TiO\textsubscript{2}–Al\textsubscript{2}O\textsubscript{3} binary mixed oxide surfaces for photocatalytic NO\textsubscript{x} abatement

Asli Melike Soylua, Meryem Polata, Deniz Altunoz Erdogana, Zafer Saya, Cansu Yildirimb, Özgür Birerb,c, Emrah Ozensoya,*

a Department of Chemistry, Bilkent University, 06800 Ankara, Turkey
b KUYTAM Surface Science and Technology Center, Koç University, 34450 Istanbul, Turkey
c Department of Chemistry, Koç University, 34450 Istanbul, Turkey

A R T I C L E I N F O

Article history:
Received 15 November 2013
Received in revised form 10 February 2014
Accepted 12 February 2014
Available online 22 February 2014

Keywords:
TiO\textsubscript{2}
Al\textsubscript{2}O\textsubscript{3}
Photocatalysis
NO\textsubscript{x} abatement
DeNO\textsubscript{x}

A B S T R A C T

TiO\textsubscript{2}–Al\textsubscript{2}O\textsubscript{3} binary oxide surfaces were utilized in order to develop an alternative photocatalytic NO\textsubscript{x} abatement approach, where TiO\textsubscript{2} sites were used for ambient photocatalytic oxidation of NO with O\textsubscript{2} and alumina sites were exploited for NO\textsubscript{x} storage. Chemical, crystallographic and electronic structure of the TiO\textsubscript{2}–Al\textsubscript{2}O\textsubscript{3} binary oxide surfaces were characterized (via BET surface area measurements, XRD, Raman spectroscopy and DR-UV-Vis Spectroscopy) as a function of the TiO\textsubscript{2} loading in the mixture as well as the calcination temperature used in the synthesis protocol. 0.5 Ti/Al-900 photocatalyst showed remarkable photocatalytic NO\textsubscript{x} oxidation and storage performance, which was found to be much superior to that of a Degussa P25 industrial benchmark photocatalyst (i.e. 160% higher NO\textsubscript{x} storage and 55% lower NO\textsubscript{2}(g) release to the atmosphere). Our results indicate that the onset of the photocatalytic NO\textsubscript{x} abatement activity is concomitant to the switch between amorphous to a crystalline phase with an electronic band gap within 3.05–3.10 eV; where the most active photocatalyst revealed predominantly rutile phase together and anatase as the minority phase.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Indoor and outdoor air pollutants such as NO\textsubscript{x}, SO\textsubscript{2}, volatile organic compounds (VOCs) and particulate matter (PM) result in significantly adverse effects on human health. Further negative implications of air pollution can also be observed on water resources, agriculture and biological habitat [1–6]. Among these airborne toxic species, particularly nitrogen oxides (NO\textsubscript{x}) present a major challenge for air purification. NO\textsubscript{x} species (i.e. mostly NO(g), NO\textsubscript{2}(g) and N\textsubscript{2}O(g)) are generated during the fossil fuel combustion processes via the homogenous reaction of nitrogen and oxygen gases at high temperatures where the major contribution comes from NO(g). NO\textsubscript{x} abatement can be performed in a very efficient manner using thermal catalytic technologies such as selective catalytic reduction (SCR) [7–9] and NO\textsubscript{x} storage and reduction (NSR) (which is also called Lean NO\textsubscript{x} Traps, LNT) [10–12] at elevated temperatures (i.e. T>300°C). In these thermally activated catalytic DeNO\textsubscript{x} technologies although SCR approach requires utilization of urea as an external reducing agent, NSR/LNT technology can be used in the absence of an additional reducing agent. However, an important challenge in air purification is the abatement of gaseous NO\textsubscript{x} species under ambient conditions (i.e. at room temperature and under regular atmospheric conditions). Photocatalytic systems offer promising opportunities in order to tackle this important environmental challenge, as these systems can be tailored to efficiently clean/purify air under ambient conditions with the help of ultraviolet (UV) and/or visible (VIS) light [13]. Among these systems TiO\textsubscript{2}-based materials are the most effective photocatalysts for air/water purification applications [14,15]. However it has been reported that complete photocatalytic reduction of toxic NO\textsubscript{x} species into harmless N\textsubscript{2} occurs only with a relatively limited performance for these systems [13].

In the current work, rather than attempting to perform complete photocatalytic reduction of NO\textsubscript{x}, an alternative NO\textsubscript{x} abatement strategy has been demonstrated, which includes photocatalytic oxidation of NO\textsubscript{x} on a TiO\textsubscript{2}/Al\textsubscript{2}O\textsubscript{3} binary oxide photocatalyst surface and its storage in the solid state in the form of nitrates and nitrites. This alternative strategy was inspired by our recent studies on NSR technology which is used for the thermal catalytic after treatment of automotive NO\textsubscript{x} emissions [12,16–21]. In couple of these former studies, we spectroscopically demonstrated...
that [12,16–21] on the TiO2/Al2O3 binary oxide surface, oxidized NOx species such as NO2(g) can readily undergo a thermal disproportionation reaction forming adsorbed nitrates and nitrates allowing effective solid state NOx storage. However NO(g) has a limited adsorption energy on many metal oxide surfaces compared to that of NO2, hindering the storage of NO in the solid (adsorbed) state. Thus, for solid state NOx storage, NO should be first oxidized to NO2 and then subsequently stored on the available adsorption sites of the catalyst surface in the form of nitrates/nitrates. Although this can be done readily at elevated temperatures using a platinum group metal (PGM) promoted metal oxide catalyst such as Pt/Al2O3, it cannot be efficiently achieved under ambient conditions (i.e. at room temperature) due to kinetic limitations. However this limitation can be overcome by designing a catalytic system including a photocatalytic NO(g) oxidation component which is coupled to a NOx storage component. Along these lines, in the current work, we show that TiO2/Al2O3 binary oxide surfaces can be exploited to perform photocatalytic NOx oxidation and storage, where TiO2 surface domains provide NO oxidation capability under ambient conditions, converting NO(g) + O2(g) into nitrates/nitrates while the high-surface area Al2O3 component enables both the dispersion of the photocatalytic TiO2 domains as well as the creation of additional storage sites for oxidized NOx. Once saturated with NOx, such a photocatalytic NOx oxidation and storage catalyst can readily be regenerated by treatment with water, which can dissolve the adsorbed nitrates/nitrates and restore the NOx adsorption sites [22].

In order to demonstrate this alternative strategy, in the current study, a set of TiO2/Al2O3 binary oxide photocatalysts were synthesized and characterized. A sol–gel synthesis method was used to co-precipitate titania with alumina. The influences of the surface structure on the photocatalytic NO oxidation and storage was investigated by modifying the surface structure via calcination. Photocatalytic performances of this new family of TiO2/Al2O3 binary oxide photocatalysts were also compared with a commercially available photocatalyst (i.e. Degussa P25) in order to determine the relative performance of the TiO2/Al2O3 system against a widely used industrial benchmark.

2. Experimental

2.1. Sample preparation

Titanium (IV) isopropoxide (TIP, 97%, Sigma–Aldrich) and aluminum-tri-sec-butoxide (ASB, 97%, Sigma–Aldrich) were used as the main ingredients in the preparation of the TiO2/Al2O3 binary oxides via sol–gel method [16,18]. Three series of samples were prepared by varying the relative molar composition of the TiO2 component in the TiO2/Al2O3 binary oxide. These samples are labeled as “xTi/(1−x)Al-y”, where x represents the TiO2 to Al2O3 mole ratio (i.e. 0.25, 0.5 and 1.0) and y represents the calcination temperature (150–1000 °C) of the sample. In the synthesis, depending on the corresponding TiO2–Al2O3 mole ratio, an appropriate amount of ASB was mixed with propan-2-ol (99.5%, Sigma–Aldrich) and acetylacetone (99.3%, Fluka) for 30 min. Subsequently, TIP was added in a drop wise fashion to the mixture over the course of another 30 min. All of the synthesis steps were carried out at room temperature under vigorous stirring. The co-precipitation of the obtained hydroxides was accomplished after the gradual addition of 0.5 M HNO3(aq) to the solution which led to the formation of a gel. The resulting yellow gel was aged under ambient conditions for 2 days and the dried sample was ground to form a fine powder. Next, synthesized TiO2/Al2O3 binary oxides were calcined in air for 2 h at various temperatures ranging from 150 to 1000 °C.

2.2. Structural characterization measurements

Determination of the crystal structure of the synthesized materials were carried out with a Rigaku MiniFlex X-ray diffractometer (XRD) equipped with Cu Kα radiation operated at 30 kV, 15 mA, and 1.54 Å (wavelength of copper X-ray source). The XRD patterns were recorded in the 2θ range of 10–60° with a step width of 0.02° s−1. Raman spectra of the samples were collected in the range of 200–1500 cm−1 with a resolution of 4 cm−1 using a Horiba Jobin Yvon LabRAM HR800 spectrometer equipped with a confocal Raman BX41 microscope. The Raman spectrometer was equipped with a Nd:YAG laser (λ = 532.1 nm) where the laser power was 20 mW. The specific surface area (SSA) values of the TiO2 samples were determined by conventional Brunauer–Emmett–Teller (BET) N2 adsorption method using a Micromeritics Tristar 3000 surface area and pore size analyzer. Prior to the BET measurements, all of the samples were outgassed in vacuum for 2 h at 150 °C. Diffuse Reflectance UV–vis (DR-UV–vis) spectra were utilized in order to obtain electronic band gap values. These spectra were recorded with a Shimadzu UV-3600 UV-Vis-NIR spectrophotometer using the ISR-3100 integrating sphere attachment in the specular reflection (8°) mode. Barium sulfate (BaSO4) was used as the reference material in the DR-UV–vis measurements. Obtained DR-UV–vis spectra were finally corrected using the Kubelka-Munk transformation.

2.3. Photocatalytic activity measurements

The custom-designed photocatalytic flow reactor system (Scheme 1) was used to measure the photocatalytic NOx oxidation and storage performances of TiO2/Al2O3 binary oxides under UVA excitation. The photocatalytic flow reactor system mainly consisted of a gas manifold system, a sample compartment and a chemiluminescence NOx analyzer (Horiba APNA-370). The gas manifold system was connected to gas cylinders containing N2(g) (99.998%, Linde GmbH), O2(g) (99.998%, Linde GmbH) and 100 ppm NO diluted in N2 (Linde GmbH). Mass flow controllers (MFCs, MKS 1479A) were used to control the volumetric flow rates of gases and a capacitance pressure gauge (MKS Baratron) was used to measure total pressure of the flowing gas which was set to 1 atm. The following flow rates were used to prepare the gas mixture, 0.750 SLM (standard liters per minute) for N2(g), 0.250 SLM for O2(g), and 0.010 SLM for NO(g) with a total gas flow rate of 1.010 SLM. Prior to mixing, N2(g) and O2(g) were also bubbled through a humidifier. The relative humidity of the total gas mixture was 70% RH which was measured with a Hanna HI 9565 humidity analyzer at the sample position in the photocatalytic flow reactor. This gas mixture represents a synthetic polluted air sample. Before the performance tests, synthesized powder samples were placed on a 2 mm × 40 mm × 40 mm polymethyl methacrylate (PMMA) sample holder and subsequently irradiated with UVA (350 nm) light bulbs (F8W/T5/BL350, Sylvania/Germany) under ambient conditions for 18 h outside the flow reactor in order to remove the surface contaminations and to activate the photocatalysts. For each measurement, typically a 950 mg activated photocatalyst sample was placed into the flow reactor. The photocatalytic flow reactor was illuminated with 8W UVA lamps (F8W/T5/BL350, Sylvania/Germany) whose emission wavelength was 350 nm. Concentrations of NO(g), NO2(g) and total NOx(g) species in the photocatalytic reactor were quantitatively measured online with the chemiluminescence NOx analyzer.
Gas phase photocatalytic activity measurements are reported in terms of per cent phonic efficiencies (η) as described in Eqs. (1) and (2):

$$\eta = \frac{n_{\text{NO}_x}}{n_{\text{photon}}} \times 100$$

where n_{NO_x} corresponds to either the decrease in the total number of moles of all gaseous NO$_x$ species or the number of moles of NO$_2$(g) generated in a 60 min (i.e. 3600 s) photocatalytic performance test. On the other hand, n_{photon} corresponds to the total number of incident UVA photons impinging on the catalyst surface in 3600 s, which can be calculated through Eq. (2) as:

$$n_{\text{photon}} = \frac{I \lambda S t}{N h c}$$

where I represents the photon power density of the UVA lamp, experimentally measured at the sample position in the photocatalytic reactor (typically, 7.5 W m$^{-2}$), λ is the representative emission wavelength of the UVA lamp (i.e. 350 nm), S is the surface area of the photocatalyst sample holder in the reactor that is exposed to the UVA irradiation (i.e. $40 \times 40 \times 40 = 16000 \text{mm}^2$); t is the duration of the performance test (i.e. 3600 s), N is the Avogadro's number, h is Planck's constant and c is the speed of light.

3. Results and discussion

3.1. Specific surface area measurements

Thermal evolution and the structural variations of the TiO$_2$/Al$_2$O$_3$ binary oxide samples with varying molar compositions were investigated after calcination steps at different temperatures (Fig. 1). Fig. 1 reveals that TiO$_2$/Al$_2$O$_3$ samples possessed a relatively high surface area after preparation and calcination at low temperatures (e.g. $\geq 420 \text{ m}^2/\text{g}$). These high SSA values were preserved to a large extent up to 600 °C. This observation is in very good accordance with the current XRD and Raman results (Figs. 2 and 3) suggesting a predominantly amorphous structure for all TiO$_2$/Al$_2$O$_3$ binary oxide samples below 600 °C. At higher temperatures, a drastic and monotonic decrease in the SSA values were observed in line with the enhanced crystallinity and structural ordering of the samples at elevated temperatures which are also evident in the current XRD and Raman measurements (Figs. 2 and 3). It is worth mentioning that upon calcination at 900 °C, SSA values for 0.25Ti/Al-900, 0.5Ti/Al-900, 1.0Ti/Al-900 samples decreased to 108, 64 and 25 m2/g, respectively. These particular values are rather close to the SSA of the commercial Degussa P25 catalyst (i.e. 55 m2/g) which is used as the benchmark photocatalyst in the current study. At higher calcination temperatures such as 1000 °C, SSA values for all of the TiO$_2$/Al$_2$O$_3$ binary oxide samples drastically decrease to ca. 9–17 m2/g which is in perfect agreement with the increased crystallinity and the formation of the low surface area phases such as rutile and α-Al$_2$O$_3$ (corundum) observed in the XRD and Raman experiments (Figs. 2 and 3).

3.2. XRD and Raman spectroscopy experiments

Fig. 2 presents XRD profiles obtained for the TiO$_2$/Al$_2$O$_3$ samples with different molar compositions that were calcined at various temperatures within 150–1000 °C. It is apparent that for all samples, calcination at temperatures less than or equal to 600 °C yields amorphous structures. Calcination at 800 °C results in the first discernible indications of crystallinity, where γ-Al$_2$O$_3$ (JCPDS 29-0063) phase starts to be visible for 0.25 Ti/Al and 0.5Ti/Al samples. For the 1.0 Ti/Al sample, in addition to the γ-Al$_2$O$_3$ phase, formation of anatase (JCPDS 21-1272) and rutile (JCPDS 04-0551) phases of TiO$_2$ also becomes visible. It is clear that with increasing TiO$_2$ to Al$_2$O$_3$ mole ratio in the photocatalyst composition, crystallinity of

![Specific surface area values for the TiO$_2$/Al$_2$O$_3$ binary oxide samples with different molar compositions that were calcined at various temperatures within 150–1000 °C in air.](image-url)
the observed phases increases. This is in line with the fact that pure (bulk) TiO$_2$ has much lower phase transition temperatures between amorphous, anatase and rutile phases than the TiO$_2$ domains on the TiO$_2$/Al$_2$O$_3$ surface [16,18]. Thus at low TiO$_2$ to Al$_2$O$_3$ mole ratios, there exists a strong interaction between the TiO$_2$ minority domains and the Al$_2$O$_3$ majority domains, which is decreasing the surface mobility of the TiO$_2$ domains and hindering the nucleation and growth of anatase and rutile phases at low temperatures. However at higher TiO$_2$ to Al$_2$O$_3$ mole ratios, interaction between the TiO$_2$ and Al$_2$O$_3$ domains weakens to a certain extent as TiO$_2$ converges to a more bulk-like configuration, pushing the phase transition temperatures to lower (bulk-like) values.

Fig. 2. XRD patterns for the TiO$_2$/Al$_2$O$_3$ binary oxide samples with different molar compositions that were calcined at various temperatures within 150–1000 °C in air.

Fig. 3. Raman spectra for the TiO$_2$/Al$_2$O$_3$ binary oxide samples with different molar compositions that were calcined at various temperatures within 150–1000 °C in air.
Upon calcination at 900 °C, although γ-Al2O3 seems to be the only discernible crystalline phase on the 0.25 Ti/Al surface (where TiO2 is still in amorphous state), anatase and rutile phases become clearly visible on the 0.5 Ti/Al and 1.0 Ti/Al surfaces where the crystallinity of the latter is significantly greater. This is in perfect agreement with the SSA values presented in Fig. 1, suggesting a much lower SSA for the 1.0 Ti/Al-900 sample compared to 0.25 Ti/Al-900 and 0.5 Ti/Al-900 samples. It is also worth mentioning that although α-Al2O3 (JCPS 10-0173) phase is not significantly visible at 900 °C for lower TiO2 to Al2O3 mole ratios; this phase is noticeably discernible for the 1.0 Ti/Al-900 sample. Furthermore, α-Al2O3 (corundum) phase starts to appear during the anatase to rutile phase transition. As discussed in one of our former reports [16], this can be explained by the formation of a solid solution between anatase and alumina. In this solid solution, when the anatase phase is converted into rutile at elevated temperatures, a phase segregation occurs which triggers a phase transition in the alumina component from γ to α-phase. Finally, after calcination at 1000 °C, all samples seem to be highly ordered, where corundum and rutile are the only visible crystalline phases, in very good harmony with the drastic SSA decreases observed for these samples in Fig. 1.

Raman spectra of the synthesized TiO2/Al2O3 binary oxide samples with different molar compositions that were calcined at various temperatures within 150–1000 °C are given in Fig. 3. These Raman spectral features can be readily explained in the light of the XRD results given in Fig. 2, as well as the former Raman spectroscopic studies in the literature [16,18,22,24]. It is known that the Raman spectrum of anatase phase shows six Raman features (A1g, 2B1g, and 3Eg) at 144 (Eg), 197 (Eg), 399 (B1g), 516 (A1g + B1g), 639 (Eg), and 796 cm−1 (Eg) [23]. On the other hand, the rutile phase can be characterized by a Raman spectrum with four major Raman active features (A1g + B1g + B2g + Eg) at 143 (B2g), 447 (Eg), 612 (A1g), 826 cm−1 (B2g) and also a two-phonon scattering band at 236 cm−1 [24]. In very good agreement with the XRD results given in Fig. 2, up to 600 °C, all samples reveal an amorphous structure with no sharp Raman features. It is worth mentioning that sample 1.0 Ti/Al-600 reveals very broad and convoluted Raman signals corresponding to small and poorly crystalline anatase and rutile domains which seem to be elusive to detect in XRD (Fig. 2c). At calcination temperatures higher than 600 °C, anatase phase appears as the dominant phase together with a minor contribution from rutile. With increasing temperature, anatase to rutile ratio in the samples decreases where at 900 °C rutile becomes the predominant phase detected in the Raman spectra. For the 0.5 Ti/Al-900 sample, anatase phase is still visible in the Raman spectra (Fig. 3b), although rutile is definitely the majority phase. In perfect harmony with the XRD results (Fig. 2), Raman spectra in Fig. 3 also suggest that increasing TiO2 to Al2O3 mole ratio enhances the crystallinity of the phases on the TiO2/Al2O3 binary oxide surfaces which is evident by the sharper and stronger Raman scattering features.

3.3. Photocatalytic performance experiments

Fig. 4 shows a typical concentration versus time plot that is obtained during a photocatalytic performance test. In Fig. 4, the total NOx concentration (i.e. sum of the concentrations of all of the NOx species existing in the reactor, i.e. blue curve) as well as separate NO(g) (black curve) and NO2(g) (red curve) concentrations in the photocatalytic reactor measured by the chemiluminescence NOx analyzer are presented. During the initial c.a. 20 min of the analysis, a synthetic polluted air gas mixture comprised of N2(g), O2(g), H2O(g) as well as 1 ppm NO(g) is fed to the photocatalyst surface under dark conditions where the UVA lamp is off and any background exposure to sunlight is prevented. Under these conditions (i.e. in the first 15 min), a minor transient fall in the total NOx(g) and NO(g) concentrations was observed. This can be attributed to the dilution of the gas in the reactor pipeline and the thermal adsorption of NOx species on the gas lines, reactor walls as well as adsorption on the photocatalyst surface. Since the reactor is kept in complete darkness under these conditions, no photocatalytic activity is observed during this initial stage evident by the presence of a minor amount of NO2(g) production due to thermal catalytic disproportionation processes occurring on the catalyst surface. Following this initial transient period, reactor walls and the photocatalyst surface are saturated with NOx, after which NOx(g) and NO(g) traces quickly return to the original inlet concentration value of c. 1 ppm, signifying the end of thermal catalytic activity.

After this preliminary transient period, UVA excitation source is turned on and the photocatalytic reaction is started. Upon UVA illumination, a drastic and a permanent fall in the NOx(g) and total NOx(g) concentrations concomitant to a quick and significant jump in the NO2(g) level, were observed. This behavior suggests the conversion of NOx(g) into NO2(g) via photocatalytic oxidation. Furthermore, produced NO2(g) can adsorb on the photocatalyst surface in the form of chemisorbed NO2, nitrites and nitrates [16,18] and stored in the solid state, resulting in a further fall in the NOx(g) and total NOx signals. It is worth mentioning that, fall in the NOx(g) concentration also have some contribution from the direct photocatalytic decomposition and photo-reduction of NOx(g) forming N2(g) and/or N2O(g) [25]. However, since the direct photocatalytic reduction is known to be a relatively inefficient pathway, this reaction channel may be expected to be a minor photochemical route. Consequently, the total NOx concentration (blue) curve (which is mostly comprised of the sum of NOx(g) and NO2(g) signals) in Fig. 4 remains mostly below 1 ppm during the UVA-activated regime, illustrating the continuous photocatalytic activity and NOx storage in the solid state.

Photochemical NO oxidation and storage performance tests were performed for all of the synthesized samples and the summary of these performance tests were presented in terms of percent photonic efficiencies in Fig. 5, along with the corresponding data for the Degussa P25 industrial benchmark. In the histogram given in Fig. 5, blue and red bars represent the percent photonic efficiencies for total NOx(g) decrease and NO2(g) production, respectively. These values were obtained by integrating the corresponding areas under the concentration versus time curves for the data similar to the ones given in Fig. 4.

![Fig. 4. Concentration versus time plot for the photocatalytic performance test of the 0.5 Ti/Al-900 sample. Blue, black and red curves correspond to the concentrations of total NOx(g), NO(g) and NO2(g), respectively (see text for details). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)](image-url)
It is worth mentioning that for an ideal catalyst with an utmost photocatalytic DeNOx performance, blue bars (i.e. NOx(g) storage/conversion) should be maximized; while red bars are simultaneously minimized (i.e. minimum slip of toxic NOx(g) into the atmosphere). When the behavior of the Degussa P25 industrial benchmark photocatalyst given in Fig. 5 is investigated, it is immediately seen that this industrial photocatalyst has a very high NOx(g) photo-oxidation capability generating a large quantity of NO(g), while the same catalyst has a very limited NOx storage capability (blue bar). Considering the fact that NOx(g) is a much more toxic pollutant than NO(g), although Degussa P25 industrial benchmark system is very active in photo-oxidation, this material does not qualify to be a very efficient photocatalytic DeNOx system for NOx abatement. Another benchmark sample used in the control experiments was γ-Al2O3. Fig. 5 unambiguously indicates that, γ-Al2O3 has neither significant photocatalytic NOx storage nor photocatalytic NOx(g) production capabilities.

On the other hand, when the photocatalytic performance data for the TiO2/Al2O3 binary oxide samples are examined, one can immediately note the remarkable improvement in the photocatalytic DeNOx performance compared to the Degussa P25 industrial benchmark. In Fig. 5, performance results for the TiO2/Al2O3 binary oxide samples are assembled in three groups based on TiO2 to Al2O3 mole ratio (i.e. 0.25, 0.5 and 1.0) in the photocatalyst structure. It is visible that for the 0.25 Ti/Al samples calcined at various temperatures, catalysts calcined below 900 ºC reveal very low DeNOx performance, where the performance reaches an optimum value between 900 and 950 ºC and starts to fall at 1000 ºC.

A similar performance trend is observed for 0.5 Ti/Al catalysts calcined at various temperatures (Fig. 5). For this family of catalysts, although no significant activity is observed at calcination temperatures less than 900 ºC, photocatalytic DeNOx performance presents a very radical enhancement at 900 ºC, revealing values that are much better than any of the photocatalysts in the 0.25Ti/Al family. It is worth mentioning that a further increase in the calcination temperature to 1000 ºC results in the photocatalytic DeNOx performance of the 0.5 Ti/Al system.

Fig. 5 indicates that for the 1.0 Ti/Al photocatalyst family, no significant photocatalytic activity is detected up to 800 ºC, while at this calcination temperature a remarkable increase in the activity is observed, though this catalyst is not as effective as the 0.5 Ti/Al-900 catalyst in total NOx abatement, due to the significant NO2(g) generation of the former. It can be seen in Fig. 5 that for calcination temperatures above 800 ºC, NOx abatement starts to fall, evident by the increased NO2(g) slip into the atmosphere as well as decreasing NOx storage in the solid state. Thus, a general analysis of the performance results presented in Fig. 5 reveals that, 0.5 Ti/Al-900 binary oxide catalyst shows the highest NOx abatement performance among all of the analyzed photocatalysts, where it performs 160% higher NOx storage and 55% lower NO2(g) release to the atmosphere compared to the Degussa P25 industrial benchmark.

Photocatalytic performance of the TiO2/Al2O3 binary oxide samples can be readily interpreted in the light of current structural characterization experiments (Figs. 1–3) which reveal valuable insight regarding the specific surface areas as well as the crystallographic phases that are present on the Ti/Al samples. Firstly, it is apparent in Fig. 5 that for the best performing photocatalyst family (i.e. 0.5 Ti/Al), onset of activity is observed in a very drastic manner as the calcination temperature is increased from 800 ºC to 900 ºC. BET, XRD and Raman measurements given in Figs. 1–3 suggests that this thermal window directly overlaps with the crystallization of the amorphous TiO2 to form a mixture of anatase and rutile phases where the latter is the dominant phase. In other words, it is apparent that in order to achieve the best photocatalytic NOx abatement performance, a unique crystallographic mixture of anatase and rutile phases has to be obtained.

Secondly, Fig. 5 also suggests that for Ti/Al families with different TiO2 loadings, ultimate performance is observed for the intermediate loading and the performance was seen to decrease for very low or very high TiO2 loadings. This can be explained by the fact that at low TiO2 loadings, it is likely that TiO2 loading is not high enough to be dispersed on all of the Al2O3 surface. Thus not all of the NOx adsorption/storage (i.e. Al2O3) sites can be utilized due to limited photo-oxidation capability of the inadequate number of TiO2 oxidation sites on the surface. On the other hand, at very high TiO2 loadings, TiO2 covers most of the Al2O3 surface and upon calcination above 800 ºC, SSA of the catalyst sample falls drastically together with the formation of crystalline anatase and rutile mixture; limiting the available number of NOx storage sites that are available after photo-oxidation.

Thirdly, Fig. 5 indicates that onset of photocatalytic activity is observed in a rather sharp manner at 950, 900 and 800 ºC for the 0.25Ti/Al, 0.5Ti/Al and 1.0Ti/Al samples, respectively. In

Fig. 5. Photocatalytic DeNOx performance results for the TiO2/Al2O3 binary oxide samples with different molar compositions that were calcined at various temperatures within 150–1000 ºC in air.
other words, as the relative TiO₂ loading in the TiO₂/Al₂O₃ binary oxide samples increases, onset temperature for the photocatalytic activity shifts to lower temperatures. This can also be explained by the onset temperature for the crystallization of Ti/Al samples (and hence the formation of photo-active TiO₂ sites) observed in XRD and Raman measurements (Figs. 2 and 3) which suggest that increasing TiO₂ loading increases the temperature required to switch form an amorphous TiO₂ structure to a crystalline structure.

3.4. DR-UV-vis measurements and electronic band gap

In order to investigate the relationship between the electronic structure and the photocatalytic NOₓ abatement performance, electronic band gap values were calculated from the currently performed (not shown) DR-UV-vis spectroscopic measurements. These band gap values are presented in Fig. 6. In very good agreement with the discussion given above, electronic band gap values for the relatively inactive amorphous Ti/Al samples which are calcined at lower temperatures, reveal a characteristically high value within 3.4–3.6 eV. On the other hand, with the onset of the photocatalytic activity, a very sharp fall in the electronic band gap values were observed, where the band gap decreases to a typical value of 3.05–3.10 eV, in line with the formation of ordered anatase and rutile phases. Typical band gap values for bulk anatase and rutile phases are ca. 3.2 and 3.0 eV, respectively [26]. Thus, for the active photocatalyst samples, the band gap value is in between that of anatase and rutile, being closer to the latter, in accordance with the fact that in the most active photocatalyst, rutile exists as the predominant phase together with anatase as the minority phase.

It is also worth noting that although onset of the photocatalytic activity as a function of calcination temperature can be followed with the electronic band gap values, electronic band gap cannot be used as a sole indicator for the estimation of the photocatalytic activity trends. This is due to the fact that once the photocatalytically active structure is obtained leading to a drastic decrease in the electronic band gap, band gap values cease to change at higher calcination temperatures although photocatalytic activity starts to decline.

4. Conclusions

TiO₂–Al₂O₃ binary oxide surfaces were utilized in order to develop an alternative photocatalytic NOₓ abatement approach, where TiO₂ sites were used for ambient photocatalytic oxidation of NO with O₂ and alumina sites were exploited for NOₓ storage. Chemical, crystallographic and electronic structure of the TiO₂–Al₂O₃ binary oxide surfaces were characterized as a function of the TiO₂ loading in the mixture as well as the calcination temperature used in the synthesis protocol. 0.5 Ti/Al-900 photocatalyst showed remarkable photocatalytic NOₓ oxidation and storage performance which was found to be much superior to that of a Degussa P25 industrial benchmark photocatalyst (i.e. 160% higher NOₓ storage and 55% lower NO₂(g) release to the atmosphere). Our results indicate that the onset of the photocatalytic for NOₓ abatement activity is concomitant to the switch between amorphous to a crystalline phase with an electronic band gap within 3.05–3.10 eV where the most active photocatalyst revealed predominantly rutile phase together with anatase as the minority phase.

Acknowledgments

Authors acknowledge Zafer Say for performing BET measurements. E.O. also acknowledges financial support from Turkish Academy of Sciences through the “TÜBA-GEBIP Outstanding Young Scientist Prize” and from Fevzi Akkaya Science Fund (FABED) through Eser Tümen Scientific Achievement Award as well as the Scientific and Technical Research Council of Turkey (TUBITAK) (Project Code: 109M713).

References

[22] Soylu, Polat, Ozenson, manuscript, in preparation.

