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a b s t r a c t

We study the ground-state properties of a two-dimensional spin-
polarized fluid of dipolar fermions within the Euler–Lagrange
Fermi-hypernetted-chain approximation. Our method is based on
the solution of a scattering Schrödinger equation for the ‘‘pair
amplitude’’

√
g(r), where g(r) is the pair distribution function. A

key ingredient in our theory is the effective pair potential, which
includes a bosonic term from Jastrow–Feenberg correlations and a
fermionic contribution from kinetic energy and exchange, which is
tailored to reproduce theHartree–Fock limit atweak coupling. Very
good agreementwith recent results based onquantumMonte Carlo
simulations is achieved over a wide range of coupling constants
up to the liquid-to-crystal quantum phase transition. Using the
fluctuation–dissipation theorem and a static approximation for the
effective inter-particle interactions, we calculate the dynamical
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density–density response function, and furthermore demonstrate
that an undamped zero-sound mode exists for any value of the
interaction strength, down to infinitesimally weak couplings.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Recent experimental breakthroughs in trapping and cooling polar molecules and atoms with large
permanent magnetic moments has triggered a considerable theoretical interest in quantum dipolar
fluids [1–5]. Unlike the usual van der Waals interaction between atoms, which can be replaced by a
contact Fermi pseudo-potential at ultra-low temperatures [6], the dipole–dipole interaction is long
ranged and anisotropic. It is therefore natural to expect more exotic phases in ultracold dipolar gases.
While one of the greatest advantages of short-range interactions is their tunability through Feshbach
resonances [6,7], techniques have been proposed [8] for controlling both strength and sign of dipolar
interactions as well.

As alreadymentioned, the inter-particle interaction between polarized dipoles (i.e. dipoles aligned
in the same direction) has two important features: (i) it is long-ranged, i.e. it decays like 1/r3 at large
distances, and (ii) it is anisotropic. In particular, it is repulsive for dipoles aligned side-by-side and is
attractive for dipoles aligned head-to-toe.

It is worth mentioning that the attractive part of dipole–dipole interactions can drive dipolar
fluids towards instabilities. For example, in alkali-metal diatomic molecules such as K–Rb, Li–Na,
etc., some chemically reactive channels, which are energetically favorable, exist and lead to particle
recombination and two-body losses in the gas [5,9]. Moreover, pairing instabilities can also appear
due to the attractive part of the dipole–dipole interaction.

A very simple method for stabilizing dipolar gases is to confine them into low-dimensional
geometries. For example, a trap with pancake geometry together with a polarizing field, which aligns
the dipoles along the direction of transverse confinement, simulates a stable two-dimensional (2D)
system with purely repulsive and isotropic dipolar interactions of the form

vdd(r) =
Cdd

4π
1
r3
. (1)

Here Cdd is the dipole–dipole coupling constant, which depends on the microscopic origin of the
interaction: e.g., it is d2/ϵ0 for particles with permanent electric dipole moment d and µ0M2 for
particles with permanent magnetic dipole moment M (here ϵ0 and µ0 are the permittivity and
permeability of vacuum, respectively).

Ground-state properties and collective modes of 2D dipolar fermions have been addressed in a
number of studies [10–22]. For their particular relevance to this Article we highlight the following
two recent studies [12,13] of a 2D dipolar Fermi gas with isotropic interactions as in Eq. (1). Lu and
Shlyapnikov [12] have calculated a number of Fermi-liquid properties of a weakly interacting 2D
dipolar Fermi gas. In particular, they have presented ground-state energy and several thermodynamic
quantities up to second order in a natural dimensionless coupling constant, whichwe have introduced
below in Eq. (3). More recently, Matveeva and Giorgini [13] have carried out quantum Monte Carlo
(QMC) simulations of a 2D dipolar Fermi gas, presenting in particular results for the phase diagram of
this system over a wide range of coupling constants.

In this Article we present a theoretical study of ground-state and dynamical properties of a 2D
dipolar Fermi gas with average density n. Our main focus is on the pair distribution function g(r),
which is often referred to as ‘‘Pauli–Coulomb hole’’. This is defined so that the quantity 2πng(r)dr
gives the average number of dipoles lying within a circular shell of radius r and thickness dr centered
on a ‘‘reference’’ dipole sitting at the origin [23,24]. We present a self-consistent semi-analytic
theory of the pair distribution function, which incorporates many-body exchange and correlation
effects, thereby allowing us to explore the physics of the system at strong coupling. Our approach,
which is based on the so-called Euler–Lagrange Fermi-hypernetted-chain (FHNC) approximation at
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zero temperature [25–28], involves the solution of a zero-energy scattering Schrödinger equation
with a suitable effective potential [29–34]. This contains a ‘‘bosonic term’’ from Jastrow–Feenberg
correlations and a ‘‘fermionic term’’ from kinetic energy and exchange, which is tailored to reproduce
the Hartree–Fock (HF) limit at weak coupling and guarantees the antisymmetry of the fermionic wave
function. Furthermore, we use the fluctuation–dissipation theorem [23,24] and the static structure
factor obtained from the FHNC approximation to calculate the dynamical density–density linear-
response function. With this quantity at our disposal, we investigate the existence of a ‘‘zero sound’’
mode [23] in a 2D dipolar Fermi gas. Our results for the pair distribution function and the static
structure factor have been benchmarked against state-of-the-art quantum Monte Carlo results [13].

This Article is organized as follows. In Section 2 we present our model and the self-consistent
method we use to calculate in an accurate manner the pair distribution function of a 2D dipolar
Fermi gas. In Section 3 we discuss a number of approximations we make to derive the dynamical
density–density linear-response function of a 2Ddipolar Fermi gas and explain how this can be used to
examine the emergence of a collective zero-sound mode due to many-body effects. Section 4 collects
our main numerical results, while Section 5 contains a brief summary of our main findings.

2. Scattering theory for the Pauli–Coulomb hole

We consider a spin-polarized 2D dipolar Fermi fluid described by the following first-quantized
Hamiltonian [35]:

H = −
h̄2

2m


i

∇
2
ri +


i<j

vdd(|ri − rj|), (2)

where m is the mass of a dipole and the bare dipole–dipole interaction has been introduced above
in Eq. (1). The ground-state properties of the Hamiltonian (2) are governed by a single dimensionless
parameter:

λ = kFr0, (3)

where r0 = mCdd/(4π h̄2) is a characteristic length scale and kF =
√
4πn is the Fermi wave number,

n being the 2D average density.
In order to calculate the ground-state properties of the Hamiltonian (2), we use the FHNC [25–27]

approximation at zero temperature. In what follows we first present our theory at the simplest level
(which works well in the perturbative regime λ ≪ 1) and then transcend it to obtain accurate results
at strong coupling (λ ≫ 1).

With the zero of energy taken at the chemical potential, one can write a formally exact differential
equation for the pair distribution function [30,31]:

−
h̄2

m
∇

2
r + Veff(r)

 
g(r) = 0, (4)

where, aswe have already introduced, g(r) is defined so that the quantity 2πng(r)dr gives the average
number of dipoles lying within a shell of radius r and thickness dr . We write the effective scattering
potential Veff(r) as the sum of three contributions:

Veff(r) = vdd(r)+ WB(r)+ WF(r). (5)

Here vdd(r) is the bare repulsive dipole–dipole interaction in Eq. (1) while the bosonic contribution
to the scattering potential,WB(r), is defined, at the level of the so called ‘‘FHNC/0’’ approximation, by
the following equation [36]:

WB(k)|FHNC/0 ≡ −
ϵ(k)
2n

[2S(k)+ 1]

S(k)− 1
S(k)

2

= −
ϵ(k)
n

[S(k)− 1] − Vph(k). (6)
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In writing Eq. (6) we have introduced the Fourier transform (FT)WB(k) of WB(r) according to

FT[F(r)] ≡


d2r F(r) exp(ik · r). (7)

Furthermore, ϵ(k) = h̄2 k2/(2m) is the single-particle energy, S(k) is the instantaneous or ‘‘static’’
structure factor [24], S(k) = 1+n FT[g(r)−1], andVph(k) is the particle–hole effective interaction [28],
which is defined as

S(k) =
1

1 + 2nVph(k)/ε(k)
. (8)

When λ ∼ 1 the simplest approximation for WB(r) in Eq. (6) is inadequate. Improvements on
Eq. (6) can be sought in two directions [37]. The FHNC/0 may be transcended by the inclusion of (i)
low-order ‘‘elementary’’ diagrams and (ii) three-body Jastrow–Feenberg correlations.

The contribution from three-body correlations to the bosonic potential is given by [37]:

W (3)
B (k) =

1
4n2


d2q
(2π)2

S(p)S(q)u3(q, p, k) {ν3(q, p, k)+ [E(p)+ E(q)]u3(q, p, k)} . (9)

In the previous equation, p = −(q + k), E(k) = ϵ(k)/S(k) is the Bijl–Feynman excitation
spectrum [24],

ν3(q, p, k) = (h̄2 /m)[k · pχ(p)+ k · qχ(q)+ p · qχ(q)], (10)

and

u3(q, p, k) = −
(h̄2 /2m)

E(k)+ E(p)+ E(q)
[k · pχ(k)χ(p)+ p · qχ(p)χ(q)+ k · qχ(k)χ(q)] . (11)

In Eqs. (10)–(11) χ(k) = 1 − 1/S(k). We have taken into account higher-order terms that are missed
by the FHNC/0 approximation by assuming that they lead to corrections to the scattering potential
Veff(r). Using the theory developed by Apaja et al. [37], we have supplemented WB(k)|FHNC/0 in Eq. (6)
by the inclusion of the three-body potentialW (3)

B (k):

WB(k)|FHNC/α3 ≡ WB(k)|FHNC/0 + α(λ)W (3)
B (k). (12)

If α(λ) is set to unity, the right hand side of Eq. (12) defines the so-called ‘‘FHNC/3’’ approximation.
It has been shown that the contribution of higher order correlations and elementary diagrams to the
bosonic potential have a structure very similar to the three-body potential of Eq. (9) [38,39]. Therefore
higher-order contributions beyond FHNC/3 can be effectively taken into account by introducing a
weighting function α(λ) > 1 [32–34,38,39]. This approximation has been termed [34] ‘‘FHNC/α3’’.
A convenient analytical parametrization of the function α(λ) for 2D dipolar fluids can be found in
Ref. [34]. Using the notation of this Article, it reads as follows:

α(λ) = 1.88 + 3.26 exp(−0.046 λ1.16). (13)

The previous equation is valid all the way up to the critical coupling (λ ∼ 25) for the liquid-to-crystal
quantum phase transition [13].

We finally turn to describe the last term in Eq. (5), which is supposed to take care of the fermionic
statistics of the problem. According to the original version of the FHNC theory [25–27], the ‘‘Fermi
potential’’ WF(r) has a very complicated form. Here we have decided to use a simple but effective
recipe, whichwas first proposed by Kallio and Piilo [29] for the 3D electron liquid. In this approximate
schemeWF(r) is given by the following expression:

WF(r) =
h̄2

m
∇

2
r
√
gHF(r)

√
gHF(r)

− lim
λ→0

WB(r), (14)
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where gHF(r) is the well-known [23,24] 2D Hartree–Fock pair distribution function and WB(r) is the
bosonic potential defined above in Eq. (6) (at the FHNC/0 level) or in Eq. (12) (at the FHNC/α3 level).
The simple choice in Eq. (14) guarantees that the HF limit is recovered exactly in weak coupling
λ → 0 limit. The Fermi potential (14) has been extensively investigated for 3D [30] and 2D [32]
electron liquids yielding results in excellent agreementwith QMC simulation data even in the strongly
correlated regime. This is simply understood as the effects of statistics is expected to weaken with
increasing interaction strength.

In practice direct solution of the differential scattering Eq. (4) could be challenging. Instead one can
invert it to find

Vph(r) = g(r) [vdd(r)+ WF(r)] + [g(r)− 1]WB(r)+
h̄2

m

∇
g(r)

2 . (15)

Now, Eqs. (6), (8), (14) and (15) form a closed set of equations, which can be solved numerically in a
self-consistent manner: one can start from a trial guess for the static structure factor S(k) to find g(r)
from its Fourier transform and the bosonic potentialWB(k) from Eq. (6), and then Vph(r) from Eq. (15).
The obtained value for the effective particle–hole interaction can be used to find a new value for S(k)
through Eq. (8). This self-consistency loop should be repeated until the desired degree of accuracy is
achieved.

Once the pair distribution function has been calculated, the ground-state energy per particle
of the system, εGS, can be easily extracted by using the integration-over-the-coupling-constant
algorithm [24]:

εGS = ε0 +
n
2

 1

0
dγ


d2r vdd(r)gγ (r), (16)

where ε0 = εF/2 = h̄2 k2F/(4m) = h̄2 λ2/(4mr20 ) is the ground-state energy of the non-interacting
system, εF being the Fermi energy, and gγ (r) is the pair distribution function of an auxiliary system
with scaled dipole–dipole interactions of the form v

(γ )

dd (r) = γ vdd(r) = γ Cdd/(4πr3). In practice, the
integration over γ is carried out by integrating over the coupling constant λ. Note that Eq. (16) returns
the exact ground-state energy of the interactingmany-particle systemonce the exact pair distribution
function is known. If instead one uses the HF pair distribution function gHF(r), Eq. (16) gives the HF
approximation for the ground-state energy.

In Section 4 we present numerical results obtained only within our most elaborate approximation,
i.e. the FHNC/α3 approximation. Nevertheless, for the sake of simplicity, all our numerical results for
g(r), S(k), and εGS will be labeled by the acronym ‘‘FHNC’’ (rather than ‘‘FHNC/α3’’).

3. Linear-response theory and collective modes

Once an accurate description of the ground-state quantities like pair distribution function is
obtained from e.g., FHNC or QMC, the density–density response function and dynamical structure
factor can be calculated using different approximations. Correlated basis function formalism [40] is
a superb example which has been successfully employed for the dynamical properties of 2D dipolar
Bose gases [41,42]. Here, as we are only interested in the long wavelength behavior of the dynamical
response function, we follow a much simpler approach based on the fluctuation–dissipation theorem
and a static approximation for the effective inter-particle interactions, whichwewill explain in details
below.

The density–density linear-response function of amany-particle system can be generically written
as follows [24]:

χnn(k, ω) =
χ0(k, ω)

1 − ψ(k, ω)χ0(k, ω)
≡
χ0(k, ω)
ε(k, ω)

, (17)

where ψ(k, ω) is a suitable dynamical effective potential – not to be confused with the Fourier
transform of the effective potential Veff(r) which enters the zero-energy scattering Schrödinger
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equation (4) – and χ0(k, ω) is the well-known [24,43] density–density response function of an ideal
(i.e. non-interacting) 2D Fermi gas.

In the celebrated Random Phase Approximation (RPA) [23,24], the effective potential ψ(k, ω) is
brutally approximated with the FT of the bare inter-particle potential, i.e. vdd(r) in our case. It is
very well known [23,24] that the RPA neglects short-range exchange and correlation effects and
that it is intrinsically a weak-coupling theory. It is thus not expected to work well (in reduced
spatial dimensions and) for values of the dimensionless coupling constant λ & 1. One of the main
drawbacks of the RPA is that it grossly overestimates the strength of the Pauli–Coulomb hole by
predicting large and negative values for g(r) at short distances, thereby violating the fundamental
requirement of g(r) > 0. Moreover, in the context of dipolar Fermi gases, the RPA predicts that the
long-wavelength collective excitation spectrum (zero-sound mode) is empathic to the short-range
details of the bare interaction potential [14], i.e. the ultraviolet cut-off which is needed to regularize
the Fourier transformof the bare dipole–dipole potential vdd(r). Another problemwith RPA for dipolar
Fermi fluids is that it fails to correctly describe even the long wavelength regime [17].

In the past sixty years or so, a wide body of literature has been devoted to transcend the RPA,
especially in the context of 2D electron liquids in semiconductor heterojunctions [24]. Following the
seminal works by Hubbard [44] and Singwi, Tosi, Land, and Sjölander [45] (STLS), one successful
route has been based on the use of ‘‘local-field factors’’ [24,46]. Here we will not use Hubbard or
STLS local-field factors. (For a successful employment of the STLS approximation in the context of 2D
dipolar Fermi gases see, for example, Ref. [17].) In this Article we would like to construct a reliable
approximation for the density–density response function χnn(k, ω), which is based on the FHNC
theory of the pair distribution function outlined in Section 2.

We thus start from the well-known fluctuation–dissipation theorem [24], which relates the
imaginary part of density–density response function χnn(k, ω) to the instantaneous structure factor
S(k). At zero temperature this theorem reads [24]

S(k) = −
h̄
πn


∞

0
dω ℑm [χnn(k, ω)] . (18)

Tomake some progress, we neglect the frequency dependence of the effective potentialψ(k, ω) in
Eq. (17): we replace the complex functionψ(k, ω) by a real quantity, which we denote by the symbol
ψ̄(k). This approximation is often made in treating correlation effects in the electron liquid [23,24]
and is certainly shared by the most elementary theories based on local-field factors (Hubbard and
STLS). In this case, one can view Eq. (18) as an integral equation for the unknown quantity ψ̄(k),
assuming that the left hand side of Eq. (18), i.e. the static structure factor, is accurately known, e.g. from
QMC simulations or microscopic theories such as the one outlined in Section 2. This fully numerical
approach has been successfully employed in different contexts [47,48]. The physical interpretation of
ψ̄(k) is clear: it represents the ‘‘best’’ average effective potential (averaged over frequency, as from
Eq. (18)) which, by virtue of the fluctuation–dissipation theorem, makes the response of the system
consistent with the local structure of the fluid around a reference dipole (the Pauli–Coulomb hole).

In the spirit of making the problem at handmore amenable to a semi-analytical treatment, we also
use the so-called ‘‘mean-spherical approximation’’ for χ0(k, ω) [48]:

χ
(MSA)
0 (k, ω) ≡

2nϵ(k)

(h̄ω + i0+)2 − [ϵ(k)/SHF(k)]2
, (19)

where SHF(k) is the 2D HF static structure factor [24]. This approximation allows us to perform the
integration over ω in Eq. (18) analytically, yielding

ψ̄(k) MSA
=

ϵ(k)
2n


1

S2(k)
−

1
S2HF(k)


. (20)

For the static structure factor S(k) on the right hand side of Eq. (20) we use the FHNC theory described
above in Section 2.

We can now use Eqs. (17) and (20) to study the existence of a collective mode [24] in the density
channel (zero sound [23]). This is the solution of the complex equation ε(k, ω) = 0 or, equivalently,
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of the following two real equations:
1 − ψ̄(k)ℜe [χ0(k, ω)] = 0

ℑm [χ0(k, ω)] = 0.
(21)

The solution ωZS = ωZS(k) of Eq. (21) corresponds to a self-sustained oscillation with a non-trivial
dispersion relation and a finite velocity vZS ≡ limk→0 ωZS(k)/k in the long-wavelength limit. The
second equationmeans that the collectivemode is undampedwhen it falls in the region of (k, ω) space
where particle–hole pairs are absent. This occurswhen vZS > vF, vF = h̄kF/m being the Fermi velocity.
When the collective mode enters the particle–hole continuum, Landau damping starts: the mode
has sufficient energy to decay by emitting a particle–hole pair while, at the same time, conserving
momentum.

Before concluding this section, we derive a formal expression for the zero sound velocity, vZS, in
terms of ψ̄(0). (As we will see below in Section 4, ψ̄(k) is regular and positive at k = 0.) In order to
find vZS we use the following long-wavelength limit of the ideal response function [49,24]:

lim
k→0

ℜe [χ0(k, vFkν)] = −N(0)

1 −

ν
√
ν2 − 1


, (22)

where N(0) = m/(2π h̄2) is the 2D density-of-states at the Fermi energy and ν = ω/(vFk) =

constant. Note that, in Eq. (22), the ratio between ω = vFkν and k remains constant in the limit
k → 0, precisely as in the zero sound mode [limk→0 ωZS(k)/k = constant]. It is very important to
observe that the asymptotic behavior (22) needed for the calculation of the zero sound velocity is
very different from the usual high-frequency limit imposed by the f -sum rule [24]:

ℜe [χ0(k, ω ≫ vFk)] =
nk2

mω2
. (23)

Now, replacing Eq. (22) (and not Eq. (23)) in Eq. (21), we find the following formal expression for
the zero sound velocity in units of the Fermi velocity:

vZS

vF
=

1 + N(0)ψ̄(0)
1 + 2N(0)ψ̄(0)

, (24)

which is well defined if ψ̄(0) > −[2N(0)]−1. Note that the quantity on the right hand side of Eq. (24)
is always larger than one. We therefore conclude that, within the approximations we made to derive
Eq. (20), a 2D dipolar Fermi gas always displays (i.e. for every value of the coupling constant λ) an
undamped zero soundmode, in agreementwith Ref. [12]. As discussed at length in Ref. [12], thismode
stems entirely from correlation effects and it is thus not describable within the HF approximation.
However, even the RPA is not enough in this respect since it yields a zero sound mode with a velocity
that depends on the short-range cut off of the bare dipole–dipole interaction [14]. A serious theory of
the zero sound mode thus requires the inclusion of correlation effects. The FHNC theory discussed in
this Article is an example.

4. Numerical results and discussion

In this section we present our main numerical results.
We begin by showing our results for the pair distribution function g(r) and static structure factor

S(k). In Figs. 1 and 2 we compare our results (lines) with the corresponding QMC data (symbols) [13].
The agreement between theory and numerical simulations is clearly excellent up to very large values
of the dimensionless coupling constant λ (λ = 20). At these values of λ, conventional theories such
as RPA and STLS fail, even qualitatively. For example, both RPA and STLS seriously underestimate at
strong coupling the amplitude of the first-neighbor peak and, even more dramatically, yield on-top
values of the pair distribution function, g(0), which are negative, thereby violating the fundamental
requirement g(r) > 0 ∀r . Note that, according to the QMC study by Matveeva and Giorgini [13], a



32 S.H. Abedinpour et al. / Annals of Physics 340 (2014) 25–36

Fig. 1. (Color online) The pair distribution function g(r) of a 2D fluid of dipolar fermions is plotted as a function of the scaled
distance kFr and for various values of the dimensionless coupling constant λ. In this plot, lines label the results of the FHNC
approximation (this work) while symbols label QMC results [13].

Fig. 2. (Color online) The instantaneous structure factor S(k) of a 2D fluid of dipolar fermions is plotted as a function of k/kF
and for various values of λ. In this plot, lines label the results of the FHNC approximation (this work) while symbols label QMC
results [13].

liquid-to-crystal quantum phase transition is expected to occur at λ ∼ 25. This is clearly signaled by
the amplitude of the first-neighbor peak in the static structure factor (see Fig. 2), which increases with
increasing λ indicating the build up of correlations in the liquid phase upon approaching crystalline
order.

The pair distribution function shown in Fig. 1 can be used to calculate the ground-state energy
by employing Eq. (16). Since our FHNC results for the pair distribution function are in very good
agreement with the QMC data, which are typically believed to be nearly exact [50], we expect the
corresponding FHNC values for the ground-state energy to be very close to QMC fluid-state energy. In
Fig. 3 we report our results for the ground-state energy as obtained from the pair distribution function
calculated at the FHNC level. In the same plot we compare our findings with the corresponding QMC
results [13] of the homogeneous fluid phase. Note that beyond the liquid to crystal quantum phase
transition coupling strength, the crystal phase has a lower ground-state energy than the homogeneous
fluid phase. One can use the homogeneous solution of the EL-FHNC equations as an input for the
density-functional theory to find the quantumphase transition [51]. In passing,we note that our FHNC
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Fig. 3. (Color online) The ground-state energy of a 2D fluid of dipolar fermions (in units of the Hartree–Fock energy εHF/ε0 =

1 + 128λ/(45π)), is plotted as a function of λ. Blue circles label the results of the FHNC approximation (this work) while
red squares label the QMC results [13]. The solid line represents the parametrization formula in Eq. (25) with a = 1.5006,
b = 1.0107, and c = 0. The dashed line represents the parametrization in Eq. (25) with a =

√
ζ3 (see main text), b = 1.1017,

and c = −0.0100.

results for the ground-state energy (per particle) can be accurately parametrized by the following
expression:

εGS(λ) = ε0


1 +

128
45π

λ−
λ2

2
ln


1 +

1

a
√
λ+ b λ+ c λ3/2


, (25)

where a, b, and c are numerical constants. The sum of the first two terms in square brackets on the
right hand side of Eq. (25) yields the HF approximation for the ground-state energy [12]: εHF ≡

ε0[1 + 128λ/(45π)]. The best fit of our FHNC data for the energy of the liquid phase up to λ = 40
is obtained by using a and b as free fitting parameters and setting c = 0: we find a = 1.5006 and
b = 1.0107. The result of this two-parameter fit is shown in Fig. 3 (solid line).

Alternatively, the simple formula in Eq. (25) can be used to parametrize also the QMC data by
Matveeva and Giorgini [13]. Since these data are believed to be very close to the exact values, we can
fix the value of a by imposing that Eq. (25) reproduces exactly the results of second-order perturbation
theory [12]. Straightforward algebraic manipulations on Eq. (25) yield the following expansion in
powers of λ for λ → 0:

εGS(λ) = ε0


1 +

128
45π

λ+
λ2

4
ln(a2λ)+ · · ·


, (26)

where ‘‘· · ·’’ denotes higher-order terms. To the sameorder of perturbation theory, Lu and Shlyapnikov
[12] find (Eq. (91) in their work):

εGS(λ) = ε0


1 +

128
45π

λ+
λ2

4
ln(ζ3λ)+ · · ·


(27)

where ζ3 = 1.43 (wehave taken the limitA → 0 in the expression for ζ3 given in Ref. [12]). Comparing
Eq. (26) with Eq. (27) we conclude that a =

√
ζ3 ∼ 1.2. The parameters b and c can then be used to

yield the best fit to the QMC data for the energy of the liquid phase up to λ = 72 [13]: we find
b = 1.1017 and c = −0.0100. The result of this two-parameter fit is also shown in Fig. 3 (dashed
line).

The difference between the total ground-state energy and the non-interacting contribution ε0
defines the interaction energy: εint(λ) = εGS(λ) − ε0(λ). Note that unlike the jellium model for
electron gases [24], theHartree contribution to the interaction energy does not vanish in our systemof
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Fig. 4. (Color online) Three important thermodynamic quantities: the chemical potentialµ, pressure P , and inverse compress-
ibility κ−1 of a 2D fluid of dipolar fermions (in units of their non-interacting values) are plotted as functions of λ. Lines label
analytic results obtained from the parametrization formula (25) while symbols label numerical results obtained directly from
the FHNC ground-state energy.

polarized dipolar Fermi gases [12]. Eq. (25) thus provides an extremely useful input for calculations of
ground-state properties of inhomogeneous 2D dipolar Fermi gases based on density functional theory
(DFT) [24]. In DFT, indeed, one needs to approximate the unknown interaction energy Eint[n(r)],
viewed as a functional of the local ground-state density n(r). In the local density approximation (LDA)
one can write [24]

Eint[n(r)]
LDA
=


d2r n(r)εint(λ(r)), (28)

where λ(r) is defined as in Eq. (3) with n replaced by the local density n(r). An example where the
DFT–LDA approach could be very useful is a 2D dipolar Fermi gas in the presence of an in-plane
harmonic confinement potential Vext =


i mω

2r2i /2.
From the knowledge of the ground-state energy (per particle) εGS we can also construct a num-

ber of thermodynamic quantities at zero temperature. Most notably, the chemical potential µ =

∂(nεGS)/∂n, the pressure P = n2∂εGS/∂n, and the inverse compressibility κ−1
= n∂P/∂n are readily

obtained from the interpolation formula given in Eq. (25). We display these quantities as functions of
the interaction strength λ in Fig. 4. Note that all these quantities, which still remain to be experimen-
tally measured, are strongly enhanced by interactions.

Fig. 5 illustrates the effective potential ψ̄(k) as obtained from Eq. (20). We clearly see from this
plot that ψ̄(k) is regular and positive at k = 0.

Finally, in Fig. 6 we illustrate our predictions for the dispersion of the zero soundmode. As already
discussed at the end of Section 3, our theory predicts an undamped zero sound mode at long wave-
lengths for every value ofλ. The zero sound velocity aswell as the criticalwave vector atwhich Landau
damping starts to increase with increasing λ.

5. Summary

In summary, we have presented an extensive study of ground-state and dynamical properties of a
strongly correlated two-dimensional spin-polarized fluid of dipolar fermions.

The main focus of our work has been on the pair distribution function g(r), a key ground-
state property of any quantum fluid. To calculate the pair distribution function we have employed
the Fermi-hypernetted-chain approximation combined with a zero-energy scattering Schrödinger
equation for the ‘‘pair amplitude’’

√
g(r). The effective potential that enters this equation includes

a bosonic term from Jastrow–Feenberg correlations and a fermionic contribution from kinetic energy
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Fig. 5. (Color online) The effective interaction ψ̄(k) (in units of 2π h̄2 /m) in a 2D fluid of dipolar fermions as obtained from
Eq. (20) is plotted as a function of k/kF for various values of λ. Note that ψ̄(k → 0) tends to a positive value.

Fig. 6. (Color online) The frequency ωZS(k) of the zero-sound mode in a 2D fluid of dipolar fermions is plotted as a function
of k/kF for various values of λ. The thin (black) solid line represents the upper bound of the particle–hole continuum, i.e.
ω+(k) = ϵ(k)/h̄+vFk. Note that the zero-soundmode lies above the particle–hole continuum for every λ, up to a λ-dependent
critical wave vector at which Landau damping starts.

and exchange, which is tailored to reproduce the Hartree–Fock limit at weak coupling. Our results for
the pair distribution function and the static structure factor S(k) have been severely benchmarked
against state-of-the-art quantum Monte Carlo results by Matveeva and Giorgini [13]. Very good
agreement with these results has been achieved over a wide range of coupling constants up to the
liquid-to-crystal quantum phase transition.

By combining our knowledge on the pair distribution function with the fluctuation–dissipation
theorem,wehave been able to calculate in an approximate fashion also the dynamical density–density
response function. This ingredient has been used to demonstrate that, in a two-dimensional spin-
polarized fluid of dipolar fermions, an undamped zero-sound mode exists for any value of the
interaction strength, down to infinitesimally weak couplings (in agreement with Ref. [12]).

Last but not least, we have presented a useful parametrization formula, Eq. (25), for the ground-
state energy of a two-dimensional spin-polarized fluid of dipolar fermions, which fits well both our
Fermi-hypernetted-chain results and the quantum Monte Carlo data by Matveeva and Giorgini [13].
This can be very effectively employed in density-functional calculations of 2D inhomogeneous dipolar
fermions.
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