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ABSTRACT 

In this paper, an affine invariant function is presented for object 
recognition from wavelet coeificients of the object boundaly. In 
previous works, undecimated wavelet transform was used for 
affine invariant functions. In this paper. an algorithm based on 
decimated wavelet transform is developed to compute the aftine 
invariant function. As B result, computational complexity is 
significantly reduced without decreasing recognition 
performance. Experimental results are presented. 

1. INTRODUCTION 

Object recognition is an important problem in computer vision 
and pattern analysis 11-61, In this paper, recognition of objects 
from their boundaries that are subject to affine transformations is 
considered. 

Several features that are linear under an aftine transformation 
were developed in the literature [2,3.7]. Recently, dyadic 
wavelet transform was also used to develop several affine 
invariant functions [5,1O]. These functions are constructed from 
wavelet coefficients. which are produced aAer computing the 
undecimated vavelet transforni of the curve corresponding to 
the boundary of the object. In undecimated dyadic wavelet 
transform, the filtered signals are not downsampled by two at 
each level. thus the signal preserves its original length. In this 
paper, an algorithm based on decimated wavelet transform is 
developed to compute the aKine invariant functions proposed in 
[SI. The decimation (downsampling) process decreases the 
number of coefficients by two at each level, so we are left with 
less number of  coefficients to manipulate. This leads to a 
coinputationally eficient object recognition scheme. 

The paper is organized as follows: In Section 2, some 
background information on affine invariant functions is 
presented. In Section 3, the coniputationally efticient algorithm 
is presented. In Section 4, experimental results are presented. In 
addition. a new object recognition scheme based on linear 
coinbination of anine invariant functions is presented. The new 
aftine invariant function is constructed from multiple resolution 
njavelet coefficients is presented. It is observed that recognition 
performance i s  comparable to other wavelet based schemes. 

2. BACKGROUND 

Consider a parametric curve {x(t),.b(t)) with parameterr on a 

plane. A point on the curve under an affine transformation 
becomes 
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a(() = U, t n,x(t) t U,Y( f )  

Ji(0 =bo +b1x(t)+b,y(f)  (2) 

(1) 
and 

Equations ( I )  and (2) can he rewritten in matrix form as follows: 
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where the nonsingular matrix A represents the scaling, rotating, 
and skewing transformation and the vector R corresponds to 
the translation. Jacobean, J,  of the transfonnation 
isJ=n,b,-a,b, =det(A) 

3. AFFINE INVARIANT FUNCTIONS USING 
DECIMATED WAVELET COEFFICIENTS 

Wavelet transform was used to recognize planar objects under 
the similarity transformation in [ 8 , 9 ] .  Affine invariant functions 
using the dyadic wavelet transform were derived by Tieng and 
Boles [IO], Khalil and Bayoumi [SI. The main difference 
between [lo] and [SI is that, in [IO) two dyadic levels were used, 
whereas in [SI, a wavelet-based conic equation was introduced. 
This leads lo an affine invariant function of six or more dyadic 
levels. 

Discrete dyadic wavelet transform (DWT) of a signal is 
implemented using haltland lowpass and highpass filters 
forming a filterhank together with downsamplers [ l l ] .  The 
filterbank produces two sets of coefficients: orthogonal detail (or 
wavelet) coefticients which are the even outputs of the highpass 
filter, and the approximation coefficients which are the even 
outputs of the lowpass filter. Samples with odd indices are 
dropped by the downsamplers in decimated implementation. In 
undecimated implementation however, all coefficients are kept. 
Dne to downsampling, computational cost of implementing 
DWT drops to O(NlagN) (even to Om) for some wavelets). 

Let us denote the wavelet transform of the signal x(r)  at the 

resolution level (or scale) i as W,x(l) ~ then the wavelet 
transform o f ( l )  and (2) will be 

y.t(t) = u , J ~ x ( f ) + a , ~ y ( t )  (4) 

w,,ij(r) = bIyx ( r )  t b,N;y(r) (5) 

Note that Fa, = U’,b,, = 0 because of the highpass filter 



Let the signal pairx(f) and y( t )  represent the boundap of 
an object. An affine invariant function for an object using the 
wavelet coefficients of signals x(t)  and y ( t )  for two levels 

i, j (i # j )  can be defined as 

LjV) = W f ) W j y ( f )  - Iv,.!Wv,W (6) 

It can he shown that 

x,(f) = Iyf(t)W',;P(t) - yp(t)K' ,qt)  = det(A)S,(t)  (7) 

This invariant functioii f; ,( t)  defined in 151 uses only the detail 

coeflicients calculated at two different levels. In [IO] another 
affine invariant function using both the detail and approximation 
coeflicients o f the  same dyadic level is defined. In IS] Equation 
(6) is also used to construct a wavelet-based conic equation 
leading to an affine invariant function based 011 six dyadic 
levels. 

All ofthe invariant functions defined in [S, IO] are computed 
using the undecimated implementation of the wavelet transform 
(WT) which does not use downsampling operation after filtering. 
This dramatically increases the wniputational cost of the 
wavelet transform. If the length of the original signal is N, then 
for the undecimated wavelet transform, length-N signals are 
filtered at each level. However, in the decimated implementation 
of the wavelet transform; the signal length is halved due to 
downsampling operation performed after each filtering step. In 
this paper. we develop an algorithm to conipute the affine 
invariant function defined in (6) using the orthogonal decimated 
wavelet transform scheme. The wavelet signal CP;x(t) , at 
resolution scale i = 1 can be expressed as  

l,I(.x(t) = Cdkw' ( t  - k ) ,  i = 1 (8) 

where d, are ihe wavelet coefficients computed using a 

decimated filterhank at resolution scale i = 1 and w( t )  is the 
so-called inother wavelet. If  the length ofthe data is N (N=512 is 
chosen in this paper) then the limits of summation in (8 )  go from 
k = 0 to li = N assuming a circular computation of the WT. 
Similarly, Wj,v(f)  can be expressed for j = 2 as follows 

rvjy(t) = C e , w . ( t  12 - [) (9 )  

where e, are the wavelet coeflicients at resolution scale j = 2 . 
In this case the limits of the summation go from I = 0 to 
/ = N I 2  due to downsampling. Let us assume that w(t) is the 
Haar wavelet; i.e., 

w( t )  = 1 far 0 < f < 0.5, I(,(/) = -1 for 0.5 < t < 1, 
w(f) = 0, otherwise 

The first term of(6) can he expressed as 

(10) 

1 q r ( t ) ~ v ~ y ( t ) = C C d , e , w ( l - l i ) i ~ ' ( t i 2 - 1 )  fori=1,  j = 2  

(11) 

Direct computation of (11) and the affine invariant function 
defined in (6) requires N x  N12 and N x  N multiplications, 
respectively. However, notice lhat w(t)w(t 12) = w(t), 

w(t)w(t / 2 - k )  = 0. far k > 1, since the Haar wavelet has a 
compact support with length 2. 
Similarly,w(t-2)~(/12-1)= w ( t - 2 ) ,  etc. By taking 
advantage of these relations the double sum in (11) can be 
reduced to a single summation as follows fori = 1: j = 2 : 

N N 

~ y . x ( t ) ~ , . v ( t )  = C dkek,2w(t - k ) -  C d,e+,,,,w(t - k )  

(12) 
k0," k=l,& 

Computation of the right hand side of (12) requires only N 
multiplications. The affine invariant function, 
&(t) far i = j +I, can be expressed as 

+ d,, , ' t lw,(f-k)- e,d,,-,,,,"'w,(t-k) (13) 
#,odd 

where wi(l) = u m ( t / 2 ' )  is the wavelet of the resolution scale i , 

d i  ,and e,' are the wavelet coefficients of the signals x and y 
a! resolution level i, respectivelv. An important feature of this 
equation is that it can be computed using the wmputationally 
ettkient orthogonal wavelet transform as the wavelet 
coefficients d,' , and e,' can be computed using a filierbank 
having downsamplers. Equations (12) and (13) are developed for 
the specific case of i = 1, j = i + 1. However similar equations 
with O w )  complexity can be easily developed to any i, j values 
becausew(t)w(II2j)  = w(f ) ,  ..., w(/- j ) w ( t l 2 ' )  = -w(t-  j )  

;O otherwise; due to the fact that w(t) has a compact support. 
Since all the af ine invariant functions developed i n  [SI are 
based on J,(t) they can be computed using decimated wavelet 
transform. As a result significant amount of coniputational 
savings can be achieved. In the undecimated WT 
implementation, length-N signals are filtered at each level 
whereas in decimated implemeiitation length-Nl2' signals are 
filtered at resolution level i and the final stage of condnicting 
x j ( t )  requires only WN) arithmetic. Although the decimated 

wavelet coefficients are translatioil variant Equation (13) is 
translation invariant as the continuous-time function f ,( /)  can 

he computed for all I values using the right hand side of(13). In 
practice h(t) is computed for uniformly spaced N = 512 
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points I =0, 1, ..., 511 in [ IO]  and in this paper. Equation (13) 
is obtained by taking advantage of the fact Haar waveiet has 
compact support. Some computationally efficient signal 
reconstruction algorithms from WT also take advantage of this 
fact [I?]. In fact, all wavelets constructed from FIR filters have 
compact support. Therefore the double summation in (6) can be 
reduced to a set of single summations as in (I?) for all 
compactly supported wavelets and equations similar to (13) can 
be obtained as well. For example. widely used Daubechies-4 
wavelet has a compact support of length 6,  i.e., 
w( t )  = 0, for I > 6, and I < 0. In the case of Daubechies-4 

wavelet w ( l ) w ( f / 2 - k ) = 0 ,  f o r k > 3 .  This leads to a 
slightly higher computational cost than Haar wavelet hut longer 
wavelets are more robust to noise compared to Haar wavelet. In 
general the length of data N (e.g., N=512) is much higher than 
the support length of most wavelets. Therefore computational 
savings are significant. 

1. EXPERIMENTAL RESULTS 

Since a computationally efficient algorithm is developed in the 
previous section for the affine invariant functions developed in 
[SI it is natural that we get the same simulation results. In [SI 
simulation results are obtained by using a conic equation based 
affine invariant function using six dyadic resolution levels. In 
addition, we also present a new practical object recognition 
scheme using multiple resolution wavelet coefficients in this 
section. In this scheme. k invariant functions A.([) for a given 
test object are calculated by using consecutive pairs of resolution 
levels ( i , , i , + l ) ,  ( i2>i2+,),  ..., Corresponding k 
invariant functions for each model object are kept in a database. 
The correlations between the k invariaiit functions of the test 
abject and each model object are calculated to get correlation 
values R,, R,. ..., R,,whicharedcfinedas 

where I , ( t )  and 12( t )  represent the invariant functions. The 
final decision function between the test object and any model 
object is found by linearly combining the k correlation values 
as follows: 

Rfim, =v,R, +v$,+...+v,R, (15) 

where v, +v, +...+ v, = 1 ,  As a rule of thumb more weight 
should be given to resolution levels containing more signal 
energy to obtain robustness against noise. This approach gives 
us also thc flexibility of sampling J j ( t )  in a nonunifomi 

manner, i.e., at the resolution level pair ( i l , i l * l )  ~ ~ i l , l + l ) ( t )  can 
be computed at ,'+=SI2 points hut at the next resolution level pair 
j & , 2 + , l ( l )  can be computed at hr-256 points etc. to achieve 
computational savings in computing the correlation functions 
defined in (14). 

The experiments to test the effectiveness of  the proposed 
object recognition method are carried out with airplane images 
that were also used in 15) .  The same type of wavelet used in [SI 
is used in  the experiments. There are 20 model images in the 
database. I0 test images are constructed by applying random 
affine transformations to randomly chosen 10 of  the model 
images. The model images and test images are illustrated in 
Figure.] and Figure.2, respectively. The boundary signals of all 
the objects are normalized to length 512. The correlation values 
between the test image and the model inisges are calculated and 
the result is determined according to the model producing the 
highest correlation valuc. The experiments are carried out with 
two different levels of uniformly distributed random noise which 
is added to the boundaries of the test images. The signal to noise 
ratio (SNR) is defined as in [SI. In the first set o f  experiments 
the SNR is about 50 dB, and i n  the second set of experiments the 
SNR is about 20 dB. Table 1 gives the highest five correlation 
values for each test image with S N R  50 dB, and Table 2 gives 
the highest five correlation values for each test image with SNR 
20,dR. In both cases of high and low noise power, the highest 
correlation value is produced with the model image from which 
the test image is constructed by applying a random affine 
transfannation. In all experiments suinmsrized i n  Tables 1 and 
2, resolution level pairs ( 4 3 ,  (5,6) and (6.7) are used to 
calculate the invariant functions J j ( t )  and the corresponding 

weights are chosen as v, = 0.4, v, = 0.3, v, = 0.3. In these 
experiments, low and high noise levels are .used. and the 
recognition success rate is 100%. 

5. CONCLUSION 

The problem of 2D object recognition using affine invariant 
functions is considered. In previous works; undeciniated wavelet 
transform was used for constructing affine invariant functions. In 
this paper, an algorithm based on decimated wavelet transform is 
developed to compute the same affine invariant functions. As a 
result computational complexity is reduced without decreasing 
recognition performance. It is experimentally shown that the 
invariant function detects the affine transformed objects with 
high accuracy. 

Table 1 
The Best Five Matches Between the Test Images and the Model 

Images for Small Noise Level 
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Table 2 
The Best Five Matches Between the Test Images and the Model 

Images lor High Noise Level 

Figure.1 Model Images 

Figure.2 Test Images 
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