
ONLINE BICRITERIA LOAD BALANCING FOR

DISTRIBUTED FILE SERVERS

Savio Tse
Computer Engineering Department,

Bilkent University,
06800 Ankara, Turkey

Email: sshtse@cs.bilkent.edu.tr

Abstract-We study the online bicriteria load balancing prob-
lem in a system ofM distributed homogeneous file servers located
in a cluster. The load and storage space are assumed to be
independent. We propose two online approximate algorithms for
balancing the load and required storage space of each server

during document placement.
Our first algorithm combines the first result in [10] and the

upper bound result in [1]. With applying document reallocation,
we further obtain improvement and give a smoother tradeoff
curve of the upper bounds of load and storage space. This result
improves the best existing solutions. The second algorithm is for
theoretical purpose. Its existence proves that the bounds for the
load and the required storage space of each server, respectively,
are strictly better when document reallocation is allowed. It
enhances the research in applying document reallocation. The
time complexities of both algorithms are O(log M); and the cost
of document reallocation should be taken into account.

Keywords: Load balancing, Scheduling; Document placement,
Re-allocation.

I. INTRODUCTION

The problem we address is to balance two independent
parameters. It can be considered as a variant of the classical
NP-complete File Allocation Problem (FAP). Based on the
classical Knapsack Problem, which is also an NP-complete
problem, Ceri et al. solved the optimal FAP in 1982 [2].
In [3], a survey given by Dowdy and Foster contains many

results before 1982. In [9], we proposed five algorithms,
including an O(log M)-time online algorithm which bounds
the load and storage space of each server by klL and k,S,
respectively, where L and S are the optimal bounds for load
and storage space, respectively, and kl > 2, k, > 2, and

1 + 1 < 1. In [1], Bilo etalg gave a (M-k1' kl)
competitive algorithm, where k can be any integer from 1
to M. It bounds the load and storage space by 2M-k L

and M+k-1 S, respectively. Note that there are M points for
k

the choices of tradeoff between load and storage space. This
result is originally for bicriteria scheduling problem and can be
directly applied to load balancing. Asymptotically (M -> o),
the bounds are the same as those of the online algorithm in
[9], and a slight improvement for general values of M. In
[10], we gave three algorithms. The first one is for placing
documents in heterogeneous server systems. Formally, the jth
server has bounds p'L and pJS for load and storage space,

respectively, where p pi > 2, p' + pi > 6, and j C [1,M].

It is asymptotically the best algorithm when it is applied to
homogeneous servers. When the load and storage space are
bounded by around three times of their optimal values, and
M is small, the algorithm in [1] is better. We study them in
Section III.
The load balancing problem is similar to the classical

scheduling problem in many aspects. The latest result given
by Fleischer and Wahl in [4], which is a (1 + +1n 2

competitive algorithm, can be applied to load balancing. For
bicriteria scheduling, Rasala et al. gave many results in [8].
The first parameter is one of maximum flow time, makespan
and maximum lateness, while the second is chosen from
average flow time, average completion time, average lateness
and number of on-time jobs. Since the two parameters are not
independent, these results and techniques cannot be used to
our problem.

In this paper, we design online algorithms for balancing
(or scheduling) two independent parameters in homogeneous
servers by allowing object re-allocation which has not been
used for the existing results. We assume the extra cost is the
sum of sizes of objects needed to migrate. This assumption is
practical in our scenario of systems of distributed file servers,
but may be too harsh for some scenario like balancing the load
and the number of jobs assigned for each CPU in the shared
memory model. Resource reallocation is a typical technique
for load balancing. It can be applied to various kind of areas
such as online processor scheduling [5], distributed memory
management [6], etc.. Reallocation will inevitably impose
extra communication cost in the network. Therefore, we need
to keep it to a reasonable amount.
Our first result is a combination of the first algorithm in [10]

and and the one in [1]. As expected, the algorithm having
more benefit will be applied. Recalling that the algorithm
in [1] allows M discrete points for the choices of tradeoff
between load and storage space. By further reallocation, our
contribution is to connect the discrete points concerned and
give a new and smoother curve of tradeoff.
A lower bound result in [1] states that no (ct, c,)-

competitive algorithm exists for the bicriteria scheduling prob-
lem, where ct < 2 and c, < M. However, our second
result is to prove the existence of such values, for M > 2,
under document reallocation. It clearly shows that document

reallocation is strictly beneficial in bicriteria load balancing.
The time complexity for all algorithms given in this paper

is O(log M) plus the reallocation cost. The analyses do
not include the physically placements of documents into the
servers.
The paper is organized as follows: Section II gives the

model and background data structures. The first algorithm is
given in Section III, and the second one is in Section IV.
Section V concludes our results and states some possible future
research work.

k,y, D

pa EG: D D

key: E G F D

key:X
load: 29

size: 5 5

F
20
70

key: D

pairs: D T P

T
M L I

0 0

L
90
too

Root

P
w P

W P Leaves

P0 10

w
230
50

Implicit pointers

Actual servers

II. DEFINITIONS AND MODELS

Each document has two fundamental attributes, namely
load and size. There are M homogeneous servers and N
documents. The value of N changes upon each placement
and deletion. The ith document has positive load 1i and size
si, Vi C [1, N]. The load and storage space of a server is
the summation of loads and sizes of all documents stored,
respectively. For all j C [1, M], the load of the jth server is
denoted as Lj and the storage space as Sj. We do not assume

any fixed limit on their values; however, there is still a need
to balance them among the servers.

Let L and S be the average load and storage space of

all servers in the system. Therefore, L M , and

S
M Let L be max(maxiE[l,N] l1i L) and S

be max(maxic[l,N] si, S). Clearly, L and S are the optimal
bounds on the load and storage space of each server, respec-

tively.
We apply a tree structure like B+-tree [7] which is widely

employed for storing the information of the servers through-
out this paper. We call it BO-tree. A BO-tree stores a set
{(x, Y) x, y C R+}. We assume the elements stored in a B°-
tree are unique'. Like B+-tree, data (keys) are stored in leaves
and all leaves are located at the bottom level. Except the root,
each internal node has K to K children. The root has 1 to K

2

children. Like B+-tree, the data in the bottom level are sorted
according to y-values, and unlike B+-tree, a parent node stores
a copy of one of its children which has smallest x-value. If
there are two children having the smallest x-value, choose the
one with smaller y-value. Hence, the root contains the copy of
the data with minimum x-value. An example is in Figure 1.
Recall that a parent's x-value is no more than those of its
children. We call this property the property of minimum size.
Horizontally, at each level, the y-values are sorted from left
to right. We call this property the property of increasing load.
The normal node-splitting and merging operations are similar
to B+-tree. To keep the time for maintenance in O(logt),
where t is the number of data stored in the tree, there is an

auxiliary B+-tree for storing the y-values only.
Let A* be the algorithm for performing searching and up-

dating on a BO-tree. For any input (X, Y), where X, Y C R+,
A* can search an element (x, y) in a BO-tree and perform

1 Precisely, we can organize the information in the format of
(B1, B2 ... BMX), where Bi = (x, y) for some x, y E R+, Vi c [1, M']

Fig. 1. An example of B°-tree storing {(si, li) i c [1,Io1] }.

updating within O(log t) time, where x < X and y < Y. If
there are two elements with smallest y-value, choose the one
with smaller x-value. In the case that no suitable (x, y) in
T, A* will output false. The algorithm A* is as follows: On
input (X, Y), search from the root. If x-value is greater than
X, return false. If x < X, search for a children which x-value
is at most X and y-value is minimum, and go to this child.
Repeat this step until the bottom level. If the y-value of the
last found node is greater than Y, return false; otherwise return
the values of this node. For updating, we need an auxiliary
B+-tree for searching the bottom position. Then, proceed to
update its parent until there is no need to update or the root
is reached.

For conciseness, all BO-trees used in this paper will be
automatically updated and maintained unless specified.

III. THE FIRST RESULT

Consider the best existing online algorithm for bicriteria
scheduling in [1], which is a (parametric) (M-kk M+k- 1>)
competitive algorithm, where k C {1, 2,... , M}. It is called
Algorithm A(k). It is designed for homogeneous server sys-
tems. We rewrite the load and storage space bounds in a
different way as follows: The load and storage space of
each server are bounded by tlL and tsS, respectively, where
t M= M-k and ts 1M+k-1. In particular, when k = 1,
(t1, ts) = (2 , M), and when k = 2, (tl, ts) = (2, M+ 1)
As there are M values for k, there are M pairs of (tl,ts)
which can be used by Algorithm A(k). It is easy to check
that each of them satisfies t 1 1 + M=1 We call
the equation Curve B. We call t1 + ts 6 Line C. Line C
represents the tradeoff between load and storage space, which
is from the first algorithm in [10]. This algorithm is called H
in this section. In applying Algorithm H, we set t1 = p' and
ts = pi, vj C [1,~M].

Consider Curve B and Line C. Their interaction points are

(3- A,3+A) and (3+A,3- A), where A= +M . It

implies that for all (tl, ts) from (2, M+1) to (3-A, 3+A), and
from (3 + A, 3- A) to (MM+', 2), along Curve B, Algorithm
H outperforms A(k). 2 We combine the advantages from each

2For any two distinct points (x, y) and (x', y'), (x, y) outperforms (x', y')
if and only if x < x' and y < y'.

algorithm and form a new one. Figure 2 shows the new set of
upper bound pairs.

0
(2 ,M)

within this portion. There exists an integer k laying between
[M+1 -

Mj to M21 + M such that

2M-k < t <2M-k-1
M-k+l M-k
M+k < t < M+k-1
k+1 s k

and
(1)

(2, 2)

(2, 4)

(3 -A, 3 +A)

(3 +A,+3-A)
* (+A A) Curve B

Line C

(4, 2) (M+1 2)

2l (M,2-)

Fig. 2. The combined set of upper bound pairs.

In the figure, the resulting upper bound pairs are shown by
the solid dots on Curve B, and two solid portions of Line C.
The white dots on Curve B are not used as we can find better
solution from Line C. The dotted portion of Line C is also
unused, as the solid dots are better although discrete. Hence,
there are five portions for (t1, t,) as follows:

1) t1 = 2- 1and t, = M.
2) t1+t, =6, for2 <tj< 3- A.
3) l1 + t1= 1 + M21 for 3- A < ti < 3 +A and

there exists a k C {1, 2,... , M} such that t1 =2M-k
andt, M±k

4) t +tts= 6, for 3+ A < tj < 4.
5) t1 = M and ts = 2 - .

Portions (2) and (4) are the only two continuous sets, and
they are from Algorithm H. Portions (1) and (5) are the
extreme cases from Algorithm A(k). As little improvement of
an additive term _' in one parameter does not justify the large
cost of a factor Ton another one, probably these two pairs of
values will not be used in practice3. Portion (3) contains many
discrete points which can be used by Algorithm A(k). Whether
the other points within this range of Curve B can be used by
any algorithms remain undetermined. The discrete nature may
cause some inconvenience for the system designers to find the
best load-storage space tradeoff. In this section, with the help
of document reallocation, we bridge up the discrete points and
form a continuous set of realizable upper bound pairs along
Curve B of this portion, for all M > 23.

Recall that 3- A < t1 < 3 + A, each discrete point
then corresponds to an integer k between M+1 M±1 and2 2

M+1 + M+1 Consider another point (t1, ts) of Curve B

3Theoretically, they remain two of the best pairs as there is no existing
solution outperforms them.

as (t1, t,) is surrounded by these two nearest points,
(2M-k M+k-1 (nd (2M-k-1 M+k on B.
M-k+1 ' k) a kM-k ' k+1 J

Upon the arrival of a document of load I and size s, if we
can find a server which load is at most MMl (t -1)L and
storage space at most MMl (ts -1)S, then the new document
can be placed into this server and the resulting load is at most
tlL and storage space at most tsS, where L and S store the
pre-placement values, and L and S store the post-placement
ones. It is because the new load is at most MM1 (tl-l)L+I =

M 1 (l-1)L --) +I=M (tl-1)L + (1-tl_l)I
M (tl -1)L + (1 - 1)L = t1L, where L is the new

average load of the server. Similar argument to the storage
space.

Let P be the set of servers which loads are more than
Mi (t1 - 1)L, and Q be the set of servers which stor-

age space is more than MMl (ts - 1)S. Then, we have
|P| < ML M 1, and similarly, Q <<
We try to find a server not in P U Q. If P n Q 7 0, then
|PUQl = |P±+|Q-P| <'t -1 +(±< -1) M+1-1 M.
That is, there is at least one server not in P U Q. If one of
M-1 and M-' is an integer, say M-', then I < M-1i

and it implies the existence of one server outside P U Q, too.
Suppose that there is no server outside P U Q. In other

words, IPUQ = M. We then have PnQ 0 and both M-1
and M-1 are not integers. As M-1 + M- = M+ 1, we have
[M-1J + [M-'j M. Since there is no available server for
the new document, we apply document reallocation to vacate a
server and Theorem 1 below shows this possibility. In practice,
we simply take away the minimal number of documents to
avoid the excessive reallocation cost.

Theorem 1: There exists an algorithm such that for all M >
23, it finds a server in P and a server in Q in O(log M) time
such that the sum of their loads and their storage spaces are
at most tlL and tsS, respectively.

Proof: We first claim that

IP = I j and IQ
ti 1 L -1 .

ts 1 (2)

Assume for contradiction that QI < L M-1 j]. As P n Q 0,
we have M = IPU Q = IPX + IQ. Recalling that Ml-1 +
[M-1 = M, we have IPI > [M-1 j, which implies IPI >
LM 1J + 1 > M- 1. This is a contradiction. If Q > [M-1,
then IQ > M-1, which is also a contradiction. Therefore,
IQ [=LM-1]j. We can use similar arguments for P.
Let 5pS be the total storage space of servers in P, and

5QL be the total load of servers in Q. Taking 6p and 6Q into

account, we have

|P| <~ ML 6QL_ (M 6Q)(M 1) and

IQI' MS-6pS < (M-6p)(M-1)
MI (ts-1)S M (ts-1)

(3)

We claim that t6Q1 +)61 < 1 + 1
. Assume the

contrary, and by Equation (3), we have M = P U Q

IP +IQI < (MQ 6 + M 6P)M-1 < (M-1 + M-1)M-1
(M±l(M 1) M=M-M This is a contradiction, which implies

tll 2-A 2-
thtQ1+ t_l< +2\< 2+ A2\ < 3,for M>l17,and similarly, and 5p < 3.
The following algorithm is for searching the target servers

for document reallocation. Let q be an integer less than
min(P,|Q), and its value will be determined later. Set
integer c = 0. Loop c = c + 1 until the storage space

of the cth smallest load server in P is no more than 6pS
q

Output the cth smallest load server as X. Obviously, the loop
terminates and Server X exists. Similarly, we find the c'th
smallest storage space server Y in Q such that its load is
no more than 6QL , and any server in Q, which has smaller

q

storage space, has a load greater than 6cL* The load of X is
q

less than (M- - (C-1) M1(tl -1))L and the storage space of
IP 1)

Y is less than (1(c'l)()S. Both c and c' areIQI (c' 1)

no more than q, and the time complexity of this algorithm is
O(q log M), which is O(log M) as q will be set as a constant.

Server X is vacated and its documents are reallocated to Y.
The reallocation cost is at most 6pS. The resulting load of Y

is less than (6Q + M-6Q-(c-l)M1m(tl-l))L
q IPI (C 1)

< (6Q + M-6c-(c 1) Mv1(t)L
Lq]-(c-1)

< (6Q M-6Q (q 1) Mf1(t1
q L,]-(q-1)

since tM 1] < - and c < q

(4+ M-Z_3)1<(+± M-6Q-(3)Q 17)
by (1), and setting q = 4

3+ M3 kh+l)T
by 6Q < 3 and 4 < M- k -3
(1±+M-M+)L

by k < M+l + and M > 23
< t1L,

by (2)

by (1)

and by similar arguments, the resulting storage space is less
than t,S.
We call the algorithm, which is guaranteed by Theorem 1,

D. Since the theorem bridges the gaps between the discrete
points, we now re-define portion (3) by removing the con-

straint of k and give an algorithm for this new portion as

follows.

For the discrete points used by Algorithm A(k), Step 3 will not
be executed and therefore no document reallocation is needed.
Both P and Q are stored in Bo-trees.

A. Remarks

By studying the finite cases for M between 19 to 22, we

can verify that the algorithm works for M > 20. By using the
fact that 5p and 5Q are bounded by 2 + 22, < 2.893, we

can improve the range of M a little bit. This kind of brute-
force analyses is out of the interest of this paper, but it is
useful to see the relationship between q and the range of M.
In our algorithm, M > 20 when q = 4. If we choose q = 5,
then M > 25, and M > 29 when q = 6, etc. Recall that the
reallocation cost is bounded by 3S. In other words, for any M,
we must use the greatest q. For the case that the value of M
is a parameter during the system design, choosing the value of
M is to decide the tradeoff between the reallocation cost and
the other parameters such as maintenance cost incurred. (IfM
increases, the maintenance cost increases but the reallocation
cost does not because q decreases.) As M -* oo, if total

storage space does not grow as fast as M, S will be very

small and the reallocation cost is little.

IV. THE SECOND RESULT

Theorem 2: There exists an online algorithm such that for
any sequence of input, Lj < (2-M(M1)Land Sj < M+1S,
for allj [1, M], M > 2.

Proof: Let X be the server of highest storage space before
placement. If there are more than one choice for X, choose
one arbitrarily. Placement of a new document in any server

other than X does not violate the bound of storage space, as

the new storage space of that server is at most

MS0 M 8 M- s< M+l5
2°+ s=2(S'-M) + s 2S' + 2 < +~1S

2 2 M 2 2 2

where SO and S' stores the values of S before and after
placement, respectively, and S stores the corresponding post-
placement value.

It then suffices to prove that there exists a non-X server

such that after placement into it, its load is bounded by (2-
1M(MT1)-)L. Within the scope of this proof, we refer L and

L to their post-placement values. Let I be the load of the
document to be placed.

Algorithm PORTION -THREE(t1, t,):
Hl 1 + 1 = 1+ M2 and3 -i\ < ti < 3+A.
Upon the arrival of a document d
1. Perform Algorithm A* on T2 with input

(MMl (t1 - 1)L, Mi (ts -1)S) and get output;
2. If output is (LCj, Sj)
2.1 Place d into the jth server;
3. If output is false
3.1 Perform D and output X C P, and Y c Q;
3.2 Move all documents in X to Y;
3.3 Place d into X;
4. Update L and S;

Assume that all servers, except the X, have load more than
(2 -M(M1))L -1. Then, there is no available server before
document reallocation. Let Lx be the load of X. Consider the
total load after placement. Total load is at least Lx + I + (M-
1)((2 M 1 -)L-1) =Ix+ML- +(M-2)(L-1).
Hence, Lo < and I > (1 M j 2))L; otherwise, total
load is greater than ML, which is a contradiction. For the case
M :t 2, We then take out the documents in X, and place the
new document into it. Now the load of each document taken
out is at most -< (1 MiM2))L. They can be placed into
the servers without further document reallocation.
The data structures used are a heap for storing the infor-

mation of servers according to their storage spaces, and a
B+-tree according to their loads. Each operation in these data
structures needs at most O(log M) time. The highest storage
space server is taken out from the B+-tree, and will be back
if another server has higher storage space. U

V. CONCLUSION

We give two results for balancing the loads and storage
spaces among servers during document placement.
Our first result is a combination of the first algorithm in

[10] and Algorithm A(k) in [1]. With document reallocation,
it gives L,j < t1L and Sj < t1S, for all j C [1, M], where
(t1, ts) C {(2 - , M), (M, 2 U {(t1, ts) tl + ts >
6 or 1 + 1 > 1+ 2 1 }. Graphically, the contribution of
this algorithm is a new curve of tradeoff as shown in Figure 2,
with the middle discrete part smoothed. The reallocation cost
is less than max(3S, S), Let S be min(Si, S, 2s), Si be the
minimum storage space used among all servers, and s be the
size of the incoming document. The reallocation cost is less
than max(3S, S), which is dominated by the algorithm in
[10] because the additional document reallocation in the last
algorithm is only 3S, where q > 2 is some integer increasing
with M. Although the two points (2 - , M), (M, 2-M)
are not very practical, they show two gaps at two ends which
break the continuity in the final curve of t1 and ts, as shown
in Figure 2. It is of theoretical interest to bridge them. Further
research can be done on it. Figure 2 also shows the large
benefit obtained from document reallocation. This solution is
based on a large value of M, which implies a small value of
S, and hence, a small reallocation cost. Further research is
needed to reduce the reallocation cost for general values of
M. Another research direction may be on different models of
server heterogeneity.
From the first result, we have a wide range of choices for

the system designers, and they can choose the most suitable
according to their needs. For example, if the system is load
sensitive, then the load bound would be better set to 2, while
the storage space bound can be set to 4. How to choose a
good tradeoff is the job of software engineers, and is out of
the scope of the paper.

Our second result shows that when document reallocation
is allowed, we can find an online algorithm for bounding the
load and the required storage space of each server by tlL and
t,S, respectively, where t1 < 2 and t, < M, or t1 < M and

ts < 2. With the lower bound result [1] that no such values
exist if document reallocation is not allowed, we conclude
that document reallocation is absolutely advantageous. Much
research is needed to explore its structures and properties
which could enhance the practicality of document reallocation.

ACKNOWLEDGEMENT

We thank the anonymous referees for their very useful
comments.

REFERENCES

[1] V. Bil6, M. Flammini, and L. Moscardelli, "Pareto Approximations for
the Bicriteria Scheduling Problem", Joumrnal of Parallel and Distributed
Computing, vol. 66, No. 3, 393-402, 2006.

[2] S. Ceri, G. Pelagatti and G. Martella, "Optimal File Allocation in
a Computer Network: A solution Based on the Knapsack Problem",
Computer Networks, Vol 6, 345-357, 1982.

[3] L.W. Dowdy and D.V. Foster, "Comparative Models of the File As-
signment Problem", ACM Computing Surveys, vol. 14, No. 2, 287-313,
1982.

[4] R. Fleischer and M. Wahl, "Online scheduling revisited", Proceedings
of the 8th Annual European Symposium on Algorithms (ESA), volume
1879 of Lecture Notes in Computer Science, 202-210. Springer Verlag,
2000.

[5] E. Haddad, "Runtime reallocation of divisible load under processor
execution deadlines", Proceedings of the Third Workshop on Parallel
and Distributed Real-Time Systems, 30-31, April 1995.

[6] H. Harada, Y. Ishikawa, A. Hori, H. Tezuka, S. Sumimoto, and T.
Takahashi, "Dynamic home node reallocation on software distributed
shared memory", Proceedings of the Fourth International Confer-
ence/Exhibition on High Performance Computing in the Asia-Pacific
Region, Vol. 1, 158-163, May 2000.

[7] D.E. Knuth, "The Art of Computer Programming, Vol. 3: Sorting and
Searching, Section 6.2.4", Addison-Wesley, 1973.

[8] A. Rasala, C. Stein, E.Torng, and P. Uthaisombut, "Existence Theorems,
Lower Bounds and Algorithms for Scheduling to Meet Two Objectives",
Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 723-731, ACM Press, 2002.

[9] S.S.H. Tse, "Approximation Algorithms for Document Placement in Dis-
tributed Web Servers", IEEE Transactions on Parallel and Distributed
Systems, vol. 16, No. 6, 489-496, June 2005.

[10] S.S.H. Tse, "Online Solutions for Scalable File Server Systems", Pro-
ceedings of the First International Conference on Scalable Information
Systems (INFOSCALE 2006), Hong Kong, May 29-June 1, 2006.

