
1

PocketDrive: A System for Mobile Control of Desktop PC and its
Applications Using PDAs

Yenel Yildirim and Ibrahim Korpeoglu
Department of Computer Engineering

Bilkent University
06800 Ankara, Turkey

Abstract— Today, consumer electronic devices and PCs are
inevitable parts of our daily life. Controlling those devices
remotely is an important aspect of the technology. We have
already universal remote control devices for controlling con-
sumer electronic devices. Similarly, we may control our desktop
and laptop PCs and their applications remotely via portable
and smaller computers like PDAs and Pocket PCs. This paper
presents a system and its architecture that enable a wireless-
enabled PDA to control a PC and its applications remotely over
a 802.11 or Bluetooth link. With such a system running on a
PDA, a user can start, run and control PC applications from any
location that is reachable via 802.11 link. This enables flexibility,
ease of use, and freedom for the user of PC applications.

I. INTRODUCTION

Consumer electronics devices and personal computers
became inevitable part of our life. Similarly, mobile devices
and computers like Pocket PCs are becoming more and
more commonly used in our daily life. Controlling consumer
electronics devices and computers remotely is an important
as aspect of the technology. Today, we have universal remote
control devices to control consumer electronic devices such
as TV sets. Similarly, it is desirable to remotely control
stationary desktop/laptop PCs and their applications. For
example, an instructor in class-room may want to control
a PowerPoint presentation running on his laptop computer
and projected on the screen using a PDA (i.e. pocket PC)
or cell phone, while he is moving around in the class-room
freely. In this way, he does not have to go to the laptop each
time when he wants to update the PowerPoint screen.

This paper is about how to control PC applications re-
motely inside a house, an office, or a conference room.
As the remote control device, we consider using a general
purpose pocket PC computer with wireless LAN or PAN
capability (i. e. supporting WiFi or Bluetooth). For this
purpose, we designed and implemented a mobile system
software, called PocketDrive, that enables a Pocket PC to
act as a remote controller device for desktop/laptop PCs and
their applications. In this paper, we introduce PocketDrive,
its architecture, and how we have realized it.

PocketDrive is a system/tool that allows users to control
their desktop computer applications from a PDA over a
wireless network or Internet. Its architecture is based on

This work is supported by The Scientific and Technical Research Council
of Turkey (TUBITAK) with project EEEAG-104E028.

client-server paradigm. It consists of two parts: a server part
and a client part. The server part runs on a desktop PC (or
laptop PC depending on the usage scenario) to be controlled
remotely. The client part runs on a mobile Pocket PC device
that can be easily carried by a user and that will act as the
remote controller device for desktop PC and its applications.

The server side of the system is capable of listening
incoming connections, sending and receiving data, process-
ing control commands, taking screenshots, modifying and
sending images back to client side, and sending mouse and
keyboard events to the operating system.

The client is capable of opening connections to the server,
sending/receiving data and processing control commands,
changing the view area (which we call as viewport); and
sending mouse and keyboard events to the server side.

Both the server side and client side of the system are
coded in C#.NET, and .NET Framework 1.1 is used as the
development kit. The server side of the system runs on top of
the Windows XP operating system [1] and the client side runs
on top of the Windows Mobile 2002 operating system. [2]

We identified the following as the requirements of a
system that enables a Pocket PC to be used as a remote and
mobile control device for desktop PC applications. Those
identified requirements helped us as the basic guidelines in
designing our system.

• Ease of use: The system should be easily launched,
configured and used. It should have a nice and graphical
user interface.

• Mobility: The system should support mobility of the
user while controlling the desktop computer application.
Mobility can be enabled if the remote control device is
portable and if its connection to the desktop computer is
wireless. The wireless connection can be a short-range
local or personal area connection, most of the time. In
that case, the roaming range can be up to 100 or 300
meters depending on the wireless technology used and
on the propagation environment.

• Flexible Control: A user should be able to control and
execute as much functionality as possible. It is the best
if the user can do everything that he/she can do on
a desktop computer also in a remote manner. The user
should be able to give keyboard inputs and mouse inputs
to the desktop PC and also should be able to get as much
screen information as possible. (If applicable, displaying
the whole screen area is preferred.)

1-4244-1364-8/07/$25.00 ©2007 IEEE

2

• Power: The system should be power efficient since the
PDAs are power constrained devices and have limited
energy.

• Reliability: The system and connectivity should be
reliable enough so that a user can control the desktop
computer without losing data and/or commands.

• Bandwidth: The system should be bandwidth efficient
on the wireless link between the PDA and desktop
PC, since the same link can be used for many other
applications that are run at the same time, like an FTP
transfer, a web browser activity, a backup activity, and
so on.

• Enabling Feedback: While interacting with the desktop
PC using a mobile PDA, the user should get enough
feedback from the system about what is going on and
about the status of the executed operations.

• Asymmetric Functionality: A desktop computer has ad-
vantages in comparison to a Pocket PC in terms of
computation power and unconstrained energy sources.
Therefore the system design should be asymmetric
whenever possible, giving more computational overhead
to the server side of the system than the client side. In
other words, a thin client model is a preferred model
for the architecture of the system [12].

• Security: Not everybody who has a Pocket PC in the
vicinity should be able to control a desktop PC and its
applications. Only authorized users should be able to do
that. Therefore the system should support authentication
and authorization of the users that would like to access
and control the system remotely via wireless PDAs.

Throughout the paper we will use the terms “pocket PC”
and “PDA” interchangeably to refer to the same type of hand
held device. The rest of the paper is organized as follows.
In the next section, Section II, we briefly describe some
related work. In Section III we describe the PocketDrive
system’s architecture and design, and its implementation.
And in Section IV, we give our conclusions and discuss some
future work items.

II. RELATED WORK

There are already some products for controlling a PC from
a PDA, similar to our work. Some of them are Remote
Control PocketPC [10] and Mobile Administrator [11].

The Remote Control PocketPC system described in [10]
uses also client/server paradigm and provides access to a PC
over a TCP/IP connection that goes over either a modem or
a wireless channel. It provides mouse and keyboard control
after secure access granted with correct username/password
combination. These features are similar to our PocketDrive
system; but the system in [10] lacks the display capability
we offer as at it supports only grey scale, 16 colors and 256
colors resolution whereas our system can display 16-bit PNG
screenshots of the PC screen. Additionally, PocketDrive sup-
ports zooming and presentation mode with user-friendly GUI
for fast forward and backward jumping on a presentation.

The Mobile Administrator [11] system enables the remote
control of a computer using a portable device. This tool

supports running commands on the server side, but it does
not allow mouse and keyboard control, and it does not show
screenshots of the PC on the Pocket PC screen. With our
PocketDrive system, a user is able to control keyboard of a
PC, and in this way the user can open a command window
and run any command on the PC. Additionally, PocketDrive
can show the current state of the PC screen on the PDA
screen.

III. SYSTEM ARCHITECTURE AND DESIGN

In this section, we will explain the architecture and design
of the PocketDrive system, including the internal compo-
nents. We will also discuss some optimization issues.

A. Network Connectivity

The connection between a controlling PDA and a desktop
PC can be over a single wireless hop, or over many wired and
wireless hops using the Internet infrastructure. In both cases
IP (Internet Protocol) is used as the communication glue
and the routing protocol, and TCP is used as the transport
protocol.

Figure 1 shows the connection of a PDA to a desktop
computer using a single hop wireless link. The wireless link
technology can be a wireless LAN technology such as IEEE
802.11 a/b/g [3], [4], or a wireless PAN technology such as
Bluetooth [6], [7]. For such a direct connection, both PDA
and desktop PC should be wireless capable. The PC can have
a wireless adaptor to talk to the PDA or it can first talk to
a wireless access point over Ethernet and then the wireless
access point can bridge this connection to the PDA over the
wireless link.

Whether the wireless link between the PDA and PC is
802.11 or Bluetooth, the rest of the protocol stack can be
the same. We can run TCP/IP on both Bluetooth link layer
and 802.11 link layer. The PocketDrive system programs run
over TCP/IP, hence are not affected by the link layer tech-
nology. Of course the performance and some other metrics
are affected. 802.11 provides better throughput and range,
whereas Bluetooth provides better energy efficiency [5], [8].
Additionally, if Bluetooth is used as the link layer, TCP/IP
is not required. Using the RFCOM sublayer of Bluetooth,
the PocketDrive software can be implemented so that it uses
serial communication using RFCOM for message exchange
between PDA and PC. In this case, however, a reliability
layer has to be included as part of PocketDrive software,
since the RFCOM sublayer of Bluetooth and the layers below
does not guarantee hundred percent reliability for the delivery
of the bytes and packets [7], [8].

When we use IP as the routing layer and TCP on top of
it, the connection between the PDA and PC does not have to
go over a one-hop link but can be any number of hops. The
PDA and the PC can be located anywhere on the Internet.
Hence the connection can be over the Internet. This scenario
is shown in Figure 2. In this case, the PDA can be connected
to an access point via a wireless link and the access point is
connected to the Internet. Similarly, the desktop PC is also
connected to the Internet via a wired and wireless link. The

3

Wireless
Access Point

Client
PDA

Wireless
Connection

(Server)
User PC

Fig. 1. Network connectivity underlying the PocketDrive system. It uses short-range (local or personal area) wireless technology for the connectivity
between the PDA and the desktop PC.

User PC
(Server)

Wireless
Access Point

Client
PDA

Wireless
Connection

INTERNET

Fig. 2. Connectivity between the PDA and desktop PC over Internet. In this case, only the last hop to the PDA is wireless, and the PDA user can control
the desktop PC applications from any point in the Internet no matter how far it is to the desktop PC.

PocketDrive system can then run on top of this configuration
without requiring any modification.

B. Operation of PocketDrive

PocketDrive system consists of two software programs:
one server program running on a desktop PC or laptop PC
that is to be controlled remotely; and one client program
running on a PDA to be used as the remote controller.

The server process starts listening on a well-known
TCP/IP port after being started up on the desktop PC. The
PDA user has to know the IP address of the desktop PC
and the well-known port number for being able to connect
to the desktop from the PDA. Additionally, a username and
password is required for the user to login to the system.
The server process asks the client process a username and
password, and then authenticates the user. In this way, only
users with previously created accounts can access the PC
for controlling. These parameters (server IP address, port
number, username, password) are maintained at the server
side and are configurable via a GUI interface.

A PDA user that would like establish a connection to the
PC for controlling the PC applications enters the required in-
formation (IP address, port number, username and password)
and a TCP connection is established to the server. Over the
TCP connection, besides sending username and password,
the client process also sends some parameter values regarding
the screen width and height. If the server authenticates the
user, it replies back with a login command and OK message.
Otherwise, if the authentication is not successful, the server
replies back with a login command and NO message. The
TCP connection is closed in this case.

If the client gets logged in to the server successfully, other
operations can be executed and controlling of the PC can
start. For this, the client first requests the current state of the
PC screen. It sends a Send New Image command to the server
to obtain the screenshot of the desktop PC. Upon receiving
such a command from the client, the server captures the

image of the screen, resizes it according to the dimensions of
the client’s screen, and makes the color depth 16 bits. Then
the server sends Image command to the client including the
size of the image in bytes, and the binary data corresponding
to the image. When the client gets the Image command,
it reads the binary image data and creates an image to be
displayed on PDA’s screen. The image corresponding to the
screen state of the PC is then displayed on the screen of the
PDA as part of the GUI structure for the PocketDrive client.

After getting a screenshot from the PC, the PDA can
request more screen shots. For this, it should again send
a Send New Image command to the PC. This mechanism,
i.e. waiting for an image to be downloaded before sending
the next request for another image, is a simple flow control
mechanism between the PDA and PC. Another alternative
could be requesting images periodically; but then the period
should be adjusted depending on the speed of PDA and the
bandwidth of the wireless link. The mechanism that we use
is adaptive to the changes in the wireless link properties and
available bandwidth.

After getting the screenshot of the PC, the PDA user can
start doing some control operations. Those include mouse
operations and keyboard operations.

A mouse operation is triggered when the PDA user touches
to the screen of the PDA that has the PC image. Additionally,
the PDA user has a GUI through which he/she can indicate
whether she would like to emulate a left mouse button press
event or a right mouse button press event. Then the mouse
operation and location is transported to the server which
converts the mouse position to a point on the PC screen. Then
the server sends a mouse event to the PC operating system
and appropriate action is executed on the PC. Similarly, a
keyboard operation can be triggered when the user presses
on a key on the PDA keyboard. The appropriate keyboard
command is conveyed to the server which in turn sends
keyboard events and character codes to the PC operation
system. Besides these, if an error occurs on the server side,
an Error command and an appropriate error string is sent to

4

the client side.
If the client gets disconnected from the server unex-

pectedly, the client tries to reconnect to the server if the
user has enabled the “try to protect disconnections” option.
Otherwise, reconnection is not attempted and the user is
informed about the disconnection.

C. Control Commands and Data Flow

Table I shows the control commands that are used between
the PocketDrive server and client. A command is sent in a
message and represented with a string followed by a new
line character. The commands Login, Error, Okey and Not
Okey are used at the beginning of client server handshake
and authentication. The Error command indicates an error
condition and is used in other phases as well.

The Left Click, Left Double Click, Right Click, Right
Double Click, Mouse Left Down, Mouse Left Up, Mouse
Right Down, Mouse Right Up, Mouse Move commands are
mouse related commands and are used to control the mouse
pointer on the desktop PC screen. The relative location of the
pointer on the PDA screen is sent to the server side and the
server calculates the actual location on the desktop screen.

Key Down and Key Up commands are keyboard related
commands and are used when the user would like to provide
keyboard input to the PC applications via the PDA keyboard
panel. For that, the character code of the key is sent inside
a command to indicate which key is pressed.

Since the screen size of a PDA is much smaller than the
screen size of a desktop PC, the screen view of the PC has
to be scaled down, and this may cause a low quality image
to be presented on the PDA screen. Therefore, supporting
zooming of the screen image is an important feature to have
on the client side. The PocketDrive supports this in a simple
manner. The image shown on the PDA screen is divided
into four quadrants, and each quadrant can be zoomed to
occupy the whole PDA screen. For that, the client side issues
Change Screen Zoom command including the information
about which part of the screen has to be zoomed: left top,
right top, left down, or right down.

D. Structure of the PocketDrive Client

Figure III-C shows the internal software structure of
the client side and server side of the PocketDrive system.
Each side is divided into components with specific well-
defined functionality. The components constituting the client
side are: Client GUI, Saver/Loader, Command Handler, and
Connector.

The client graphical user interface (GUI) component is
responsible for interacting with the PDA user. With this
interaction it can get the server IP address, port number,
username, password, and the option if disconnection will be
protected or not. Those are the information required to login
into and authenticate with the server. Another function of the
GUI component is to show the screenshot images arriving
from the server side. This function is vital for enabling
the PDA user to have total control on the PC and to keep
track of what is going on. Another responsibility of the GUI

Command Name Command String

Login $lg
Error $err
Okey OK

Not Okey NO
Send New Image $sni

Image $im
Left Click $lck

Left Double Click $ldk
Right Click $rck

Right Double Click $rdk
Mouse Left Down $mldn

Mouse Left Up $mlup
Mouse Right Down $mrdn

Mouse Right Up $mrup
Mouse Move $mmv
Key Down $kdw

Key Up $kdu
Change Screen Zoom $cha

TABLE I

CONTROL COMMANDS AND THEIR STRING REPRESENTATIONS.

component is to detect mouse and keyboard events, and send
those events to the server side via the help of the command
handler component. The GUI also has a presentation mode
which is suitable to easily direct PowerPoint presentations.
In this mode, the user can send Forward and Backward com-
mands to the PowerPoint software running on the desktop or
laptop computer without getting updates about the desktop
screen. This saves wireless bandwidth and helps the remote
commands to execute faster.

The saver/loader component is responsible for saving the
settings (server IP address, port number, username, password
and “try to protect disconnection” option) to a file, called
settings.ini, and loading these settings when the pro-
gram re-starts.

The command handler component is responsible to send
commands through the connector component and ana-
lyze/process incoming commands. For example, when it
receives an incoming Image command, it first reads the
size of the image and then reads that many bytes from the
connector component in binary form. After then, it creates
the image and gives the image to the GUI component to
be displayed on the PDA screen. The command handler
component also detects disconnections via the null command
and informs the GUI about disconnections.

The connector component is the layer that provides com-
munication with the server side. It sits on top of the
TCP/IP transport layer. It is responsible for initiating the
connection and interacting with the server. It uses TCP as
the transport layer, therefore the communication is stream
oriented, having no packet boundaries at the transport layer.
The packet boundaries are detected at this component. The
packets include commands and those commands are given
to the command handler component. Similarly, commands
are received from the command handler component and sent
through the TCP layer to the server side. This component
is also responsible for tearing down the connections when
required.

5

Client GUI

Loader
Command
Handler

ConnectorConnector

Handler
Command Screen

Handler
Saver Saver

Loader

Server GUI

Interface
Win API

Disk

System

Disk

Server PC

Client PDA

Connection

TCP/IP

Fig. 3. Internal Structure of PocketDrive Server and Client Software

E. Structure of the PocketDrive Server

Figure III-C also shows the structure of the server side
software that is to be run on a desktop or laptop computer.
The server side is composed of the following components:
Server GUI, Saver/Loader, Command Handler, Screen Han-
dler and Win API Interface, and Connector.

The server graphical user interface (GUI) component is
responsible for interacting with the user at the server side
and providing the user the ability to set the values of some
parameters such as listen port, username and password.
Another functionality of the GUI is to present logs which
provide useful information about connections.

This saver/loader component at the server side is very
similar to the corresponding component at the client side. It is
responsible for saving the settings (port, username, password
and logging option) to a system file (settings.ini) and
loading the saved data when the program starts. In order to
protect the saved information from other people who should
not access the system, the 128-bit DES encryption method
is used to encrypt the information [9].

The command handler component sends the commands
through the connector components towards the client side,
and receives and processes the commands arriving from the
client side. As part of processing of the incoming commands,
it uses Win API interface in order to send mouse and
keyboard events to the desktop operating system. Addition-
ally, it uses the screen handler component for capturing the
screen state. This is done when the client side issues a New
Image command to the server. Consequently, the server side
first gets a screenshot with the help of the screen handler
component, and resizes the image according to the client’s
screen size and viewport (view area). The color depth is
decreased from 32 bit to 16 bit and the image is sent towards
the client as part of the Image command in PNG format.

The screen handler component is responsible for capturing
the current state of the screen and providing the captured
screenshot images to other components.

The Win API Interface component is responsible for send-
ing mouse and keyboard events to the desktop operating sys-
tem. It also provides screen capturing functions to the screen
handler component. It uses some dynamic link libraries (dlls)
for this purpose [13].

The connector component is responsible for listening to

incoming connections on a well-specified port, and accepting
the incoming connection requests arriving from the client
side. Similarly to the client side connector component, it
runs over TCP/IP, and uses stream-oriented communication
while talking to the corresponding component in the client
side. It is responsible for converting the stream oriented bytes
into packets (commands), and vice versa. The command
packets are passed to the command handler component,
or the command packets are received from the command
handler. This component is also responsible for termination
of connections.

F. Performance Issues and Design Choices

During the design phase, we chose TCP as the transport
layer instead of UDP in order to have reliable delivery of
commands and data. Additionally, we use IP addresses to
address the end points [14], [15]. This enables the system
to work also over Internet, i.e. the client and server can
be located in any two points on the Internet. If the system
is to be used only locally, then use of IP addresses is not
mandatory. Even use of TCP/IP is not mandatory. We can
just use serial communication between the client and server.

In order to decrease the bandwidth usage during the
transfer of commands and data (images), the client sends
its screen height, width and interested viewport (all, left
top, right top, left bottom, right bottom) information to the
server, and the server stores this information and uses it while
sending screenshots back to the client. When the server is
ready to send a screenshot to the client, it first resizes the
image according to client’s screen parameters and the desired
viewport, and also reduces the color depth from 32 bit to 16
bit. Then the image is sent to the server in PNG format.

To increase the performance further for applications like
PowerPoint, the client has a presentation mode which only
enables the user to control the keyboard and mouse with-
out getting screenshot images from the server. This saves
bandwidth and reduces the command execution latency.

A PDA has significantly limited computing power than
a desktop. Therefore, a desktop computer should not over-
whelm the PDA with commands and data. This issue comes
up when the screenshot images have to be transferred from
the server to the client. If the server constantly takes screen-
shots and transfers them to the client, the client may not be

6

Fig. 4. Screenshot of PocketDrive system

powerful enough to handle this. Tests show that, for example,
30 fps is too high to process for the PDA, and consumes
too much wireless channel bandwidth. Therefore we need a
feedback mechanism about the availability of the client for
further images. This is achieved by sending the images from
the server to the client upon demand. For this, the client
sends New Image command to the server to request a new
screenshot. The client does not issue another New Image
command unless it receives a response, i.e. the screenshot,
to the previous request. When it has received the screenshot,
it can send another request for a new screenshot. This is like
the ACK mechanism, or the Stop-and-Wait mechanism used
in the transport layer protocols or MAC layer protocols. Via
this adaptive mechanism, the refresh rate (frame per second)
of PDAs will depend on their computational power and on
the available wireless channel bandwidth.

IV. CONCLUSION AND FUTURE WORK

This paper introduces our system for local or wide area
remote controlling of desktop/laptop PC applications using
handheld devices like Pocket PCs.

The contribution of this paper is providing the architecture
and detailed design of a general purpose remote control sys-
tem for controlling desktop PC applications from handheld
devices. We also identified some general requirements of
such a system and tried to meet those requirements as much
as possible in the design and implementation of our system.
The system is fully implemented and can be downloaded
from one of the following URL addresses:

• http://www.mycoolsoftware.com/pocket.html
• http://www.cs.bilkent.edu.tr/∼korpe/lab/software/pocketdrive.rar

New features can be added to improve the security and
usability including:

• Server scanner that scans and shows PocketDrive
servers on a local area wired or wireless network into
which a handheld device can get connected.

• Commands and data can be sent after getting encrypted
for better privacy and security.

• New user types can be created with the different security
levels such as a guest user who only observers the
activities on the server.

• The size of a screenshot image can be reduced further
by an appropriate compression scheme or image format.
This will decrease bandwidth usage on the wireless
channel.

• The same approach can be applied for mobile phones
to use them as remote control devices as well.

ACKNOWLEDGEMENTS

We thank TUBITAK (The Scientific and Technical Re-
search Council of Turkey) for supporting this work with
project EEEAG-104E028.

REFERENCES

[1] Winwdos XP operating system.
“http://www.microsoft.com/windowsxp/default.mspx”

[2] Windows Mobile operating system 2002. system.
“http://www.microsoft.com/windowsmobile/default.mspx”.

[3] IEEE 802.11 Working Group,
“http://grouper.ieee.org/groups/802/11/”

[4] WiFi Alliance,
“http://www.wi-fi.org/”

[5] Matthew S Gast, 802.11 Wireless Networks: The Definitive Guide,
2nd Editon, O’Reilly, 2005.

[6] Bluetooth special interest group
“https://www.bluetooth.org/”

[7] Bluetooth/IEEE802.15.1 specification document,
“http://standards.ieee.org/catalog/olis/lanman.html#wirelessPAN”

[8] Brent A. Miller, Chatschik Bisdikian, “Bluetooth Revealed: The In-
sider’s Guide to an Open Specification for Global Wireless Commu-
nications”, 2nd Edition, Prentice Hall, 2001.

[9] Charlie Kaufman, Radia Perlman, Mike Speciner, “Network Security:
Private Communication in a Public World”, Second Edition, Prentice
Hall, April 15, 2002.

[10] Remote Control PocketPC
“http://www.bitween.com/sito/catalogṗhp?model=29&but=1”

[11] Mobile Administrator.
“http://www.mobileadministrator.com/html/mobile administrator.html”

[12] Thin-Client Server Computing.
“http://members.tripod.com/ peacecraft/infomining/thinclnt.pdf”

[13] Windows MSDN Library.
“http://msdn.microsoft.com/library/”

[14] Larry L. Peterson, Bruce S. Davie, “Computer Networks: A Systems
Approach”, 3rd Edition, Morgan Kaufmann, May 2003.

[15] W. Richard Stevens, “TCP/IP Illustrated, Volume 1: The Protocols”,
Addison-Wesley, 1993.

