Sorption of Barium on Kaolinite, Montmorillonite and Chlorite*

Cahit Eylem
Department of Chemistry, Bilkent University and Middle East Technical University, Ankara, Turkey

Hasan N. Erten
Department of Chemistry, Bilkent University, Ankara, Turkey

Hale Gök turk
Department of Chemistry, Middle East Technical University, Ankara, Turkey

The sorption characteristics of the Ba$^{2+}$ ion on kaolinite, montmorillonite and chlorite type clays were studied using the batch method. Barium-133 was used as a tracer. The Ba$^{2+}$ ion concentrations ranged from 10^{-8} to 10^{-5} mol l$^{-1}$; synthetic groundwater was used and the grain size of all the solid particles was <40 μm. About 6, 8 and 12 d of shaking were necessary to reach equilibrium for chlorite, kaolinite and montmorillonite, respectively. The sorption isotherms were described best by Freundlich and Dubinin - Radushkevich type isotherms. Sorption was predominantly reversible for kaolinite and partly reversible for montmorillonite and chlorite.

Keywords: Sorption; desorption; clays; batch method; barium; isotherms

The two phases were separated by centrifuging at 12 000 rev min$^{-1}$ and the change in the Ba$^{2+}$ ion concentration in the liquid phase was determined radiochemically using an NaI(Tl) detector. The distribution ratio, R_D, was calculated from the activity measurements before and after sorption as described previously.1,2

Results and Discussion

The particle size distribution in the three types of clay minerals is given in Fig. 1, from which it can be seen that kaolinite has the highest fraction of smaller size particles.

The results of sorption kinetics are illustrated in Fig. 2 for chlorine; it is apparent that saturation is reached in about 6 d. The effect of not shaking the samples appears to be to increase the time required to reach saturation considerably. No significant abrasion effect was observed that reflected itself as higher R_D values for samples that were shaken during sorption studies. Similar results were obtained for kaolinite and montmorillonite type clays, the saturation times being 8 and 12 d, respectively. The sorption rate was found to be highest for chlorite and lowest for montmorillonite. Three different first-order rate constants could be obtained for montmorillonite and two each for chlorite and kaolinite from examination of the sorption rate.

Experimental

Clay minerals from three regions of Turkey (Sindirgi, Giresun and Afyon) were used in the sorption studies. The clay samples were identified as kaolinite, montmorillonite and chlorite types, respectively, by infrared and X-ray diffraction analysis. Wet sieving followed by sedimentation was used to separate the clay minerals into various size fractions. The sorption experiments were carried out using synthetic groundwaters with compositions similar to those of groundwaters found in the three regions mentioned above. Table 1 gives the composition of the synthetic groundwaters used.

Barium-133 ($t_1/2 = 10.7$ years) was used as a tracer in the sorption studies and was obtained from Amersham International (Amersham, Buckinghamshire, UK). The Ba$^{2+}$ ion concentrations used ranged from 10^{-8} to 10^{-5} mol l$^{-1}$.

The sorption experiments were carried out using the batch method. Weighed amounts of clay samples were kept in contact with known volumes of water for various times. The samples were shaken at room temperature using a circular type shaker at a speed of 190 rev min$^{-1}$. To ensure thorough mixing, a volume to mass ratio of 80 ml g$^{-1}$ was chosen and was kept constant for all samples.

Table 1. Chemical composition of synthetic groundwater samples used in the sorption studies

| Component/ | Synthetic groundwater sample |
| compone nti | Sindicri | Giresun | Afyon |
| mcquiv. l$^{-1}$ |
Na$^+$	0.89*	0.22	2.08
K$^+$	0.01	0.40	
Ca$^{2+}$	4.70	2.28	5.46
Mg$^{2+}$	3.15	0.30	3.38
CO$_3^{2-}$	0.17	0.28	0.90
NO$_3^-$	3.14	1.34	4.48
Cl$^-$	0.84	0.02	0.25
SO$_4^{2-}$	0.18	0.10	0.82
pH	7.2	6.5	7.1

* Na$^+$ + K$^+$ concentration.
† Carbonate and sulphate were replaced by nitrate when sorption studies were carried out at higher initial Ba$^{2+}$ ion concentrations.

tion of the solution activity versus time graphs. These results suggest that there are three different sorption sites and/or mechanisms for montmorillonite and two for chlorite and kaolinite.

The sorption rate was observed to decrease by about a factor of two in all instances, if the samples were not shaken during the kinetic studies. The desorption kinetic studies indicate that there is considerable, rapid initial desorption followed by re-adsorption until saturation is reached. The sorption of Ba^{2+} on kaolinite was observed to be reversible, whereas the sorption on montmorillonite and chlorite was only partly reversible.

The variation in the distribution ratio, R_D, as a function of cation loading for the sorption of Cs^+, Sr^{2+} and Ba^{2+} ions on kaolinite, montmorillonite and chlorite is shown in Figs. 3 and 4. The relative standard deviation of the R_D values was less than 10% for all measurements. Typical inverse S-shaped curves are observed in all instances except for the sorption of Sr^{2+} on kaolinite. The region of greatest change in the values of R_D is very pronounced only for Cs^+ sorption. The curves suggest that two types of sorption mechanisms are involved, the first taking place at high cation loadings and the second at low cation loadings. The isotherms for the sorption of the Ba^{2+} ion on kaolinite, montmorillonite and chlorite are shown in Fig. 5 in the form of log-log plots. The isotherms are linear for all three types of clay, but with a fairly pronounced deviation from linearity for chlorite.

The experimental data were fitted to three different types of isotherm model, namely Langmuir, Freundlich and Dubinin-Radushkevich isotherms. The best fits were obtained with the Freundlich and Dubinin-Radushkevich type isotherms. The distribution ratio, R_D, can be calculated from the Freundlich model using the relationship

$$R_D = K[\text{Ba}^{2+}]^{-N^{-1}}$$

where K and N are constants and $[\text{Ba}^{2+}]$ is the concentration of Ba^{2+} ion in the solution after sorption (mol $^{-1}$). The values of K and N for the three different clay types are given in Table 2. Similarly, R_D can be calculated from the Dubinin-Radushkevich model from the relationship

$$R_D = [\text{Ba}^{2+}]^{-1} K_{\text{CEC}} \exp\left(-K[R-T\ln(1+[\text{Ba}^{2+}]^{-1})]\right)$$

where K_{CEC} is the cation-exchange capacity per unit mass, R the gas constant, T the temperature (K) and K is a constant.

![Fig. 1](image1.png)

Fig. 1. Size distribution of clay samples. Per cent. finer than (FT) diameter of particles (d). (A) Chlorite; (B) montmorillonite; and (C) kaolinite

![Fig. 2](image2.png)

Fig. 2. Sorption kinetics. Change in R_D with contact time for chlorite. Initial Ba^{2+} concentration $= 1.56 \times 10^{-9}$ mequiv. ml$^{-1}$; particle size $<$38 μm. (A) Shaking speed 190 rev min$^{-1}$; and (B) no shaking

![Fig. 3](image3.png)

Fig. 3. (a) Sorption/desorption of Ba^{2+} on chlorite. Particle size $<$38 μm. (C) Sorption; and (●) desorption. (b) Sorption of Sr^{2+} on montmorillonite. (C) Sr^{2+} (particle size $<$10 μm); and (●) Ba^{2+} (particle size $<$5 μm). Subscript s refers to solid

<table>
<thead>
<tr>
<th>Table 2.</th>
<th>Empirical parameters obtained from isotherm models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isotherm model</td>
<td>Parameter</td>
</tr>
<tr>
<td>Freundlich</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Dubinin - Radushkevich</td>
<td>K_{CEC}</td>
</tr>
<tr>
<td></td>
<td>K</td>
</tr>
</tbody>
</table>
The monovalent alkali metal ion Cs⁺ is sorbed more strongly
than the divalent alkaline earth metal cations Sr²⁺ and Ba²⁺.

Of the three clay types studied, chlorite is the most effective
sorbent for the Ba²⁺ ion. Although chlorite has a lower CEC
values. On the other hand, the hydration of cations is
also directly proportional to the charge densities on them.

The sorption selectivity of various cations on clay minerals
appears to depend on both the properties of the cations and
the sorbent surface. Cations with higher surface charge
densities would be expected to be more effective displacers of
bound cations. On the other hand, the hydration of cations is
also directly proportional to the charge densities on them.

Strongly hydrated cations are bound less strongly on clay
mineral surfaces, an effect that acts in the opposite way to the
tendency mentioned above. The different sorption sites indi-
cated by these kinetic studies can be divided into three types: 9

(1) Sites on the planar surfaces; the sorption on kaolinite is
probably mainly of this type and leads mostly to reversible
sorption. (2) Sites at the edges of the clay interlayers; these
sites would not be accessible to cations of different size and
charge. (3) Sites along the interlattice layers of collapsed or
non-expanding clay minerals; the sorption of cations at these
positions is mostly irreversible. The sorption of the Ba²⁺ ion
on montmorillonite and chlorite appears to involve mainly
sites of type (2) and (3).

Conclusions

Kaolinite, montmorillonite and chlorite type clays were found
to sorb Ba²⁺ ions appreciably, with increasing RD values in
that order. Sorption on kaolinite was reversible, whereas that
on montmorillonite and chlorite was only partially reversible.
Hence from the point of view of environmental contamina-
tion, chlorite appears to be the most suitable sorbent for
radiobarium.

The sorption isotherms were found to be linear with the
Freundlich exponent close to unity. Langmuir type isotherm
representation was found to be poor in providing a representa-
tion of the sorption of the Ba²⁺ ion.

The alkali metal Cs⁺ is sorbed much more strongly than the
alkaline-earth metal ions Ba²⁺ and Sr²⁺, whereas no signifi-
cant difference was observed in the sorption behaviour of Sr²⁺
and Ba²⁺ ions on the three types of clay studied.

This work was supported, in part, by the International Atomic
Energy Agency, Vienna, and by the Turkish Atomic Energy
Authority, Ankara.

References

1. Erten, H. N., Aksoyoglu, Ş., and Gökturek, H., Sci. Total
2. Erten, H. N., Aksoyoglu, Ş., Hatipoglu, S., and Gökturek, H.,
4. Lieser, K. H., Gleitsmann, B., Peschke, S., and Steinkopff,
Miner., 1986, 34, 677.
7. Co-ordinating Group on Geological disposal of Radioactive
Wastes, "Sorption, Modelling and Measurement for Nuclear
6–7 June, 1983.

Paper 8/02842G
Received July 14th, 1988
Accepted November 11th, 1988