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Abstract— Servomechanism synthesis for a two degree-of-
freedom robot arm assembled on a vessel and affected from sea
disturbances is considered. Dynamic equations of the robot arm
with unbalance and of an approximate base disturbance model
are derived. Direct linear controller synthesis based on a lin-
earized model is then studied. It is shown that, although the plant
model is nonlinear, linear controller that is synthesized based on
the ““internal model principle” provide good performance and
perform better than the commonly used P/D controllers.

I. INTRODUCTION

Mathematical models of robots contain highly nonlinear
terms because of the coupling between joints. In robots of
more than one degree-of-freedom (DOF), nonlinear terms
appear as coriolis and centrifugal forces. Such nonlinearities
impede the design of controllers that meet desired specifi-
cations. While the use of robots on vessels are becoming
popular, disturbances that come from sea through the ves-
sel induce more nonlinear terms and controller design gets
even more involved, [15]. In this work, a two degree-of-
freedom Revolute-Revolute (RR) joint robot arm mounted on
a vessel and is influenced by sea disturbances is modeled.
The disturbance modeling is the main issue and [15], [5],
and [6] focus on this with the objective of compensating the
effects of these disturbances on robots. On the other hand, in
[11], the authors use a combination of a linear and nonlinear
controller and an adaptive algorithm, where the linear agorithm
is based on internal model principle to regulate disturbances,
to solve the tracking and regulation problem for uncertain
mechanical systems. Here, as in [11], the main emphasis will
be on controller synthesis and whether a linear controller
would be able to regulate (asymptotically quench or reject)
disturbances while achieving the tracking and internal stability
objectives. Furthermore, motor dynamics are neglected and
nonlinear effects such as friction, backlash, etc., are assumed
to be exactly compensated and are not considered since their
compensation requires techniques like adaptive, robust, and
neural control algorithms, [18]. Servomechanism syntheses
that achieve tracking, sea disturbance regulation, and (internal)
stability will thus be considered through this work.

One way to control a robot arm is to use Computed
Torque Controllers, [13]. In this method, by using a suitable
inverse of the nonlinearities in the model as part of an overall
nonlinear controller, the system becomes a decoupled linear
error dynamics system which comprises a double integrator for
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each link. A further linear controller can then be employed to
achieve other objectives. In this method, the tracking objective
is automatically achieved via internal stabilization of the error
system, because the signal to be tracked is already incorporated
as part of the nonlinear controller. As long as the nonlinear
control implemented remains intact, this method provides good
tracking ability. However, when it comes to elimination of
external disturbances, then adaptive, robust or other complex
structures need to be used along with this method. This is
because the resulting error system does not allow the use of
internal model principle directly for regulation. There have
been attempts to reconcile the internal model principle and the
computed torque method. For instance, in [14], the linear plant
is pre-stabilized and a linear controller based on the internal
model principle is then employed for regulation. An alternative
to the computed torque control is the direct approach of
linearizing the model and employing a linear controller. This
second method may usually fail because linearization, in most
cases, drops the coriolis and centrifugal terms, and produces an
oversimplified approximate model, [2]. Linearization is hence
hardly considered in the control of robot arms. We will try
to establish however that the relative advantages of these two
methods are not so clear as is usually thought.

The robot model obtained here can be thought of as the first
two links of a PUMA 560 robot arm, [16], upon which an
approximation of effects of disturbances caused by sea move-
ments is also incorporated. The model obtained is standard
and is similar to those one finds in the literature, [5], [6], [15],
[16]. The obtained base disturbance model is then represented
as an external disturbance and the resulting simplified model is
then linearized about a natural operating point. Two different
linear controllers are designed for this linearized plant and
they are implemented on the nonlinear model. The first is a
PID controller, the parameters of which are tuned for the
best observed performance. Of course, such a controller will be
able to track and regulate step signals but not sinusoidals even
if the plant had been linear. It turns out that this expectation is
also fulfilled for our nonlinear plant and P1D controller tracks
and regulates step signals and tracks but can not regulate ramp
signals. The second is an appropriate linear controller that
is synthesized by evoking the “internal model principle” [4].
Simulations show that the internal model based controller is
able to regulate step or sinusoidal type disturbance signals and
is able to track step or sinusoidal reference signals (commands)

280



satisfactorily. Naturally, it is assumed for sinusoidal tracking
and regulation that the frequency content of the reference and
disturbance signals are known. One further observation that
results by the linearization method is that, if the upper link
has unbalance (mismatch between the joint location and the
center of gravity), then it should be compensated before a
linear controller is synthesized.

Internal model principle primarily applies to linear, time-
invariant controller synthesis for the purpose of driving the
output of a system asymptotically to zero in a feedback loop
and states that such regulation can only be achieved if the loop
(or controller) contains an internal model of the input signal
being regulated, [4]. The principle loses its generality when
applied to nonlinear systems although, in [8], [9], [10], and
in [1], [3] one finds instances of such applications. As will be
shown below, the fact that internal model principle applies to
the robot model considered here can be interpreted to mean
that the 2-DOF, RR robot arm model obtained here is “close to
being linear” with respect to the objectives of internal stability,
regulation, and tracking.

The paper is organized as follows. In Section 2, the
dynamic model of a 2-DOF robot arm is obtained and a
disturbance model which represents the sea disturbances
is incorporated. Controller synthesis and simulation via
linearization and internal model principle after the control
of unbalance is given in Section 3. The last section is on
conclusions.

II. DYNAMIC MODELING
A. Dynamic Model of 2-DOF RR Robot

A rigid two degree-of-freedom revolute-revolute joint robot
can be represented as in Fig. 1 and can be modeled by
using Lagrange-Euler Formulation as described in [7] and
[19]. Suppose the second link contains an unbalance, i.e.,
the center of mass of the second link is not on the axis of
revolution of the first link (See [20] for more details).

Center of Mass

Fig. 1. 2 Degree-Of-Freedom RR Robot Arm

Dynamic equation of the robot arm is

A R 1 R e R B

where My, Mso are so called inertia terms, N, No are
coriolis and centrifugal forces, and GGy, G5 are gravity related
terms for the first and second joints, respectively, given by

Mit = ¢ +7cos? () — psin(2y), Maz = 1,
Ny = 0 (—ysin(2¢)) — 2pcos(2¢)),

No = 260%(7sin(2¢) + 2p cos(24))),

G1 =0, Go = —kcos(¢ + @),

with (, 7y, p,  being inertia related constants. Also in (1), 77 =
(771, 7p2]T € R?*! represents the friction torque and u =
[T1,72]7 € R?*! is the external torque input. The constant x
has interpretation as the magnitude of the unbalance torque
and ¢ is the unbalance angle indicated in Fig. 1.

Using the state vector x = [0, 6,1, 1)]T € R**1, the input
vector u, and separating the linear term in x, equation (1) can
be written in state-space representation

d
ax = Ax + f(X, u, t)a Yy = [9’ qp}T’ (2)
with
01 0 O 0,
oo o0 o0 _ |fi(x,u),
A = 0 0 0 1 3 f(X, u? t) - O7
0000 fa(x, u,t)
where f; = Ti_Ni_Gi_Tﬁ;iZ 1,2

M,

When the inputs 7y, 79 and the friction torque vector 7¢ are
zero, the open-loop response of this robot oscillates because
of the unbalance term exists at the second link.

B. Base Disturbance Model

Sea disturbances are caused by sea waves, currents, or
winds. The most important of these is the effect of sea waves
which influences the robot through the vehicle dynamics and
occur in all three principal xyz coordinates. In [15], these
effects are taken into account resulting in a 6-DOF (3 revolute
and 3 prismatic joints) robot. Here, for simplicity, we consider
a 4-DOF (3 revolute and 1 prismatic joints) robot model that
incorporates disturbances due to sea waves as illustrated in
Fig. 2. This would correspond to assuming that the disturbance
influence on the robot can be described with only these joints
and remains the same for a travelling and a stationary vessel.

Since we are not interested in the motion of the vehicle
but in the motion of the robot, the effect of the disturbance
should be transformed onto the robot arm. Thus, following
[15] and premultiplying the transformation matrix from base
to the tip of the disturbance model with the homogeneous
transformation matrix of the robot arm and using the rules in
[7], the dynamics equation of the whole system is obtained.
As expected, the resulting equation for the robot arm contains
highly nonlinear functions of «, 3,7, d, 8,1, and their deriva-
tives.

Several works on the modeling of sea waves, like [17],
[12], and [15], focus on finding energy spectrum of the waves
and propose a rich class of disturbance signals. Singling out
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Fig. 2. The Base Disturbance Model
elementary signals step, ramp, sinusoidal signals, and their

combinations and assuming small amplitudes, the disturbance
on the robot is modeled here as entering (2) as

Ti — Ni — Gy — T§i — Tdist; .
fi: % % ]:4'1 fi ist ;121’2. (3)
We will thus work with this simplified sea wave disturbance
model in synthesizing controllers. This assumption

corresponds to reflecting the base disturbance as step,
ramp, or sinusoidal torques acting directly on joints.

ITII. LINEAR CONTROLLER
A. Linearization of the Model
Linearization of (2) without considering friction torques
(¢ = [0,0]T) about the equilibrium values

0%, 0* =0, *, w* =0,77 =0, 75(t) = —kcos(p* + @),

with arbitrary but fixed constants for 6%, *, gives the state-
space equations

0 60— 0" 0
d |6 0 m 0
= :A * + x| 9 = 3 4
dt |v - [Tz—TJ =1yt @
Y] (] (i
0 1 0 0
0 0 0 0
A=10 0 0 1
0 0 —rsin(y”+¢) 0
L n
[ 0 0
T ) O
_ vy cos=(*)—psin(2¢*
B = 0 0
0 1
L n

Note that, linearization with respect to x eliminates the terms
that arise from coriolis and centrifugal forces but retains
the unbalance term in matrix A in a different form. We
compensate for this nonlinear term as part of the overall
controller and then design a linear controller for the resulting
linear plant (P). Here, by unbalance compensation we mean
gravity compensation as in Fig. 3.

B. Required Internal Model

In Fig. 3, P is the original nonlinear plant represented by (2)
that will be compared with the linearized plant P, combination
of the plant (4) and the compensation for unbalance. It can be
shown that P has the transfer matrix

p1(s) 0 1

ﬁ(s): q1(s) — Jys? 1

J282

p2(s)
q2(s)
where the inertias J;, ¢+ = 1,2, are constant around the equi-
librium point. The two channels of the plant are noninteracting
so that for diagonal reference and disturbance inputs R, D in
Fig. 3, we will synthesize a diagonal controller C.

In Fig. 3, if the linearized plant P is replaced b% P, then
the two channels are decoupled and controllers = in the

two channels can be synthesized independently tgc achieve
internal stability, tracking, and disturbance regulation simul-
taneously. Focusing on a single channel, we need to choose
polynomials p., g. of s such that the characteristic polynomial
A(s) = ppe + qq. is Hurwitz (all roots in the strict left half
complex plane C_) and reference-to-output, disturbance-to-
output transfer functions are stable (all poles in C_). If we
write, for anti-Hurwitz (all roots in the closed right half plane)
polynomials r(s), d(s),

then these requirements are that

o A(s) is a Hurwitz polynomial (internal stability),

. z;ik((i; is stable (tracking),

. d(i)chgj; is stable (regulation).
An additional technical requirement that should be taken into
account in synthesizing p.(s),q.(s) is that C(s) is proper
(realizable). Note that if sinusoidal and ramp signals are to
be tracked and/or regulated, then in frequency domain one
can choose r(s) = s?(s + wi) and d(s) = s?(s? + w?) for
frequencies wg, w;.

Let GCD(r,q) denote the monic greatest common divisor

of the two polynomials = and ¢ and let LCM(r,q) denote

D
1/d 1/d2
" 1 T e1 c ur + :+ ¥ V1 - R 0 -
e A+ e uz C v2 Vol
a * ks
]
Fig. 3. System with Linear Controller
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their monic least common multiple. Then, the internal model
principle for this combined tracking and regulation problem is
that

d r
GCD(d,p)’ GCD(r,q)

which states that the poles (with multiplicities) of the distur-
bance generating system D that are not among plant zeros
and of the poles of the reference generating system R that are
not among plant poles combined must be included among the
controller poles. Then, a necessary and sufficient condition for
being able to synthesize a C' that achieves the three objectives
simultaneously is that (,p) is coprime, [20].

We now examine the stability and performance of con-
trollers synthesized via the principle (5) for basic step, ramp,
and sinusoidal reference and/or disturbance signals. The fre-
quency of the sinusoids are assumed to be known exactly but
the amplitudes of steps and sinusoids and slopes of ramps need
not be known. It follows by (5) that, for the double integrator
plant under consideration, PD and PID controllers would
be able to track step and ramp references simultaneously and
PID would be able to regulate step disturbances; but, both
would not be able to track or regulate any sinusoidal signal.
Neither would they be able to regulate ramp disturbances since
the single pole at the origin of such controllers would not
satisfy (5).

For instance, if a PID controller is used for C, then in
terms of constants Kg4, K, K;, we have

l:=LCM( ) divides g, (5)

e Kus?+ Kps+ K;
C(s) = Pe = Z2as” H Bps ¥ i,
4 s
K82 + Kps + K,

H(s>: ds + p8+ Z'

Als) ’
A(s) = Js® + Kqs* + Kps + K;.

where H is the closed loop transfer function. By Routh-
Hurwitz criterion, the polynomial A(s) is Hurwitz just in case
K; > 0 and JK; < K,K . The controller with such choices
would track step and ramp trajectories, but will not be able
to track sinusoidal references. Also, it would regulate step
disturbances but not ramp and sinusoidal disturbances. As an

example, Fig. 4 illustrates disturbance regulation performance
of PID controller.

C. A Linear Higher-Order Controller

PD and PID type controllers are not able to regulate
sinusoidal disturbances. Assume that the frequency of the
sinusoidal torque disturbance at the joints which comes from
sea waves is known and it is wg. Then, by (5), the controller
must be in the form

Pc Pc
C)=—=——F—"5—

)= s2(s% + w§)de
for some polynomial ¢. to be determined, together with p. to
satisfy the internal stability requirement. For this purpose, let
us seek a minimal degree controller

pe  as®+bst+csd+ds?+es+ f
Cls)=—= 202 2
Ge s2(s* + wg) (s + p)

i

Position error of the first link
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Fig. 4. System response to zero position command under step (for the
first link) and sinusoidal (for the second link) torque disturbances with PI.D
Controller

for some seven parameters a, b, ¢, d, e, f, u. The characteristic
polynomial is

A(s) = Js" + JpusS + (Jwd +a)s® + (Jwip + b)s?

+es® +ds® +es+ f.

For the purpose of simulation, we place all zeros of A at
s = —1 through the choice

A(s)=(s+1)7, a=J21 —wd),
c=135J, d=21J,

b=J(35—win),
e=T7J, f=J, pnu="T.

The constants J;; ¢ = 1,2 around the equilibrium point §* =
0; * = 0 are found from the state-space equation of the
linearized system (4).

In figures 4-6, some of the simulation results are displayed
for zero reference inputs. In Fig. 4, PID controller, while in
Fig. 5 and 6, the proposed controller is applied. In Fig. 4,
the sinusoidal disturbance in the second link is not regulated.
In Fig. 5, the position errors go to zero, which means that
the system regulates step and ramp disturbances. In Fig. 6,
for the first link (), the frequency of the disturbance signal
is wyp; so, as expected, the sinusoidal disturbance is regulated.
While in the other link (1)), because the sinusoidal disturbance
applied has a different frequency, the proposed controller fails.
Note that the settling time in these figures can be arbitrarily
shortened by a better choice of the characteristic roots.

Table 1 compares the performances of controllers used. It
is seen that proposed controllers are able not only to track
step, ramp, and sinusoidal reference signals, but also to
regulate the torque disturbances of the same form while PID
controllers have deficiency both in tracking and regulation
problems.

IV. CONCLUSIONS

Computed Torque Control algorithms require perfect knowl-
edge of the system nonlinearities and the signal to be tracked
in order to achieve internal stability and tracking. Internal
model principle can not be directly applied to these controllers
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Fig. 5. System response to zero position command under step (for the first
link) and ramp (for the second link) disturbances with the Proposed Controller
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0.2 T T T T T T T T T

0.1}

0
-0.1}
—0.20

[radians]

2

[radians]

b I I I I

0 5 10 15 20 25 30 35 40 45 50
Time [s]

Fig. 6. System response to zero position command under sinusoidal
disturbances with different frequencies with the Proposed Controller

TABLE I
PERFORMANCES OF CONTROLLERS USED

Reference Controller
PID | Proposed

Step Yes Yes

Ramp Yes Yes

Sin(wot) No Yes

. Controller
Disturbance PID | Proposed

Step Yes Yes

Ramp No Yes

Sin(wot) No Yes

for the purpose of disturbance regulation; and estimation-
based structures oriented towards regulation may be infeasible
for some plants (e.g., systems with uncertainties, [13]). We
hence search for a linear controller synthesized by evoking the
internal model principle, which will be directly applied to the
original nonlinear plant. We show with simulations that using
only internal model principle and treating the sea disturbances
as external disturbances, we can synthesize a linear controller

that solves tracking and regulation problems and keeps the
system internally stable as well. It should be noted that, our
assumption that the effects of sea disturbances on the robot
arm can be modeled as an external torque disturbance acting
at the joints helps the synthesis of a servomechanism but may
be rather severe in some applications. PID controllers also
perform as would be expected by the principle of internal
model and they are able to track and regulate step signals.
Their ability to track ramp commands and failure to regulate
ramp disturbances is an indication of the fact that the nonlinear
plant behaves like it has a pole at the origin.

A cautionary remark on linearization is that the unbalance
term, if included in linearization, restricts the operating range
in which a linear controller can perform. It is thus better to
compensate the unbalance term, when it exists, at the outset
with a nonlinear feedback and synthesize the internal model
controller subsequently.

Our results establish that the nonlinear dynamic model of
the robot (1) behaves like its linearized version (4) once the
unbalance term is compensated; and that, a linear controller
performs well with respect to tracking and disturbance
regulation objectives.
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