
Characterizing Gnutella Network Properties
for Peer-to-Peer Network Simulation�

Selim Ciraci, Ibrahim Korpeoglu, and Özgür Ulusoy

Department of Computer Engineering, Bilkent University, TR-06800 Ankara, Turkey
{selimc, korpe, oulusoy}@cs.bilkent.edu.tr

Abstract. A P2P network that is overlayed over Internet can consist
of thousands, or even millions of nodes. To analyze the performance of a
P2P network, or an algorithm or protocol designed for a P2P network,
simulation studies have to be performed quite often, and simulation stud-
ies require the use of appropriate models for various components and
parameters of a P2P network simulated. Therefore it is important to
have models and statistical information about various parameters and
properties of a P2P network. This paper tries to model and obtain the
characteristics of some of the important parameters of one widely used
P2P network, Gnutella. The methodology to derive the characteristics
is based on collecting P2P protocol traces from the Gnutella network
that is currently running over the Internet, and analyzing the collected
traces. The results we present in this paper will be an important ingredi-
ent for studies that are based on simulation of P2P networks, especially
unstructured P2P networks.

1 Introduction

Peer-to-peer (P2P) systems enable formation of huge overlay networks over In-
ternet and allow users to become active participants in these networks. Each
node is called a servent in a P2P network and acts both as a server and a
client. There are several types of P2P networks, including unstructured P2P
networks [2], loosely structured P2P networks, and structured P2P networks [1].
Unstructured P2P networks can further be divided into three types, which are
pure, hybrid, and centralized. In pure unstructured P2P networks, each node
has equal responsibilities. In other type of unstructured P2P networks [3], on
the other hand, some nodes can take special responsibilities like holding an index
of the resources shared by the neighboring nodes.

Unstructured P2P systems are good candidates for serving large number
of Internet users due to their distributed nature. The major problem with un-
structured P2P systems, however, is efficiently locating the requested resources
(efficient search). The current mechanism for searching is based on flooding the
query messages and therefore it is not efficient. There exists a substantial amount

� This work is supported in part by The Scientific and Technical Research Council of
Turkey (TUBITAK) with Grants EEEAG-103E014 and 104E028.

P. Yolum et al.(Eds.): ISCIS 2005, LNCS 3733, pp. 274–283, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Characterizing Gnutella Network Properties for P2P Network Simulation 275

of research on improving the performance of unstructured peer-to-peer networks,
including the performance of search operations, and there are many methods pro-
posed. Evaluating the methods and their performance, however, is not easy. The
number of nodes constituting a P2P network is huge and there are lots of param-
eters that should be considered, which make analytical approaches quite difficult
to use in the evaluations. Therefore we have to resort to simulation models quite
often. But building accurate and correct simulation models requires accurate
modeling of the properties and workloads of real-life systems that are simulated.
Therefore, it is important to characterize and model the parameters and work-
loads of real P2P systems that are operational in order to be able to simulate
them accurately.

In this paper, we aim to characterize some of the important parameters of
an operational unstructured P2P network, the Gnutella network, by examing
the protocol traffic traces that we have collected from the Gnutella network. In
analyzing and summarizing these traces, we have focused on the characterization
of keywords (their numbers and types) in queries, time-to-live (TTL) values in
query messages, peers’ contribution to the network, and the characteristics of
repeated queries.

The paper is organized as follows. In section 2, some of the related work
is described. Then, in section 3, our Gnutella crawler that is used to collect
traces from the Gnutella network is described together with our methodology
in collecting the traces. In section 4, the results derived from the traces are
presented, and finally in section 5 our findings are summarized.

2 Related Work

There exist several studies on the measurement and analysis of several P2P net-
works. The study on [4] lists some of the important parameters that should be
considered when simulating a P2P file sharing network. In this study, a model
for some of the parameters are derived from real world observations, and the
parameters considered are separated into two groups. The first group of param-
eters are related with the distribution of resources in the P2P network, and the
second group of parameters are related with modeling the behavior of peers. The
main difference of our study from [4] is that we try to characterize P2P network
parameters using traces collected by custom P2P crawlers. We also investigate
some parameters that are not investigated in [4].

The authors of [5] has conducted an analysis of the Gnutella network using
crawlers, like we did. They logged for an hour the query and query hit messages
seen at three different points on the Gnutella network. The study of the logged
messages is focused on the detailed analysis of repeated queries, the TTL val-
ues seen in the queries, and the inter-arrival times of submited queries. In this
paper, we also analyze some aspects of repeated queries and the TTL values
of user submited queries. But we are more focusing on the characterization of
initial TTL values set in the queries, and on the characterization of inter-arrival
times of repeated queries. A similar study to [5] is presented in [6]. That study,

276 S. Ciraci, I. Korpeoglu, and Ö. Ulusoy

however, is more focused on content analysis of queries. It derives and lists some
popular keywords that are used in submited queries. In this aspect, the work
also resembles to what we did, but we are also trying to find a model for the
repetition count of popular keywords.

The study presented in [7] also uses crawlers to collect message traces from
Napster and Gnutella networks. It plots cumulative distributions of peer char-
acteristics such as the number of resources shared, the uptime of peers, and the
bandwidth capacity of peers. In this paper, we also focus on similar parameters
such as the number of resources shared by peers, but we also try to come up
with a model that can be used to generate similar values for these parameters
in simulation studies.

3 Methodology

To derive information about various parameters of a Gnutella network, we fol-
lowed a methodology similar to the one described in [7]. We programmed a
custom Gnutella crawler to collect Gnutella network traces. Using the crawler
we gathered large sets of data and logged them on a local disk. The logged data
includes various Gnutella protocol messages that suit our measurement goals.
After logging the Gnutella messages, we also probed numerous nodes, whose
addresses are obtained from the logged messages, in order to have an idea about
the duration of node uptimes.

In this section, we first briefly introduce the Gnutella architecture and its
protocol messages. Then we describe beriefly our Gnutella crawler that is used
to collect Gnutella protocol messages transported over a portion of the Gnuetella
network. We then introduce and describe some of the P2P network parameters
which we are trying to characterize and estimate using the message logs we
obtained via our crawler.

3.1 Gnutella

In Gnutella network, peers form an overlay network over Internet by opening
point-to-point TCP connections to each other. To join the overlay, a newcoming
peer has to discover a small subset of the active overlay participants. This discov-
ery is done by querying the hostcaches, which hold the IP addresses of some of
the high-uptime participants. Each Gnutella compatible P2P client comes with
a set of predefined hostcache addresses. After discovering a set of the peers to
join, a newcomer initiates Gnutella handshake with a peer in that set. During
this handshake, both the newcomer peer and the peer that is already part of
the Gnutella network indicate to each other the Gnutella protocol version they
are using and the extensions they support [2]. If the peer that is already part
of the Gnutella network can accept the connection request from the newcoming
peer, it indicates this by sending an OK message. If, on the other hand, the peer
cannot accept the connection, it indicates the reason why it cannot accept the
connection and provides the newcomer with a set of peers it knows. This way
the newcomer can discover other peers without further querying the hostcache.

Characterizing Gnutella Network Properties for P2P Network Simulation 277

After a succsessful connection establishment, peers start exchanging Gnutella
protocol messages. A Gnutella message header consists of a global unique iden-
tifier (GUID) field, a time-to-live (TTL) field, a hops field, a payload type field,
and a payload length field. The GUID is used to overcome routing loops that may
occur in the overlay. To prevent routing loops, a peer receiving two messages with
the same GUID ignores the second one. Each peer receiving a Gnutella message
increases the hops count value in the message by one and also decreases the TTL
value by one. When the TTL value of a message reaches to zero, the message is
not forwarded anymore. The payload type field is used by peers to distinguish
different types of Gnutella messages. There are five types of Gnutella messages
which are Query, QueryHit, Bye, Ping, and Pong messages.

A Query message contains the user submitted query string as its payload.
A peer receiving a Query message checks its shared resources for a match to
the query string included in the Query message. If the peer has resources that
match the query string, it sends a Query Hit message back. The Query Hit
message is set the same TTL value as the hops field of the corresponding Query
message. The payload of the Query Hit message contains the physical address
of the originator and the names of the resources that match the corresponding
query.

The Ping and Pong messages are used to exchange topological information.
When a peer receives a Ping message, it answers back with at least 10 Pong
messages each containing the physical addresses of other peers that are collected
again by sending Ping messages. Bye is used by a peer to indicate its disconnec-
tion from the network to its neighbors.

3.2 Gnutella Crawler

Our Gnutella crawler is written in Java and follows the Gnutella protocol speci-
fication version v0.6 [2]. First, the crawler connects to the HTTP address gweb-
cache2.limewire.com:9000/gwc to collect physical addresses of some active peers.
It then starts opening connections to those peers and also builds its own host-
cache from the physical addresses collected via unsuccessful connection attempts
and Pong messages. After connecting to three peers successfully, the crawler
starts monitoring and logging Gnutella messages considering the parameters we
are going to discuss in mind.

3.3 Measured Parameters

The simulation of a Gnutella network requires consideration of a lot of parame-
ters. We focused only a subset of all possible parameters and tried to understand
the nature of the values of these parameters in the Gnutella network. We now
introduce the parameters we focused on, and describe how the related traces are
collected to obtain the characteristics of these parameters.

Number of keywords contained in a query: For semantic routing techniques, key-
words in a query define routing rules for that query. Thus, the more keywords
a query has, the more information the routing technique can extract about the

278 S. Ciraci, I. Korpeoglu, and Ö. Ulusoy

query’s route. It is widely believed that P2P users submit short queries consisting
of one or two keywords, so its difficult to apply semantic routing techniques. To
test this belief, we have programmed the crawler to collect 10 thousand queries
from five different connection sets (each set consisting of different nodes). After
collecting the data, the queries are tokenized with “. *()",;:!?” deliminators
to extract the keywords and then each keyword is counted. To combine the
counts from different connection sets, the averages of the counts is taken.

Repetition rate of keywords in queries: It is a fact that in P2P networks there
exist some popular resources which are queried a lot. Many protocols that try
to improve search quality rely on repetition rate of keywords in queries. So it is
important to develop a model for popular keywords for such techniques.

To develop this model, we have used the tokenized queries of the previous pa-
rameter and hashed each keyword using Java’s string class, which hashes strings
by adding the integer values of each character in a string. These hashed key-
words are used as a key to index the hash table holding the number of accesses
made to the cells. We have given the highest rank of 1 to the mostly accessed
cell, which in turn is the keyword with the highest repetition.

Initial TTL values of queries: For P2P simulations, the initial TTL values set in
Query messages play an important role, since Query messages can travel longer
distances with a higher TTL value which increases the chance of finding the
resources requested by the query. The TTL value in a query is also important
for determining the bandwidth required for various protocols. Gnutella protocol
specifition [2] states that TTL values in queries should be set to 7. However, the
fact that many Gnutella clients today use shorter initial TTL values makes TTL
an important parameter to achive relalistic P2P simulations.

To keep track of TTL values, while collecting query data for the previous
parameters we have also programmed the crawler to log the TTL and hops
values of the received queries. The initial TTL values are calculated by adding
these two values. Again averages of several collected data sets are used to obtain
the final estimates.

Peers’ contribution to the network: Distribution of resources to peers in a P2P
simulation should also be handled carefully, since the query hit rate is directly
affected by this parameter. Some previous studies show that %25 of the Gnutella
peers do not share any files at all, and %7 of peers share 100 files [7].

To collect the required data to estimate the distibution characterictics of
resources, the crawler has been programmed to collect 10 thousand Pong mes-
sages from five different connections sets. The collected Pong messages contain
the total number and size of resources shared by these nodes.

Query hit to query ratio: Although peers’ contribution to the network greatly
affects the Query Hit messages returned to Query messages, the popularity of
the shared resources is another important factor that can affect the Query Hits,
since popular resources will be queried more than other ones. So it is not only
important how many files a peer shares, but it is also important what kind of files
the peer shares. It is hard to model the popularity of shared resources, however,

Characterizing Gnutella Network Properties for P2P Network Simulation 279

collecting the number of Query messages with matching Query Hit messages
in the Gnutella network may give an idea. Assuming, for example, x% of the
queries in the collected data have a matching Query Hit message, we then can
adjust the popularity parameter in a simulation so that the chance of getting a
Query Hit to a Query message is x%.

To find the Query to Query hit ratio, our crawler uses a hash table. This hash
table holds the GUID of a Query message as a key and stores the corresponding
Query Hit message as data. Upon receiving a Query message, the crawler inserts
a null Query Hit message, which has zero as the hit-count, to the hash table.
Since the Query Hit message has the same GUID as a Query message, upon
receiving a Query Hit message, the crawler searches the GUID of the message in
the hash table, and if found, the Query Hit message is inserted to the table. By
collecting the Query Hit messages in this way, we found the chance of getting a
Query Hit to a submitted Query message.

Repeated queries: When the P2P network does not return any results to a query
submitted by a user, the query is re-submitted by the user or the P2P client
software. Thus, it may be important to model this behaviour for simulation of
caching systems.

In order to find out how many queries are repeated in a five different query
sets each containing 10 thousand queries, we have hashed the query string in
a Query message together with the hops value of the message, again by using
Java’s string class. If two different queries are hashed to the same cell, then that
query is marked as a repeated query. Although it is impossible to know which
peer has submitted the query when the hops value is greater than 1, two queries
with the same query string and the same hops value have a very high probability
of being repeated, thus we have used this method to recognize repeated queries.

TTL values of repeated queries: When a user of a P2P system re-submits a query,
it provides some advantage for the P2P client to send the query to the network
with a higher TTL value. Although Gnutella specification does not mention this,
some clients may have adapted this aproach in order to increase search quality.
This makes it important to analyze the TTL values in repeated queries.

4 Results

In this section we present our results about the characteristics of the parameters
that we have desribed. Before that, however, we would like to mention about
the overall Gnutella message traffic characteristics we observed in our setup. In
our collected traces, we have observed the following distribution of the Gnutella
messages monitored: 1% Query Hit messages, 8% Ping messages, and 91% Query
messages. The overhead of flooding of Query messages is clearly seen from these
results. Thus the need for a protocol that reduces this overhead is clear.

In Figure 1, the distribution of the number of keywords submitted in a query
is shown. Our analysis of the related traces shows that 68477 queries out of
100 thousand queries contain less than 5 keywords. We found 4 as the mean

280 S. Ciraci, I. Korpeoglu, and Ö. Ulusoy

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

0.225

0.25

Number of Keywords

P
ro

ba
bi

lit
y

of
 K

ey
w

or
d

0.2099

0.1914

0.0861

0.022

0.007
0.004 0.0027 0.001 0.0004 0.0001

0.1114

0.1913

0.172

Fig. 1. Distribution of number of keywords seen in query messages

0 100 200 300 400 500 600 700 800 900 1000
0

1000

2000

3000

4000

5000

6000

7000

Rank of Queries

N
um

be
r

of
 R

ep
et

iti
on

s

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

2

3

4

5

Rank in log10

R
ep

et
iti

on
 R

at
e

in
 lo

g1
0

(a) (b)

Fig. 2. Repetition count of keywords. a) Repetition count of keywords versus the rank
of keywords. Keywords are ranked according their frequency of occurance in query
messages. b) Log of repetition count of keywords versus log of rank of keywords.

of the number of keywords that can be seen in a query. Queries with just one
keyword constitute the 10% of all queries we analyzed. The Figure 1 indicates
that users tend to submit more descriptive queries instead of submitting single-
keywords queries. It is also interesting to notice that 1561 queries out of 100
thousand queries contain more that 7 keywords which makes around 1.5% of all
the queries analyzed.

Figure 2 shows the repetition count of keywords in user submitted queries. In
plotting the graphs in the figure, we first ranked all the keywords with respect to
their repetition count. In Figure 2-a, the x-axis is the rank of the keywords, and
the y-axis is the repetition count of the keywords with respect to those ranks. The
analysis of this plot shows that the repetition count of keywords obeys a power-
law distribution with respect to the rank of keywords. We think this is due to
popularity of some keywords. Since the curve on the graph is steeply decreasing,
we only plotted the repetition counts up to rank 1000. Otherwise it was difficult

Characterizing Gnutella Network Properties for P2P Network Simulation 281

to identify the curve on the graph. To better show that the repetition count of
keywords obey a power-law distrubution, we plotted the repetition count versus
rank of keywords in logarithmic scale, and fit a polynomial with degree 1 to the
curve obtained in this manner. The Figure 2-b shows the plot in logarithmic
scale with the fitted polynomial (in this plot we did not limit the rank). The
fitted polynomial has coefficients -1.028 and 4.74 (i.e. it is the line described by
equation y = −1.028 × x + 4.74).

From the Gnutella messages we have collected, we have observed that ma-
jority of the Gnutella clients (89%) set the initial TTL value to 4 in a Query
message. The clients setting the initial TTL value to 3 constitute around 11%
of the peers. The number of clients setting the initial TTL value to something
else is less than 1% and therefore negligible. We also tested what happens if a
client tries to submit Query messages with larger initial TTL values than 4. For
this we modified our Gnutella client so that it submits queries to the network
with TTL values larger than 4. We have noticed that majority of the clients
around us have lowered the TTL value to 4. We believe that Gnutella develop-
ers have taken such an action to lower the overhead introduced by the flooding
mechanims used for disseminating the queries.

In Figure 3, we show the cummulative distribution function of number of
files shared by a peer. On the x-axis we have the number of files shared, and on
the y-axis we have the fraction of peers sharing number of files that is less than
or equal to the corresponding value indicated on the x-axis. From the figure we
see that 50 peers out of 420 peers share zero files. In other words, nearly 10%
percent of peers do not share any files. The figure also reveals that only around
5% of peers share more than one thousand files. These are not suprising results
since it is a quite well-known fact that only a small precentage of peers in a P2P
network share huge numbers of files. It is also interesting to notice that although
many peers indicate that they share small number of files, these shared files
are quite large in size (around 2 GB). This leads us to believe that in Gnutella

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of shared files

P
ro

ba
bi

lit
y

of
 fi

nd
in

g
pe

er
 s

ha
rin

g
k

fil
es

Fig. 3. Cumulative distribution function (CDF) of the number of files shared by a peer.
Most of the peers (95%) share less than 1000 files.

282 S. Ciraci, I. Korpeoglu, and Ö. Ulusoy

network users tend to search and download large files which in turn causes peers
to share large files.

Although Query to Query Hit ratio greatly depends on the queries submit-
ted, as reported in the beginning of this section, our measurements indicate that
Query Hit messages constitute only %1 of the overall P2P message traffic ob-
served in the traces. This implies quite a small value for Query to Query Hit
ratio.

A query string can be repeated by a peer because the results obtained in
previous query submissions may not be found satisfactory by the peer. Out of
the 100 thousand queries observed, we have identified 15678 queries as repeated
queries. This constitutes 15% of all the queries observed. queries we have ob-
served that the majority of the queries are repeated twice (81% of all queries).
The percent of queries that are submitted three times is 14%. We have found
that only 2 queries are submitted to the network more than 5 times. These two
queries have all ”?” as query strings, which we believe are used by peers to dis-
cover all the names of the resources shared by their neighbors, although nothing
about this is mentioned in Gnutella protocol specifiction. Our inter-arrival time
analysis for repeated queries shows that on average there is 21 minutes between
each repeated query, which is a reasonable time, since a user re-submits a query
after the arrival and inspection of the previous results. Our TTL analysis for
repeated queries shows that the initial TTL values of these repeated queries are
not increased by the clients submitting these queries. Given that majority of the
queries are repeated only twice, we can say that a Gnutella user is statisfied with
the results after a second submission that comes after a sufficient inter-arrival
time (around 21 minutes). Since the mean uptime of Gnutella peers are around
60 minutes [5], we conclude that there is no need for an increase in the TTL of the
repeated queries for the purpose of getting better results, and therefore we find
the decision made by Gnutella developers about not to increase the TTL values
in repeated queries to be correct; since by the time the query is re-submitted
new nodes would join the network so there is no need to increase the TTL value
of a query.

5 Conclusion

In this paper we derived characteristics of some important Gnutella network pa-
rameters based on real network traces obtained from the current live Gnutella
network. As already mentioned by several studies, we have verified that a large
portion of Gnutella protocol messages seen on a Gnutella network is constituted
by Query messages which are disseminated through a simple and inefficient flood-
ing mechanism. This clearly indicates the need for more clever algorithms for
disseminating queries in unstructured P2P networks to reduce the messaging
overhead and to provide better scalability.

Our results also indicate that most submitted queries contain query strings
that consist of multiple keywords, as opposed to the common assumption in
various simulations that a query consists of a single keyword. We also found

Characterizing Gnutella Network Properties for P2P Network Simulation 283

that repetition count of keywords seen in a P2P network obeys a power-law
distribution with respect to the rank of keywords where the keyword that is
repeated the most has a rank of 1. We also verified the fact that not all peers
contribute to a P2P network at the same level. A small portion of peers share a
large portion of all files available in the network. Our traces also revelated the
fact the same query string is not repeated too much by the same peer. Also a
peer does not increase the initial TTL (time-to-live) values of repeated queries to
enlarge the search horizon. We have found that most submitted queries have an
initial TTL value of 4, and even though a peer submits a query with a larger TTL
value, the neighboring peers immediately reduce the TTL to a value below 4.

We think that our findings can be important for P2P network simulation
studies that are looking for models and information about some of the important
parameters of P2P networks.

References

1. Stephanos, A. T.: A Survey of Peer-to-peer File Sharing Systems. WHP-2002-03,
Athens University of Business and Economics, (2002).

2. Gnutella protocol v0.6. Available at
http://rfc-gnutella.sourceforge.net/developer/testing/index.html.

3. Kazaa http://www.kazaa.com
4. Schlosser, M.T., Condie, T. E., Kamvar S.D.: Simulating a File-Sharing P2P Net-

work. First Workshop on Semantics in P2P and Grid Computing, December, (2002)
5. Markatos, E.P.: Tracing a large scale Peer-to-Peer System: An hour in the life of

Gnutella. In 2nd IEEE/ACM Int. Symp. on Cluster Computing and the Grid, (2002)
6. Zeinalipour-Yazti, D., Folias, T.: Quantitative Analysis of the Gnutella Network

Traffic. TR-CS-89, Dept. of Computer Science, University of California, Riverside,
June (2002)

7. Saroiu, S., Gummadi, P., K., Gribble S., D.: A Measurement Study of Peer-to-Peer
File Sharing Systems. Proceedings of Multimedia Computing and Networking 2002
(MMCN’02), San Jose, CA, January (2002).

	Introduction
	Related Work
	Methodology
	Gnutella
	Gnutella Crawler
	Measured Parameters

	Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

