows:

Q∗
i = arg min

Q∈QCi

AC(Q, (S∗(Q,K)), K, Ci) + K(Q)× φ(Ci)

For a given capacity Ci and fleet size K, the optimal order-up to levels (S∗(Q∗
i , K))
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can be found easily.

Step 6. Decide upon the capacity option C∗ such that

C∗ = arg min
Ci∈C

AC(Q∗
i , (S

∗(Q∗
i , K)), K, Ci) + K × φ(Ci)



Appendix B

Proof Part

Proof of Theorem 4

Recall that we have the following expression for Yi.

Yi =





Xi if (L− Zi−S) ≤ min(Xi−S, Xi)

Xi−S + Zi−S + Xi − L if Xi−S < (L− Zi−S) ≤ Xi

L− Zi−S if Xi < (L− Zi−S) ≤ Xi−S

Xi−S if (L− Zi−S) > max(Xi−S, Xi).

(B.1)

As demonstrated above, Yi takes different values for different Xi−S, Xi and Zi−S

realizations. Next we define the disjoint events E1, E2, E3 and E4 as follows:

E1 = {(L− Zi−S) ≤ min(Xi−S, Xi)}
E2 = {Xi−S < (L− Zi−S) ≤ Xi}
E3 = {Xi < (L− Zi−S) ≤ Xi−S}
E4 = {(L− Zi−S) > max(Xi−S, Xi)}.
Since the events that are defined above are disjoint, the probability distribution

function of Yi can be calculated as follows:

FYi
(y) = P (Yi ≤ y) =

4∑
j=1

P (Yi ≤ y, Ej)

Accordingly, we derive P (Yi ≤ y, Ej) for all j in order to derive the FYi
(y).

1. P (Yi ≤ y, E1) =

P (Xi ≤ y, L− Zi−S ≤ min(Xi−S, Xi))

= P (Xi ≤ y, L− Zi−S ≤ Xi ≤ Xi−S) + P (Xi ≤ y, L− Zi−S ≤ Xi−S < Xi)
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= P (Xi ≤ y, L− Zi−S ≤ Xi, Xi ≤ Xi−S)

+P (Xi ≤ y, L− Zi−S ≤ Xi−S, Xi−S < Xi)

P (Xi ≤ y, L− Zi−S ≤ Xi, Xi−S ≤ Xi)

=

∫ y

x2=0

∫ ∞

z=L−x2

∫ ∞

x1=x2

dFXi−S
(x1)dFXi

(x2)dFZi−S
(z)

=

∫ y

x2=0

FX(x2)FZ(L− x2)dFX(x2)

P (Xi ≤ y, L− Zi−S ≤ Xi−S, Xi−S < Xi)

=

∫ y

x2=0

∫ x2

x1=0

∫ ∞

z=L−x1

dFXi
(x2)dFXi−S

(x1)dFZi−S
(z)

=

∫ y

x2=0

∫ x2

x1=0

FZ(L− x1)dFX(x1)dFX(x2)

P (Yi ≤ y, E1) =

∫ y

x2=0

{
FX(x2)FZ(L− x2) +

∫ x2

x1=0

FZ(L− x1)fX(x1)dx1

}
dFX(x2)

2. P (Yi ≤ y, E2) =

P (Xi−S + Zi−S + Xi − L ≤ y, Xi−S < L− Zi−S ≤ Xi)

= P (Zi−S ≤ y + L− (Xi + Xi−S), Xi−S < L− Zi−S ≤ Xi)

= P (Zi−S ≤ y + L− (Xi + Xi−S), Zi−S < L−Xi−S, Zi−S ≥ L−Xi,

Xi > Xi−S, Xi−S ≤ y)

=

∫ ∞

x2=0

∫ min(x2,y)

x1=0

∫ min(L−x1,L+y−(x1+x2))

z=L−x2

dFZi−S
(z)dFXi−S

(x1)dFXi
(x2)

= P (Yi ≤ y, E2) =

∫ y

x2=0

∫ x2

x1=0

∫ L−x1

z=L−x2

dFZ(z)dFX(x1)dFX(x2)

+

∫ ∞

x2=y

∫ y

x1=0

∫ L−x1+y−x2

z=L−x2

dFZ(z)dFX(x1)dFX(x2)

3. P (Yi ≤ y, E3) =

P (L− Zi−S ≤ y,Xi < L− Zi−S ≤ Xi−S)

= P (Z ≥ L− y, Z < L−Xi, Z ≥ L−Xi−S, Xi < y)

=

∫ ∞

x1=0

∫ min(x1,y)

x2=0

∫ L−x2

z=max(y,L−x1)

dFZi−S
(z)dFXi

(x2)dFXi−S
(x1)
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=

∫ y

x1=0

∫ x1

x2=0

∫ L−x2

z=L−x1

dFZ(z)dFX(x2)dFX(x1)

+

∫ ∞

x1=y

∫ y

x2=0

∫ L−x2

z=L−y

dFZ(z)dFX(x2)dFX(x1)

4. P (Yi ≤ y, E4) =

P (Xi−S ≤ y, L− Zi−S > max(Xi−S, Xi))

= P (Xi−S ≤ y, L− Zi−S > Xi−S ≥ Xi) + P (Xi−S ≤ y, L− Zi−S > Xi > Xi−S)

= P (Xi−S ≤ y, Zi−S < L−Xi−S, Xi ≤ Xi−S)

+P (Xi−S ≤ y, L−Xi > Zi−S, Xi−S < Xi)

P (Xi−S ≤ y, Zi−S < L−Xi−S, Xi ≤ Xi−S)

=

∫ y

x1=0

∫ L−x1

z=0

∫ x1

x2=0

dFXi
(x2)dFZi−S

(z)dFXi−S
(x1)

=

∫ y

x1=0

FX(x1)FZ(L− x1)dFX(x1)

P (Xi−S ≤ y, L−Xi > Zi−S, Xi−S < Xi)

=

∫ y

x1=0

∫ ∞

x2=x1

∫ L−x2

z=0

dFZi−S
(z)dFXi

(x2)dFXi−S
(x1)

=

∫ y

x1=0

∫ ∞

x2=x1

FZ(L− x2)dFX(x2)dFX(x1)

P (Yi ≤ y, E4) =

∫ y

x1=0

{
FX(x1)FZ(L− x1) +

∫ ∞

x2=x1

FZ(L− x2)dFX(x2)

}
dFX(x1)

Hence we can obtain FYi
(y) = P (Yi ≤ y) =

4∑
j=1

P (Yi ≤ y, Ej). Since the inter-

arrival times are i.i.d, the distribution function, FY (y) of each Yi are identical.

The density of the Y , denoted as fY (y) = dFY (y)
dy

can be obtained by taking the

derivation of FY (y) with respect to y. Leibnitz’s Rule for differentiating the in-

tegrals is used when fY (y) is derived.

fY (y) = dFY (y)
dy

=
4∑

j=1

d(P (Y ≤ y, Ej))

dy

1.d(P (Y≤y,E1))
dy

=

d

0@∫ y

x2=0

{
FX(x2)FZ(L− x2) +

∫ x2

x1=0

FZ(L− x1)dFX(x1)

}
dFX(x2)

1A
dy
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= fX(y)

{
FZ(L− y)FX(y) +

∫ y

x=0

FZ(L− x)dFX(x)

}

2.d(P (Y≤y,E2))
dy

=

d

0B@∫ y

x2=0

∫ x2

x1=0

∫ L−x1

z=L−x2

dFZ(z)dFX(x1)dFX(x2)

1CA
dy

+

d

0B@∫ ∞

x2=y

∫ y

x1=0

∫ L−x1+y−x2

z=L−x2

dFZ(z)dFX(x1)dFX(x2)

1CA
dy

d

0B@∫ y

x2=0

∫ x2

x1=0

∫ L−x1

z=L−x2

dFZ(z)dFX(x1)dFX(x2)

1CA
dy

= fX(y)

∫ y

x1=0

∫ L−x1

z=L−y

dFZ(z)dFX(x1)

d

0B@∫ ∞

x2=y

∫ y

x1=0

∫ L−x1+y−x2

z=L−x2

dFZ(z)dFX(x1)dFX(x2)

1CA
dy

= −fX(y)

∫ y

x1=0

∫ L−x1

z=L−y

dFZ(z)dFX(x1)

+

∫ ∞

x2=y

d

(∫ y

x1=0

∫ L−x1+y−x2

z=L−x2

dFZ(z)dFX(x1)

)

dy
dFX(x2)

d(P (Y≤y,E2))
dy

=

∫ ∞

x2=y

d

(∫ y

x1=0

fX(x1) [FZ(L− x1 + y − x2)− FZ(L− x2)] dx1

)

dy
dFX(x2)

=

∫ ∞

x2=y

[∫ y

x1=0

fZ(L− x1 + y − x2)dFX(x1) + fX(y) (FZ(L− x2)− FZ(L− x2))

]
dFX(x2)

=

∫ ∞

x2=y

∫ y

x1=0

fZ(L− x1 + y − x2)dFX(x1)dFX(x2).

Since fX(x) = 0 for x < 0 and fZ(z) = 0 for z < 0, we obtain the follow-

ing:

d(P (Y≤y,E2))
dy

=

∫ L+y

x2=y

∫ min(y,L+y−x2)

x1=0

fZ(L− x1 + y − x2)dFX(x1)dFX(x2)

3.d(P (Y≤y,E3))
dy

=

d

0B@∫ y

x1=0

∫ x1

x2=0

∫ L−x2

z=L−x1

dFZ(z)dFX(x2)dFX(x1)

1CA
dy
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+

d

0B@∫ ∞

x1=y

∫ y

x2=0

∫ L−x2

z=L−y

dFZ(z)dFX(x2)dFX(x1)

1CA
dy

d

0B@∫ y

x1=0

∫ x1

x2=0

∫ L−x2

z=L−x1

dFZ(z)dFX(x2)dFX(x1)

1CA
dy

= fX(y)

∫ y

x2=0

∫ L−x2

z=L−y

dFZ(z)dFX(x2)

d

0B@∫ ∞

x1=y

∫ y

x2=0

∫ L−x2

z=L−y

dFZ(z)dFX(x2)dFX(x1)

1CA
dy

=

−fX(y)

∫ y

x2=0

∫ L−x2

z=L−y

dFZ(z)dFX(x2)

+

∫ ∞

x1=y

d

(∫ y

x2=0

{FZ(L− x2)− FZ(L− y)}dFX(x2)

)

dy
dFX(x1)

d(P (Y≤y,E3))
dy

=

∫ ∞

x1=y

[∫ y

x2=0

fZ(L− y)dFX(x2) + fX(y)(FZ(L− y)− FZ(L− y))

]
dFX(x1)

=

∫ ∞

x1=y

∫ y

x2=0

fZ(L− y)dFX(x2)dFX(x1) = FX(y)FX(y)fZ(L− y)

4.d(P (Y≤y,E4))
dy

=

d

0@∫ y

x1=0

{
FX(x1)FZ(L− x1) +

∫ ∞

x2=x1

FZ(L− x2)dFX(x2)

}
dFX(x1)

1A
dy

= fX(y)

{
FZ(L− y)FX(y) +

∫ ∞

x=y

FZ(L− x)dFX(x)

}

Hence we obtain fY (y) =
4∑

j=1

dP (Yi ≤ y, Ej)

dy
given in Theorem 4.¤

Proof of Theorem5

Firstly, we define a = L−Zi−S, and replace a with L−Zi−S in the Equation 3.2.

Yi =





Xi if a ≤ min(Xi−S, Xi)

Xi−S + Xi − a if Xi−S < a ≤ Xi

a if Xi < a ≤ Xi−S

Xi−S if a > max(Xi−S, Xi).

(B.2)

After simplifying the expression for Yi, then we take the expectation of Yi. Since

all Yi are identically distributed, we use E[Y ] for the expectation of Yi for all i.
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E[Y ] =

∫ L

a=−∞

∫ ∞

x2=a

∫ ∞

x1=a

x2fZi−S
(L− a)dFXi−S

(x1)dFXi
(x2)da

+

∫ L

a=−∞

∫ ∞

x2=a

∫ a

x1=0

(x2 + x1 − a)fZi−S
(L− a)dFXi−S

(x1)dFXi
(x2)da

+

∫ L

a=−∞

∫ a

x2=0

∫ ∞

x1=a

afZi−S
(L− a)dFXi−S

(x1)dFXi
(x2)da

+

∫ L

a=−∞

∫ a

x2=0

∫ a

x1=0

x1fZi−S
(L− a)dFXi−S

(x1)dFXi
(x2)da

Note that all Xi are i.i.d, therefore all fXi
(.) = fX(.). We can write the following

after some algebra:

E[Y ] =

∫ L

a=−∞

{∫ ∞

x2=a

(∫ a

x1=0

x2fX(x1)dx1 +

∫ ∞

x1=a

x2dFX(x1)

)
dFX(x2)

+

∫ a

x1=0

(∫ a

x2=0

x1dFX(x2) +

∫ ∞

x2=a

x1dFX(x2)

)
dFX(x1)

}
fZ(L− a)da

E[Y ] =

∫ L

a=−∞

{∫ ∞

x2=a

(x2FX(a) + x2FX(a))dFX(x2)

+

∫ a

x1=0

(x1FX(a) + x1FX(a))dFX(x1)

}
fZ(L− a)da

E[Y ] =

∫ L

a=−∞

{
(E[X]−

∫ a

x2=0

x2dFX(x2) +

∫ a

x1=0

x1dFX(x1)

}
fZ(L− a)da

E[Y ] = E[X]

∫ L

a=−∞
fZ(L − a)da. By changing the variable: z = L − a and

dz = −da, we have:

E[Y ] = E[X]

∫ ∞

z=0

fZ(z)dz = E[X] Hence, we had shown that E[Y ] = E[X].

Now we can prove V ar[Y ] ≤ V ar[X] V ar[Yi] = V ar[Y ] = E[Y 2] − E[Y ]2. We

have shown in Theorem 5 that E[Yi] = E[Y ] = E[X]. Therefore we have:

V ar[X] − V ar[Y ] = E[X2] − E[Y 2]. Next we will derive E[Y 2]. Note that we

replace a with L− Zi−S for convenience.

E[Y 2] =

∫ L

a=−∞

∫ ∞

x2=a

∫ ∞

x1=a

x2
2fZi−S

(L− a)dFXi−S
(x1)dFXi

(x2)da

+

∫ L

a=−∞

∫ ∞

x2=a

∫ a

x1=0

(x2 + x1 − a)2fZi−S
(L− a)dFXi−S

(x1)dFXi
(x2)da

+

∫ L

a=−∞

∫ a

x2=0

∫ ∞

x1=a

a2fZi−S
(L− a)dFXi−S

(x1)dFXi
(x2)da

+

∫ L

a=−∞

∫ a

x2=0

∫ a

x1=0

x2
1fZi−S

(L− a)dFXi−S
(x1)dFXi

(x2)da
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Note that all Xi are i.i.d, therefore all fXi
(.) are same, and we use fX(.) for

fXi
(.) from now on.

E[Y 2] =

∫ L

a=−∞

{∫ ∞

x2=a

∫ ∞

x1=a

x2
2dFX(x1)dFX(x2)

+

∫ ∞

x2=a

∫ a

x1=0

(x2
2 + x2

1 + a2 + 2x1x2 − 2(x1 + x2)a)dFX(x1)dFX(x2)

+

∫ a

x2=0

∫ ∞

x1=a

a2dFX(x1)dFX(x2) +

∫ a

x2=0

∫ a

x1=0

x2
1dFX(x1)dFX(x2)

}
fZ(L− a)da.

=

∫ L

a=−∞

{∫ ∞

x2=a

x2
2dFX(x2) +

∫ a

x1=0

x2
1dFX(x1)

+2

∫ ∞

x2=a

∫ a

x1=0

a2dFX(x1)dFX(x2) + 2

∫ ∞

x2=a

∫ a

x1=0

x1x2dFX(x1)dFX(x2)

−2

∫ ∞

x2=a

∫ a

x1=0

a(x1 + x2)dFX(x1)dFX(x2)

}
fZ(L− a)da

=

∫ L

a=−∞

{
E[X2] + 2a2FX(a)FX(a)− 2a

(∫ a

x1=0

FX(a)x1dFX(x1)+
∫ ∞

x2=a

FX(a)x2dFX(x2)

)
+ 2

∫ ∞

x2=a

x2

∫ a

x1=0

x1dFX(x1)dx2

}
fZ(L− a)da

E[Y 2] = E[X2]

∫ L

a=−∞
fZ(L−a)da+

∫ L

a=−∞

{
2aFX(a)

(
aFX(a)−

∫ ∞

x2=a

x2dFX(x2)

)

+2

∫ a

x1=0

x1dFX(x1)

(∫ ∞

x2=a

x2dFX(x2)− aFX(a)

)}
fZ(L− a)da

= E[X2]+2

∫ L

a=−∞

{(∫ ∞

x2=a

x2dFX(x2)− aFX(a)

)(∫ a

x1=0

x1dFX(x1)− aFX(a)

)}

fZ(L− a)da

Let z = L − a and replace L − z with all a in the above expression, then we

obtain:

E[Y 2] = E[X2] + 2

∫ ∞

z=0

{(∫ ∞

x=L−z

xdFX(x)− (L− z)FX(L− z)

)

(∫ L−z

x=0
xdFX(x)− (L− z)FX(L− z)

)}
dFZ(z)

By integration by parts, we can write:∫ L−z

x=0

xdFX(x) = (L− z)FX(L− z)−
∫ L−z

x=0

FX(x)dx.

Then,

∫ L−z

x=0

xdFX(x)− (L− z)FX(L− z) = −
∫ L−z

x=0

FX(x)dx.

We can write

∫ ∞

x=L−z

xdFX(x) as E[X]−
∫ L−z

x=0

xdFX(x). Also note that:
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−
∫ L−z

x=0

xdFX(x) =

∫ L−z

x=0

FX(x)dx− (L− z)FX(L− z)

By adding and subtracting (L− z), we obtain:∫ L−z

x=0

FX(x)dx − (L − z) + (L − z)(1 − FX(L − z)) = (L − z)FX(L − z) −
∫ L−z

x=0

FX(x)dx

Since E[X] =

∫ ∞

x=0

FX(x)dx, we can write as follows:
∫ ∞

x=L−z

xdFX(x)− (L− z)FX(L− z) =

∫ ∞

x=L−z

FX(x)dx

So, we obtain the following expression for E[Y 2].

E[Y 2] = E[X2]− 2

∫ ∞

z=0

[(∫ ∞

x=L−z

F (x)dx

)(∫ L−z

x=0

F (x)dx

)]
dFZ(z)

Since V ar[X]− V ar[Y ] = E[X2]− E[Y 2], we have:

V ar[X]− V ar[Y ] = 2

∫ ∞

z=0

[(∫ ∞

x=L−z

F (x)dx

)(∫ L−z

x=0

F (x)dx

)]
dFZ(z) ≥ 0

Hence, V ar[X] ≥ V ar[Y ]¤



Appendix C

Summary of Notation

λi : Demand rate of retailer i

λ0 : Total demand rate of retailers (
∑N

i=1 λi)
ri : λi/λo, The probability that a demand arrives at retailer i

A(C) : Fixed ordering cost of a joint retailer order
hi : Unit inventory holding cost per time for retailer i, i=1,2,..,N
βi : Unit backorder holding cost per time for retailer i, i=1,2,..,N
Si : Order-up-to level of retailer i, i=1,2,..,N

S0 : (
∑N

i=1 Si)
Q : Joint order quantity
li : Minor lead-time from the cross-dock to the retailer i, i=1,2,..,N
D : Time that passes between the dispatch of a truck and that truck’s arrival
Li : Total lead-time from the ample supplier to the retailer i, i=1,2,..,N
C : Each truck’s capacity
k : Number of trucks in the fleet

Wq : Waiting time of a joint order due to the absence of an available truck.
F (Wq) : Distribution function of the waiting time of a replaced order for a truck.

ELi : Effective leadtime from the warehouse to the retailer i, i=1,2,..,N
NIi(t) : Net inventory level of retailer i at time t, i=1,2,..,N

NI(t) : Net inventory level of all retailers at time t, (
∑N

i=1 NIi(t))
IPi(t) : Inventory position of retailer i at time t, i=1,2,..,N

IP (t) : Total inventory position of all retailers at time t, (
∑N

i=1 IPi(t))
TL(t) : Truck level at time t

X : Cycle Length t
f(x, y, z) : p.d.f of gamma distribution with shape:y and scale: z.
F (x, y, z) : Distribution of a gamma distribution with shape:y and scale: z.
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