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Abstract: In this paper, we consider PD controller design for haptic systems under delayed feedback.
More precisely, we present a complete stability analysis of a haptic system where local dynamics are
described by some second-order mechanical dynamics. Next, using two optimization techniques (H¥
and stability margin optimization) we propose an optimal choice for the controller gains. The derived
results are tested on a three degree of freedom real-time experimental platform to illustrate the theoretical
results.
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1. INTRODUCTION

During the last decade, virtual environments have become very
popular and are largely used in many domains as, for exam-
ple, prototyping (see, for instance, Figure 1.a for an appro-
priate example of prototyping using haptic interfaces and vir-
tual environment Lecuyer et al. (2003)), training for differ-
ent devices and assistance in completing difficult tasks (see
Figure 1.b for some virtual environment used for task assis-
tance/supervision David et al. (2007), Gosselin et al. (2010)).

a. Virtual Prototyping. b. Virtual Assistance/Supervision.

Fig. 1. Examples of Virtual Environments Applications

Understanding the interaction between humans and robots is at
the origin of developing several control schemes for teleopera-
tion systems. Roughly speaking, teleoperation extends, at some
level, the human capacity in manipulating objects remotely by
providing the corresponding operator with similar conditions
as those encountered at the remote location (see, for instance,
the surveys Hokayem and Spong (2006), Sheridan (1993)).
Among the recent applications, we may cite telesurgery and
space telerobotics (see, for instance, Aziminejad et al. (2008)
and the references therein), both involving long distance com-
munication between master and slave devices. Furthermore, in
both cases, haptic feedback proved its potential in improving
corresponding task performance. In this context, delays appear
as natural components of the closed-loop schemes in order to
describe some of the dynamics induced by the communication

channels with strong impact on (asymptotic) stability and trans-
parency (i.e. the capability as well as the impression of oper-
ating directly on a remote environment independently of the
presence of master and slave units Lawrence (1993), Yokokohji
and Yoshikawa (1994)). In is worth mentioning that, in haptic
systems, excepting the communication channel, delays may
appear as intrinsic components of the processing time for the
virtual reality environment. More precisely, in free motion, the
delay effect can be felt by the viscosity phenomenon (high force
feedback felt at the haptic interface end) and such a property
is completely lost in the case of a “hard”-contact with the
environment.

In the sequel, we will focus on the closed-loop stability analy-
sis of some class of practical bilateral haptic systems coupled
with a virtual environment by using a standard proportional-
derivative (PD) control law. The delays in the communica-
tion channels are assumed to be constant and, as we will
see in the sequel, only the overall delay (the sum of the for-
ward and backward delays) needs to be known. There exists
an abundant literature on PID control for time-delay systems
(see for instance, O’Dwyer (2000), Silva et al. (2005) and
the references therein). If the stability analysis in closed-loop
makes use of classical tools, the approach we are proposing in
this paper for guaranteeing performance is original. More pre-
cisely, by exploiting the particular structure of the closed-loop
quasipolynomials, we focus on the computation of the the opti-
mal controller gains by using two particular frequency-domain
techniques: H¥ -based design and fragility analysis. Here, by
fragility, we simply understand the deterioration of closed-loop
stability due to small variations of the system parameters (see,
for instance, Alfaro (2007), Keel and Bhattacharyya (1997),
and Makila et al. (1998) for further details on such topics).
Finally, the derived control law are validated on some illus-
trative example involving a virtual spherical mass moving in
an appropriate 3D virtual scene and the study is performed by
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considering a complete scenario from free to some restricted
motions.

The remaining paper is organized as follows: in Section 2,
we present a general haptic system scheme including commu-
nication channels. Next, section 3 is devoted to the stability
analysis in closed-loop in the presence of PD control laws.
Section 4 focuses on an appropriate optimal choice for the con-
troller parameters by using the (frequency-domain) approaches
mentioned above. The experimental validation of the proposed
methodology is discussed in section 5 on a simple three degree
of freedom haptic system. Finally, some concluding remarks
end the paper.

2. SYSTEM DESCRIPTION

In figure 2 we present the general scheme of a haptic system.
The ideal haptic system should satisfy simultaneously the fol-
lowing conditions:

• first, the position tracking error has to be as small as pos-
sible between the haptic interface and the virtual object,

• second, the system has to have a high degree of trans-
parency, i.e. in the ”free” motion case, the force feedback
felt at the haptic interface end must be as small as possible
and in the case of a ”hard”-contact, a stiff response is
desired.

Haptic
controller

Virtual environment simulator
&

Virtual controller

Haptic
interface

Fig. 2. General Scheme of a Haptic System

Figure 3 presents the general control scheme of a haptic inter-
face and a virtual environment including control feedback.

Fig. 3. General PD control scheme for haptic systems.

We will start from the classical dynamic (nonlinear) equations
of motion for two similar robots in the haptics framework. More
precisely, the corresponding dynamics write as:

M1(x1)ẍ1(t)+C1(x1, ẋ1)ẋ1 =−F1(t)+Fh(t), (1)

M2(x2)ẍ2(t)+C2(x2, ẋ2)ẋ2 =−F2(t)+Fe(t), (2)
where x1,x2 are the haptic interface/virtual object position,
Fh,Fe are the human/environmental forces, F1,F2 are the force
control signals, M1,M2 are the symmetric and positive-definite
inertia matrices, and C1,C2 are the Coriolis matrices of the
haptic interface and virtual object systems, respectively. The
main idea can be resumed to using two similar PD controllers,
one for controlling the haptic interface and another for the

(corresponding) virtual object. In such a configuration, we
have:

F1(t) = Kd(ẋ1(t)− ẋ2(t − τ 2))︸ ︷︷ ︸
delayed D-action

+Kp(x1(t)− x2(t − τ 2))︸ ︷︷ ︸
delayed P-action

, (3)

F2(t) = Kd(ẋ2(t)− ẋ1(t − τ 1))︸ ︷︷ ︸
delayed D-action

+Kp(x2(t)− x1(t − τ 1))︸ ︷︷ ︸
delayed P-action

, (4)

where τ 1, τ 2 are the forward and backward finite constant delays
and Kp,Kd are the PD control gains.

3. STABILITY ANALYSIS

Fig. 4. Bilateral Haptic System.

From Figure 4, the equations describing the system response
can be written as follows:

X1(s) = P1(s)
(
Fh(s)−C1(s)

(
X1(s)− e−τ 2sX2(s)

))
, (5)

X2(s) = P2(s)
(
−Fe(s)+C2(s)

(
−X2(s)+ e−τ 1sX1(s)

))
, (6)

where Xi(s) denotes the Laplace transform of the time signal
xi(t), i = 1,2; similarly for Fh(s) and Fe(s); Here, τ 1 > 0 and
τ 2 > 0 denote the corresponding (forward and backward) time
delays. Transfer functions Pi(s) and Ci(s) are taken as follows
(position available for measurement and PD structure for the
control law):

P1(s) = P2(s) =
1

s(ms+b)
=: P(s), (7)

C1(s) =C2(s) = Kp +Kds =: C(s). (8)

As far as the internal stability analysis is concerned, the above
system is equivalent to a system where the controller is PI (of
the form Kd + Kp/s), and the process (measured) variable is
represented by the velocity, i.e., process given by: (ms+b)−1.

By rearranging (5) and (6) above, we get:[
1+P1(s)C1(s) −P1(s)C1(s)e−τ 2s

−P2(s)C2(s)e−τ 1s 1+P2(s)C2(s)

] [
X1(s)
X2(s)

]

=

[
P1(s)Fh(s)
−P2(s)Fe(s)

]
. (9)

Therefore, with the process (plant) and controller definitions
(7) and (8), the characteristic equation of the feedback system
rewrites as follows:

(1+P(s)C(s))2 − (P(s)C(s))2 e−(τ 1+τ 2)s = 0, (10)
which is simply equivalent to:

c 1(s) c 2(s) = 0, (11)
where:

c 1(s) :=
(
1+P(s)C(s)+P(s)C(s)e−τ s) ,

c 2(s) =:
(
1+P(s)C(s)−P(s)C(s)e−τ s) ,

and τ := (τ 1+τ 2)
2 .
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Remark 1. An analysis of equations of the form (11) has been
given in Shayer and Campbell (2000). Different approaches
for handling such a control problem can be found in Liacu
et al. (2010) (closed-loop stability analysis in the controller-
gains parameter space, see also Saeki (2007) ), Michiels and
Niculescu (2007) and the references therein (optimal delay
bound as a function of parameters). In the sequel we are
considering a different approach that makes use of classical
tools from control theory (such as gain and phase margins)
in order to perform the stability analysis of such a feedback
system.

Since (1+PC)−1 is a stable transfer function, from (11) it is
worth mentioning that the feedback system is stable if and only
if the following two equations do not have zeros in C+:

1+G(s)
(

1− e−τ s

s

)
= 0, where G(s) =

Kp +Kds
ms+b

, (12)

1+T (s) e−τ s = 0, where T (s) =
Kp +Kds

s(ms+b)+Kp +Kds
.

(13)
Now define:

K :=
Kp

b
, τ c :=

Kd

Kp
, τ p :=

m
b
,

then G(s) and T (s) can be re-written as:

G(s) = K
1+ τ cs
1+ τ ps

, (14)

T (s) =
K(1+ τ cs)

τ ps2 +(1+ τ c)s+K
. (15)

Further, a frequency normalization can be made:
ŝ = τ ps, (16)

and introduce new definitions:

L :=
1

Kτ p
=

b2

m Kp
, a :=

τ c

τ p
=

b Kd

m Kp
, h :=

τ
τ p

=
(τ 1 + τ 2) b

2 m
,

(17)
so that the characteristic equations (12) and (13) can be re-
written as:

1+
1
L

(1+ a ŝ)
(1+ ŝ)

(
1− e−hŝ

ŝ

)
= 0, (18)

1+
(1+ a ŝ)

(Lŝ2 +(L+ a )ŝ+1)
e−hŝ = 0. (19)

The next step is to find the controller parameters L and a (which
define Kp and Kd), as functions of h, that place all the roots
of (18) and (19) in C−. In what follows without any lack of
generality only the case where Kp and Kd are positive, i.e.,
L > 0 and a > 0 is considered. It is worth mentioning that,
in practice, such a situation occurs most of the cases. As shown
in Appendix A, the system is stable independent of delay h if
a ≥ 1. Furthermore, the analysis for the case a < 1 reduces to
the following. Define:

gc(x) =
p −2

(
tan−1(x)− tan−1(a x)

)
x

,

gp(x) =
2
(
p −

(
tan−1(x)− tan−1(a x)

))
x

.

Clearly, gp and gc are uniformly decreasing functions and
gp(x) > gc(x) for all x > 0. So, if ω p is defined as the solution
of the equation gp(x) = h and ω o as the solution of the equation

gc(x) = h, then ω o < ω p and hence, for a < 1, the feedback
system shown in Figure 4 is stable if and only if ω c < ω o, which
is equivalent to:

L>
2(1− a )

1+ ω 2
o

, where ω o > 0 is the solution of gc(x)= h .

(20)

In conclusion, the following result is obtained:
Theorem 1. The bilateral haptic system is asymptotically stable
independent of the delay values (τ 1, τ 2) if and only if the
controller gains satisfy the condition:

Kd ≥
m
b

Kp. (21)

Furthermore, when Kd/Kp < m/b, the closed-loop system is
stable if and only if:

2
b2

mKp −bKd

1+ ω 2
0

< 1, (22)

where ω 0 > 0 is the solution of the equation:

p −2
(

tan−1(x)− tan−1
(

b Kd
m Kp

x
))

x
=

(τ 1 + τ 2)b
2m

. (23)

✷

From the conditions of Theorem 1, the allowable range of
m Kp/b2 and Kd/b for all b/m > 0 can be determined. The
corresponding stability region is shown for three different time
delay values in Figure 5.
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Fig. 5. Allowable region of controller parameters for stability
of the bilateral haptic system.

4. OPTIMAL GAINS

In this section we discuss optimal gains Kp and Kd from
different perspectives.

4.1 H¥ -based design

Let us define the position tracking error:
e(t) := x1(t)− x2(t). (24)

From (9) we compute:

E(s) =
P(s)

1+P(s)C(s)+P(s)C(s)e−τ s (Fh(s)+Fe(s)). (25)
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While trying to make the error small we may be forced to use
high command signals which may lead to actuator saturation.
Since large control signals are not desirable, we also want
to penalize the control. Again, from (9), the output of the
controller, F2(t), on the virtual side can be computed as:

F2(s) =C(s)(e−τ sX1(s)−X2(s)).

In particular, when Fe = 0 we have:[
E(s)
F2(s)

]
=

(
T (s)

1+T (s)e−τ s

) 1/C(s)
e−τ s

1+P(s)C(s)(1− e−τ s)


Fh(s),

(26)
where T (s) = P(s)C(s)(1 + P(s)C(s))−1. Therefore, optimal
gains from the H¥ control point of view are the ones which
solve the problem:

min
Kp,Kd

∥∥∥∥∥∥∥
P(s)

1+P(s)C(s)(1+ e−τ s)




r

C(s)
(1+P(s)C(s)(1− e−τ s))



∥∥∥∥∥∥∥

¥

m

(27)
where r is a design parameter which represents the trade-off
between small tracking error e and small control action F2.
Depending on the values of r we obtain the optimal Kp and
Kd , for each fixed m = 1, b = 0.1 and τ = 0.05, as shown in
Table 1.

Table 1. H¥ optimal gains for different r

b2r 0.01 0.1 1 10 50 100

Kp 0.8 17.1 85.0 246 305 310
Kd 8.8 10.2 15.2 43 55 51

We see that for large values of r (emphasizing tracking per-
formance, i.e., trying to make ‖e‖2 small compared to ‖F2‖2)
H¥ optimal gains are in the order of Kp ∈ [240 , 310] and
Kd ∈ [40 , 55]. In the next section we will compare these values
with another set of gains obtained from a different optimality
criterion.

4.2 Stability margin optimization

One of the stability conditions is:(
b2

m Kp

) (
1+ ω 2

p

2(1− a )

)
> 1. (28)

Note that ω o < ω p so, if we define:

GM1 :=
(

b2

m Kp

) (
1+ ω 2

o

2(1− a )

)
,

then GM1 > 1 implies (28). So, we will try to make GM1 as
large as possible. On the other hand, for large bandwidth in the
system (fast response) we require that ω c is as large as possible,
i.e.:

ω 2
c +1 =

m Kp

b2 2(1− a ),

should be as large as possible. But this conflicts with GM1
should be large condition. So, we will blend these two conflict-
ing objectives and try to:

maximize min{r 1(ω 2
c +1) ,

1
r 1

GM1},

where r 1 assigns a relative weight for each component of the
problem. The solution of this problem gives:

m Kp

b2 =
1
r 1

√
1+ ω 2

o

2(1− a )
. (29)

Under this choice, we have:

GM1 = r 1

√
1+ ω 2

o . (30)

Note that the right hand sides of (29) and (30) are functions of
a once r 1 and h = τ b/m are fixed.

Now, (m Kp/b2) is the controller gain, and to avoid actuator
saturations this gain should not be too high. So, we can define a
new cost function which tries to make GM1 large and Kp small:

minimize

(
r 2

r 1
√

1+ ω 2
o
+

b2

m r 2

1
r 1

√
1+ ω 2

o

2(1− a )

)
, (31)

where r 2 assigns relative weights for GM1 and Kp. Note that
r 1 does not play a role in the solution of (31). Once r 2 and
h = τ b/m are fixed, the cost function defined in (31) depends
on a only. Minimizing the cost function gives optimal a , then
this gives ω o and Kp via (29); and once Kp is known, we can
find Kd = a m Kp/b. Table 2 shows the optimal gains for
varying r 2 when r 1 = b2 = 0.01, m = 1 and h = τ b/m = 0.005
are fixed.

Table 2. Optimal gains and GM1 for different r 2,
when τ = 0.05, m = 1, and r 1 = b2 = 0.01.

r 2 10 20 30 40 50 60 80 100

Kp 94 207 301 389 425 436 446 453
Kd 2.4 6.3 12.7 34.3 82 127 207 291

GM1 1.33 2.9 4.2 5.5 6.0 6.1 6.16 6.2

Table 2 shows that GM1 increases with increasing r 2, but
for r 2 ≥ 50 additional gain in GM1 is very small. Therefore,
a meaningful choice would be Kp ∈ [390 , 410] and Kd ∈
[35 , 45]. Compared to the H¥ optimal gains corresponding
to relatively large r values, the above Kp values are about 1.3
to 1.5 times higher, whereas Kd values are 1.14 to 1.25 times
lower. For the experimental tests, the values Kp = 400 and
Kd = 40 are used and results are reported in the next section.
These correspond to r 2 ≈ 42 in the above table. For the H¥
optimal gains we may select Kp = 275 and Kd = 45; we expect
the stability margins to be larger in this case, but the response
will be slower. For relatively small r values in the H¥ optimal
design, we have Kp = 85 and Kd = 15 (e.g. for b2r = 1) in
which case the emphasis on tracking performance is diminished
compared to larger r values. In the next section experimental
results for Kp = 400, Kd = 40 case and Kp = 85, Kd = 15 case
will be illustrated.

5. EXPERIMENTAL VALIDATION

5.1 Experimental setup

In order to assure a full control of the communication delays
and processing time, all the control algorithms (for haptic
interface/virtual object) and virtual environment simulations
will be run on the same computer.

The haptic interface, Figure 6a and b, consists of three direct-
drive motor and three optical quadrature encoder with 1000
pts/rev (with a gear ratio of 1/10). The controllers and the
virtual simulation are running in real time mode (on RTAI
Linux) with a sampling time of 1 ms.
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More precisely, for Kd = 40, the maximum allowable Kp is
about 1000. Considering the model uncertainties, the system‘s
frictions and the operator‘s hand the system is still stable at
this value. Another reason is that it is difficult to obtain high
frequencies and the haptic interface input. Starting from Kp =
1100 the system becomes unstable.

6. CONCLUSIONS

In this paper we have presented a complete stability analysis for
a bilateral haptic system coupled to a virtual environment and
affected by time delays. Using two optimization techniques we
have proposed optimal controllers which were experimentally
validated on 3 DOF haptic system in free and restricted motion.

To obtain good performance from the transparency point of
view in free and restricted motion, using the same PD gains,
we need to make a compromise in order to assure minimal
performance in both cases. Another solution is to use a gain
scheduling approach in order to switch from small to high gains
depending on the case. A special attention it is needed for this
approach because both controllers must be updated, and since
the system is affected by time delays, there is a moment when
the gains will be different at each side, moment that can induce
unwanted effects and behaviors. The stability analysis in this
case would fall into the framework of switched time delays
systems and stability can be guaranteed for a sufficiently large
dwell time, see for example Caliskan et al. (2011); Yan and
Ozbay (2008); Yan et al. (2011) and their references.

A complete version of this article can be found in Liacu et
al. (2012).
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