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ABSTRACT 

In this paper, computer-aided diagnosis of microcal- 
cifications in mammogram images is considered. Mi- 
crocalcification clusters are an early sign of breast can- 
cer. Microcalcifications appear as single bright spots in 
mammogram images. We propose an effective method 
for the detection of these abnormalities. The first step 
of this method is two-dimensional adaptive filtering. 
The filtering produces an error image which is divided 
into overlapping square regions. In each square region, 
a Gaussianity test is applied. Since microcalcifications 
have an impulsive appearance, they are treated as out- 
liers. In regions with no microcalcifications, the dis- 
tribution of the error image is almost Gaussian, on 
the other hand, in regions containing microcalcifica- 
tion clusters, the distribution deviates from Gaussian- 
ity. Using the theory of the influence function and sen- 
sitivity curves, we develop a Gaussianity test. Micro- 
calcification clusters are detected using the Gaussianity 
test. Computer simulation studies are presented. 

1. INTRODUCTION 

Breast cancer is one of the most deadly diseases for 
women. The survival rate approaches 100 percent if 
cancer is detected early. Microcalcifications are an 
early sign of breast cancer and they appear as sin- 
gle, bright spots on mammograms (X-ray images of 
breasts). Because they are small and subtle, microcal- 
cifications are difficult to  detect by radiologists. In this 
work, we develop a computer-aided diagnosis (CAD) 
scheme for the detection of microcalcification clusters. 

Recently, we developed CAD schemes for the com- 
puterized detection of microcalcifications based on 
higher order statistics, adaptive filtering and Gaussian- 
ity tests [l, 2, 31. In these schemes, we make use of two- 
dimensional (2-D) adaptive filtering and a Gaussianity 
test recently developed by Ojeda et al. (the OCM test 

for short) for causal invertible time series [4]. 

In our method, a Least Mean Square (LMS) type 
2-D adaptive filter is used. The adaptive filter predicts 
an image pixel x[m, n] at  location (m, n) as a weighted 
average of pixels in its region of support. The region 
of support, R, of the filter is chosen as the pixels sur- 
rounding the pixel to be predicted. The predicted value 
?[m, n] is given as 

IC=-n1 Z=-n2 

( I C 7 0  # (0,O) 
m=O , . . .  , N l - - l ,  n=O ,..., N 2 - 1  (1) 

where x is the input image of size NI x N2, w ( ~ , ~ )  are 
the weight values at (m,n),  and (2n1 + 1) x (2n2 + 1) 
is the size of the region of support, R of the adaptive 
filter. 

The prediction error at pixel location (m, n)  is com- 
puted as the difference between the predicted pixel 
value, i[m, n], and the actual pixel value, z[m, n] 

e[m, n] = i[m, n] - z[m, n] (2) 

At each iteration the weights w ( ~ , ~ )  [IC, Z] are adapted 
using a two-dimensional LMS-type adaptation algo- 
rithm: 

w(m+l,n) [IC, 11 = W(m,n) [ I C ,  11 + P x e[m, .I x ~ [ k ,  11 (3) 

where ( I C , Z )  E R, the region of support, and p is the 
adaptation constant. 

Since microcalcifications are isolated bright spots, 
the prediction error sequence deviates from Gaussian- 
ity around microcalcification locations. Therefore, a 
statistics of the prediction errors is computed to deter- 
mine whether they are samples from a Gaussian distri- 
bution. The regions with Gaussianity test values higher 
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Figure 1: Part of a mammogram image which contains 
a microcalcification cluster. 

than a set threshold value, Th, are marked as regions 
of microcalcification clusters. Figure 1 shows part of 
a mammogram image containing a microcalcification 
cluster. In Figure 2, the detection scheme output is 
given. 

The contribution of this paper is twofold: we pro- 
pose an alternative Gaussianity test to the OCM Gaus- 
sianity test. We proceed by computing the sensi- 
tivity curves for the two techniques. The sensitivity 
curves indicate that our test is more sensitive to out- 
liers therefore it provides higher microcalcification de- 
tection rates. The results are validated by computer 
simulation studies. In the following section, the OCM 
Gaussianity test is reviewed. Section 4 describes the 
design of a new Gaussianity test based on the sensitiv- 
ity curve concept reviewed in Section 3. Results and 
conclusions are given in Section 5.  

2 .  THE OCM GAUSSIANITY TEST 

The OCM Gaussianity test is based on the sample es- 
timates of the first three moments I1,12,13 of the pre- 
diction errors. Estimates of the moments are given by: 

Figure 2: Detection scheme output. Regions with mi- 
crocalcifications are indicated by the detection scheme. 

where, e[m,n]’s (m = 1,. . . , M ,  n = 1 , .  . . , N )  are in- 
dividual error values at the location (m, n)  after adap- 
tive filtering and M x N is the total number of error 
pixels in the square region ( M  = N = 30 in our exper- 
iments). For Gaussian distributed sequences, I1,12,13 
converge to the following values as M ,  N go to infinity 
under the ergodicity assumption 

I1 + p, I2 + cr2 + p2, p 3  + 3a2p  (5) 

where p and cr2 denote the mean and the variance of 
the error sequence e ,  respectively. With these limit 
values, the nonlinear expression 

is close to zero for Gaussian distributed sequences. 
Otherwise, it is concluded that the sequence deviates 
from Gaussianity. In the following section we estimate 
the sensitivity of this Gaussianity test to outliers. 

3. SENSITIVITY ANALYSIS 

The sensitivity analysis of Gaussianity tests are based 
on sensitivity curve which is a finite-sample version of 
the influence function. The Influence Function (IF) of 
an estimator, T, for the cumulative distribution, F ,  is 
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given by [6]: 

(7) 
T((1- t ) F  + 6 x )  - T ( F )  

I F ( x ;  T ,  F )  = lim 
t+O t 

where 6x is the probability measure which puts mass 1 
at point x .  The influence function describes the effect 
of an infinitesimal contamination at the point x on the 
estimate. The influence function for the sample mean 
function, T,, = Cy=1 x i ,  for the Gaussian distributed 
sequences is I F ( x ;  T ,  F )  = x .  

Tukey derived a simple finite-sample version of Equa- 
tion 7 [7]: 

SC, = n[T, (x l ,  . . . , ~ ~ - 1 ,  x )  - Tn-l ( 2 1  , . . . , x n - l ) ]  
(8 )  

This is called the sensitivity curve which basically ex- 
amines the effect of an additional term, x as an out- 
lier on the overall estimator. First, the estimator 
value, Tn-l ( 5 1 ,  . . . , x,,-1) for n - 1 terms is calculated. 
Next, the outlier term, x is added to the sequence 
and the estimator is again calculated for the n terms, 
T , , ( z l , .  . . , x,-1, x ) .  The difference between these two 
estimator values exhibits the effect of the outlier on the 
estimator. The sensitivity curve, S n ( x ) ,  can be plotted 
against values of the outlier, x to visualize the effect of 
different values of outliers on the the overall sensitivity 
of the estimator (see Figure 3 ) .  

The Gaussianity test in Equation 6 can be simplified 
to obtain the following expression: 

h(11,12,13) = 13 - 31112 + 21: (9) 
The overall sensitivity of the Gaussianity test 
h(11,12,13) can be calculated by calculating S C n ( x )  
values for 1 3 ,  1 1 1 2 ,  1: and then combining the results. 
So, the overall sensitivity curve is 

+ x ( --+- Z 2 )  
where cp := X I  +. . . + x n - l ,  and R := x: +. . . + x i - l .  

For Gaussian sequences and for large values of the 
sample size, n 

cp R 
- n + P, ; + (/A2 + 2) 

where p is the mean and U is the standard deviation. 
Substituting these values into Equation 10, we get 

3 
SCn(X) = x3 (1 -; + $) 

I 
x 

Figure 3: Sensitivity curves for the mean (dashed lines) 
and for the Gaussianity test in Equation 9 (solid line) 

+ x ’ n p ( - ; + $ )  3 

n 

For Gaussian sequences with zero mean and standard 
deviation of one, Equation 12 further simplifies to: 

SCn(X) = x3 (1 - ; 3 + $) - 32 (13) 

For large values of n (i.e., n + oo), the sensitivity curve 
is reduced to 

SCn(X) = x3 - 3x (14) 
If we choose 2 1 , .  . . , x,-1 as 900 random Gaussian dis- 
tributed numbers with zero mean and standard devia- 
tion of one, then the sensitivity curve in Figure 3 is ob- 
tained. This curve closely fits to the curve y = x3 - 32 
as can be expected from Equation 12. 

It is possible to design other Gaussianity tests, which 
makes use of higher order moments in order to have 
higher sensitivities. This will be useful in the detection 
of microcalcifications as they will be treated as outliers 
and more sensitive tests will be able to detect them 
with more ease. 

4. FOURTH ORDER GAUSSIANITY TEST 

Traditionally, both third and fourth order statistical 
parameters are used in Gaussianity detection. In the 
OCM test, parameters up to the third order are used. 
By introducing the fourth order, the sensitivity of the 
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statistical test to outliers can be improved. Since mi- 
crocalcifications will produce outliers in the error im- 
age and tests with higher sensitivities can detect the 
outliers better, the higher the sensitivity of the Gaus- 
sianity test, the better its microcalcification detection 
performance is. 

The fourth order moment is derived from the mo- 
ment generating function, M x ( t ) ,  of the Gaussian dis- 
tribution [8] 

The kth order moment of distribution, 4,  is defined 
in terms of the moment generating function as follows 

Of particular interest here is the fourth moment 
which is obtained using the following relation: 

1 4  = 

+ 
[p4 + 3u4 + 6 p 2 a 2  + t(12pua4 + 4 p 3 0 2 )  
t2(6a6 + 6 p 2 a 4 )  + t 3 ( p a 6  + 3 p a 6 )  

+ t 4 a 8 ] e t p + ~ 2 t 2 / 2  (17) 

In the limit, when the value o f t  is taken as zero, only 
the first three terms remain in the above expression and 
these constitute the fourth moment, 1 4 .  Hence, 

14 = E ( x 4 )  = p4 + 6 p 2 a 2  + 3a4 (18) 

In designing the test, we want to establish a function 
such that it will assume the value of zero for Gaussian 
distributed sequences. First, a term is needed to  elim- 
inate the p4 term. In the limit, the moment 11 ap- 
proaches to the value of p,  therefore, the fourth power 
of this moment can be subtracted from the fourth mo- 
ment term, 4 .  In the limit, ( 1 2  -1;) approaches to  a2, 
which can then be used to eliminate the second and 
third terms of the moment expression. Therefore, the 
statistic for the Gaussianity test turns out to be: 

which can be then simplified by eliminating the 
repetitive terms to get: 

x 

Figure 4: Sensitivity curves for the Gaussianity test in 
Equation 9 (solid line) and for the Gaussianity test in 
Equation 20 (dashed line). 

The overall sensitivity curve of the new test is: 

SCn(X) = x 4 ( l - ; + - 3 + x 3 4 3  3 

+ x2 ( S V 2  - !cl) 

+ x ( - $ )  (21)  

As n -+ 00, 

becomes: 
-+ /I, E -+ (a2 + p'), Equation 21 

which boils down to the following relation for Gaussian 
signals with zero mean and the standard deviation of 
one: 

S C n ( x )  = x4 - 6x2 (23)  

So, the overall sensitivity of the newly developed 
Gaussianity test is higher than that of Equation 9. As 
a natural extension, other Gaussianity tests which use 
moments higher than fourth order moments can be de- 
signed. However, these moments converge very slowly 
to the normal distributions and so should not be used 
unless very large samples are processed [5] .  
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I Test Statistic 1 Mean I Minimum I Maximum 1 
h(11,12,13) 
H(I1, I z ,  1 4 )  

38.6 8.4 306.0 
406.8 52.4 3712.3 

Table 1: Test statistics in regions with microcalcifica- 
tions. 

h(11,12,13) 
H(I1, I?, 14) 

I Test Statistic I Mean I Minimum I Maximum I 
0.4 -2.1 2.2 
1.25 -4.4 11.1 

Table 2: Test statistics in regions without microcalcifi- 
cations. 

5. RESULTS AND CONCLUSIONS 

When the new Gaussianity test is used with the adap- 
tive filtering scheme, the statistics in Tables 1 and 2 are 
obtained. The test results are obtained from 100 differ- 
ent regions on 5 different mammogram images. With 
this test, the effect of outliers is more apparent. Fig- 
ure 4 shows this effect. Since the microcalcifications 
appear as outliers, they will be more pronounced with 
this test. Actually, the values of the newly developed 
test in Equation 20, reflect this change, while the val- 
ues in regions with no microcalcifications remain close 
to zero, in regions with microcalcifications, both Gaus- 
sianity tests produce high test statistics values. The 
fourth order Gaussianity test gives higher values than 
the OCM Gaussianity test. 

As the range between the maximum value of one 
region and the minimum value of the other region is 
larger, it is possible to  set the detection threshold, 
Th, at a higher level and eliminate some of the false 
alarms (or single-bright spot regions). We tested the 
effectiveness of our new Gaussianity test using the Ni- 
jmegen mammogram image database’. The database 
contains 40 digitized mammogram images. Using only 
the OCM test in our previous detection scheme we 
were able to get 1.4 false alarm regions per image when 
all the radiologist-approved microcalcification clusters 
were detected [l]. When the newly developed Gaus- 
sianity test is used in combination with the OCM Gaus- 
sianity test, the false alarm rate decreases from 1.4 per 
image to 1.125 per image. 
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