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1. Introduction 

When a condensible vapor, with or without a carrier gas, is expanded in 
a Laval nozzle, it crosses the saturation line without any noticeable phase 
change until sufficient number of condensation nuclei are created in the 
parent phase by homogeneous nucleation so that the delayed phase transi- 
tion becomes visible (onset of condensation). When this happens, a consid- 
erable amount of heat of condensation is set free in the supersonic region 
giving rise to an increase in the pressure, temperature and density over a 
relatively small thickness. Figure 1 shows such an expansion in the pressure- 
temperature diagram of the vapor. The phenomenon described has been 
studied extensively in the literature (e.g. see Stever [1], Wegener and Mack 
[2], Wegener [3], Barschdorff [4], Gyarmathy [5] and their extensive refer- 
ences) and is sometimes inappropriately termed as 'condensation shock'. If 
the heat released by condensation exceeds a critical amount, the compressive 
effects from excessive heat release overweighs the influence of the increasing 
cross-section moving the flow Mach number 1 toward unity. The flow then 
can no longer continue and is said to be thermally choked. In such a case an 
embedded normal shock wave occurs upstream due to compressive effects 
from enormous amount of heat addition. Early investigations dealing with 
thermal choking include those by Wegener and Mack [2], Pouring [6], 
Barschdorff [4] and Barschdorff and Fillipov [7]. All of these investigations 
emphasize the phenomenology rather than the mathematical theory. Actu- 
ally it is only recently that the mathematical theory of thermal choking in 
nozzles has been discussed thoroughly [8] by exhibiting the necessary and 
sufficient conditions for a perfect condensible vapor. 

* Alexander von Humboldt Fellow. 
The flow Mach number is usually taken as the local frozen Mach number. 



246 Can F. Delale and Gerd E. A. Meier ZAMP 

Figure 1 
Typical expansion of the condensible vapor 
through nozzles in the pressure-temperature 
(p;  - T') diagram (M is the flow Mach number, 
T; is the reservoir temperature, T~ is the satura- 
tion temperature and T~ is the onset temperature). 
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It is the aim of this paper to extend the theory to include real gas 
behavior of the condensible vapor. In spite of the fact that for most working 
fluids the inclusion of real gas effects turns out to be insignificant in the 
adiabatic expansion regions of nozzle flows with homogeneous condensa- 
tion, it may influence the flow field in the heat addition zones significantly. 
Consequently the conditions for thermal choking stated for the case of a 
perfect condensible vapor may no longer be valid. Such situations are 
treated in this study in detail by accounting for real gas behavior of the 
condensible vapor from its virial equation of state truncated after the 
second virial coefficient. As a result thermal choking conditions which 
generalize those for a perfect condensible vapor are obtained. 

2. Flow and state equations 

We consider the transonic flow of a mixture of a carrier gas (denoted by 
subscript i) and a condensible vapor (denoted by subscript v) through a 
Laval nozzle with geometry as shown in Fig. 2 and with initial reservoir 
temperature T;, initial specific humidity COo and initial relative humidity q~o. 

Figure 2 
Geometry of a typical Laval nozzle. 
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We adopt the homogeneous flow model with the conventional assumptions 
that there is no slip between the dispersed droplets and the mixture of gases 
and that the enthalpy difference between the liquid and vapor phases is 
approximated by the latent heat of condensation. We also neglect the heat 
transfer mechanism between the droplets and the surrounding gaseous 
phase. Furthermore the carrier gas is treated as a perfect gas with a thermal 
equation of state 

' T '  = - - O i  (1) 
#i 

where ~R is the universal gas constant, T' is the temperature of the mixture, 
#, is the molecular weight of the carrier gas, and p~ and ~ are respectively 
the partial pressure and the density of the carrier gas. For the condensible 
vapor phase we assume a virial equation of state in the form 

p ;  9t 
- r '  + f i ' ( r ' )p •  (2) 

~o; #o 

where #v is the molecular weight of the vapor, p'v and ~ are respectively the 
partial vapor pressure and the vapor density, and fl'(T') is the second virial 
coefficient 2 (the second virial coefficients of gases can be found in [9]). If we 
denote the condensate mass fraction (the ratio of the mass flow rate of 
condensate to that o f t h e  mixture) by g, we then have 

=  '(coo - g) (3)  

and 

0; = Q'(1 -- coo) (4) 

where ~' is the density of the mixture. Utilizing equations (1) -(4), we arrive 
by Dalton's law (p'=p'~ +p~) at the thermal equation of state of the 
mixture of a perfect carrier gas and a condensible vapor treated as a real gas 
in the form 

p, 9~= #o-- o'T" [.1 - g#o/#~-(1-coo#o/#~)(coo--g)fl'O~ 1 1  - (coo - g)fi'O" (5) 

where #0, the molecular weight of the mixture in the reservoir, is defined by 

1 1 -- COo coo 
= - -  + . ( 6 )  

I"/0 # i  #v  

To be able to discuss real gas effects on thermal choking in nozzle flows, 
the thermal equation of state (5) of the mixture should be accompanied by 

2 Some authors assume a virial expansion in density instead of  a virial expansion in pressure employed 
herein. The corresponding second virial coefficients are then different, but  can easily be related. 
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the inviscid equations of nozzle flows, namely 

'u 'A'  = constant (7) 

(p, + - f p' dA' = c o n s t a n t  ( 8 )  

and 

1 ,2 h' + ~ u = constant (9) 

where h' is the specific enthalpy of the mixture (for its evaluation see the 
appendix), u' is the flow velocity and A' is the cross-sectional area of the 
nozzle. As is well known for nozzle flows with heat addition from condensa- 
tion, the state of the condensible vapor crosses the saturation line without 
any noticeable phase change and the mixture expands almost isentropically 
in a metastable state unless a significant number of condensation nuclei are 
formed by homogeneous nucleation so that the phase change in the vapor 
phase becomes visible (onset of condensation) and a considerable amount  of 
latent heat begins to be added to the flow (see Fig. 1). Since in this 
investigation we are primarily interested in heat addition to the flow from 
phase change, we choose our reference state as the saturation state of the 
vapor (which we denote by subscript s) and carry out the normalization 

p' T' Q' 
p - -  ,, T -  0 - -  ,, / 3 -  (10) 

ps T;' 

together with 

u' A' 
and A = - - .  (11) 

/ A "  ~N/ / -~s  t '/#0 As 

We also normalize the axial nozzle coordinate x '  with respect to the throat 
height 2y* (see Fig. 2) as 

X'  
x - (12) 

2y*" 

The flow equations (7)-(9)  together with the thermal equation of state (5) 
then take the normalized form 

o u A  -= u s 

pA + )Lsu, u = 1 +  2su~ + R(g, x) 

{ 1 -  [1 -  ( l + ~)~~176176176176176 - g)~c~fl~ } ~-~o Z ~  q(g, x) u 2 
Cpo + ~ = Tr 

(13) 

(14) 

(15) 
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T{ 1 - g'u~ -1 - ( ~ o ~ ( 1  - COo#o/#~)(coo- g)tCs[30 } (16) 2s0 P 

with 

xs - CO;Q; -<0, (17) 

1 - COo~  ( 1 8 )  
2~ - 1 -- (1 - COo#o/#~)coo~%' 

= - f i - ' T  d-~ > 0 (19) 
a i  

and where 

fx:p dA R(g, x) - , --~ d~, (20) 

q(g, X) =- H gL , (21) 
Cpo Cpo 

coo/ ;(1 +  o) oP at(T;) 
Tr = To + (22) 

Cpo T; 

with L -  L ' /L ;  where L '  denotes the latent heat of  condensat ion,  T 0 -  
r'o/r'~, H - I~L;/(9~T'~), p~at(T;) is the saturat ion pressure of  the vapor  in 
the reservoir, fl; is the second virial coefficient of  the vapor  in the reservoir, 
~0 is the value of  ~ at the reservoir, Cp0 is the specific heat of  the mixture (for 

! 

its definition see the appendix) and Cpo- %o#o/9t. 
It is obvious that  the system of  equations (13)- (16)  does not  form a 

complete system unless it is supplemented by the nonequi l ibr ium integral 
condensat ion rate equat ion [10, 11]. However,  as has been discussed in great 
detail by Delale et al. [8], for the analysis of  thermal choking it suffices to 
consider the function g = g(x) as an arbitrary, positive, strictly increasing 
funct ion of  x for x > x~. With this assertion equations (13)- (16)  form an 
integro-algebraic system for the variables u, p, T and Q depending on the 
condensate mass fraction g =g (x )  and the normalized area A = A(x). 
Manipula t ions  then yield a cubic equat ion for the functional  u = u(g, x) as 

U 3 + B 2 u  2 + BlU + Bo = 0 

where 

B 2 ~- 
2y[1 + 2s u2 + R(g, x)l 

2,u,[y + 1 + (y - 1)gkto//t~] 

Us(COo-g)tqfi [7 + 1 - ( 7  - 1)(1 + 20COo#o/#~ ] 

(23) 

A [7 + 1 + (7 - 1)g#o/#~] ' (24) 
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27(1-g#o/#~)  [ q(g,x)] 
B1 - [7 + 1 + (7 1)g#o/m] % -+ 

- Cpo  A 

2~6fl [7 - (7 - 1)( 1 + 0Ogo#o/#v](COo - g) + - -  
2sA [7 + 1 + (7 - 1)g#0/#v] 

and 

[1 + 2su~ + R(g, x)] 

(25) 

2?us(1--Oo#o/#,~)(COo-g)tCsfl [ q(g,_x) 1 
B 0 -  ~-7k i ~ ( - ? ~  1)-~o]~v-~ T~ + (26) Cpo l 

where the adiabatic exponent ? of the mixture is defined by 7 - Cpo/(Cpo - 1). 
The solution of the cubic equation (23) relates the function u = u(g, x) of 
the mixture to the functional R(g, x) and to the functions /7 =/7(T) and 
L = L(T). The functional relations for the rest of the flow variables then 
follow in a natural way: 

and 

e(g ,  x )  - us A(x)u(g, x) ' (27) 

+ 
q( g , x__~) u2(g, x).7 

Coo 2Cpo J 

• 1 - [1 -- ( 1 -~ ~ o - ~ o / ( ~  ~ g)~s~o(g, x) 

p(g, x) = 2sQ(g, x)T(g, x) 

I 1 - -  g#o/~ - ( 1 -- O~o#o/#~)(~% - g)m~Q(g, x)~ 
• J 

(29) 

Equations (23)-(29)  simplify considerably for the nozzle flow of a pure 
condensible vapor (too = 1). In such a case by equation (26) we have Bo = 0 
and the cubic equation (23), aside from the trivial solution u = 0, yields the 
functional relation 

27 t[1 + 2su~ + R(g, x)] 
u(g, x) = [? + 1 + (? - 1)g] c 22sus 

us[1 - ( 7  - 1)~](1 - g ) K s / / +  A ( ~ - ~ ,  x)} 
+ 27A - 

(30) 

where 2s simplifies as 2s = 1 - K s ,  ? is now the adiabatic exponent of the 
vapor and the functional A(g, x) is defined by 

A(g, x ) =  Tr| q(g,x)] (31) 
L Cp,~ ,. cpvTrj 
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with the critical amount  of heat q*(g, x) not to be exceeded for a continu- 
ous solution and the function | x) defined by 

q*(g, x) 

cpvTr 
_ {[1 + 2su~ + R(g, x)]/(22sUs) + u~[1 - (7 -- 1)~](1 --g)~,Csfl/(ZTA)} 2 

frO(g) 

[ l - -  (7 - -  + L u ,  + R ( g ,  x)l s/  
- 1 72sATr ' (32) 

[7 + 1 + (7 - 1)g](1 - g )  
O(g) -= 27 (33) 

and with cp,~ - 7 / ( 7  - 1) denoting the normalized specific heat of  the vapor 
and Tr given by equation (22) in the limit as COo --* 1. The functional relations 
(27-(29)  for this case can easily be obtained by setting COo = 1 (consequently 
kt0 =/~v and Cpo = cp,~). 

It should be noticed that a solution of  the cubic equation (23) for u in 
the case of  a condensible vapor and carrier gas and of  the functional 
relation (30) together with equations (31)- (33)  for u in the case of a pure 
condensible vapor and the functional relations (27)- (29)  do not yield an 
implicit algebraic solution of  the flow field even if the function g = g(x) is 
supplied by some means (e.g. empirically) since the functional R(g, x) 
remains to be evaluated. The complete solution needs a detailed treatment 
of  the condensation rate equation coupled to the equations of  flow and 
state, and we will not  discuss it any further. Instead we will emphasize how 
real gas effects from the second virial coefficient of  the condensible vapor 
alter the conditions for thermal choking previously derived in [8] for the 
case of  a mixture of  a perfect carrier gas and a perfect condensible vapor. 

3. Thermal choking of real gas flows in nozzles 

For  nozzle flows with nonequilibrium condensation, the effect of  heat 
addition to the flow becomes important  downstream of  the onset of  
condensation, i.e. for x > xk where xk denotes the onset of  condensation (this 
point can be located either empirically [12], semi-empirically by similarity 
analysis [13], numerically [14] or by the asymptotic solution of  the conden- 
sation rate equation [ 11, 15]). We herein assume that heat addition to the flow 
from condensation occurs in the supersonic region of  the nozzle so that 
xk > 0. As long as the amount  of  heat added to the flow does not exceed a 
certain value, called the critical amount,  the flow field remains continuous 
(subcritical flow). Once the critical amount  is exceeded, the flow is said to 
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be thermally choked and no continuous solution of the flow is possible 
anymore. In this case the inclusion of  an embedded frozen gasdynamic 
normal shock wave arising from compressive effects due to excessive heat 
addition becomes necessary (supercritical flow). The necessary and sufficient 
conditions for thermal choking in nozzle flows where the condensible vapor 
is treated as a perfect gas are recently exhibited in Delale et al. [8]. In this 
section we generalize these conditions to account for the influence of  the 
real gas behavior of  the condensible vapor on the phenomenon of  thermal 
choking. Although real gas effects are usually thought to be weak enough to 
be neglected in adiabatic nozzle flows, they may influence the flow field in 
the heat addition region for some working fluids and consequently may alter 
the thermal choking conditions previously derived [8]. In what follows we 
study these effects utilizing the virial equation of  state of the condensible 
vapor truncated after the second virial coefficient. 

We first discuss the general case of a mixture of a condensible vapor 
(treated now as a real gas) and a perfect carrier gas. In particular we 
concentrate on the solution of the cubic equation (23) of the preceding 
section for the real functional u = u(g, x). From the fundamental  theorem 
of  algebra, equation (23) has precisely three roots (denoted by ul, u2 and u3) 
over the complex field and at least one of  the roots is real. Since B0 > 0 
by equation (26), we have U~UzU3 = - B o  < 0 which implies that at least 
one of the roots, say u~, is negative definite (i.e. u~ < 0). This solu- 
tion ul (g, x), however, does not  correspond to any physical solution of  the 
flow field and therefore must be discarded. It is well-known that the other 
two roots (u2 and u3) of equation (23) are real and distinct if s 3 +  t 2 <  0, 

real and repeated if s 3 + t 2 = 0 and complex conjugate if s 3 + t 2 > 0 
where 

1 1 
s - ~ B~ - ~ B 2 (34) 

and 

t - g ( B ,  B2 - 3 B o )  - (35) 

From the relations ul + u2 + u3 = - B 2  > 0 and u 1 ~ 0, it can further be 
shown that both u2 and u3 are positive if they are real. We recall that Bo, B1 
and B2 given by equations (24)- (26)  are all real continuous functionals 
depending on g = g(x) and A = A(x); therefore, if a real solution u --- u(g, x) 
of  equation (23) exists, then it should also be continuous. It follows from 
the last two statements that the condition s 3 +  t 2< 0 corresponds to the 
case of  a continuous positive solution u = u2 or u = u3 (subcritical flow). In 
particular the smaller of  the roots, say u2 (u2 < u3), yields the flow velocity 
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in the 'subsonic'  region and the greater one (u3) in the 'supersonic' region 3. 
The condition s 3 + t 2 = 0 or equivalently u2 = u3 may be reached at one or 
more points along the nozzle axis and corresponds to a critical condition 4 
where the flow bifurcates into two branches: 'subsonic'  or 'supersonic'.  On 
the other hand if s 3 + t 2 > 0 for some x > xk, then u2 and u3 are complex 
conjugate at that location and no continuous physical solution exists. The 
flow in this case is termed thermally choked. When this happens, there must 
be a point  2 > xk upstream where the flow reaches the critical condition 
s 3 +  t 2 =  0. Thus we have proved the following result: 

Proposition 3.1. For  the expansion of  a mixture of  a condensible real 
vapor  and a perfect carrier gas in nozzles, a necessary condition for thermal 
choking is that the critical flow condition s 3 +  t 2--= 0 is reached at some 
point 2 > xk along the nozzle axis. 

To discuss sufficiency we now assume that the flow becomes critical at 
some point  2 > xk. Then there are two possibilities downstream of the point 
2: either s 3 + t 2 > 0 o r  s 3 + t 2 < 0. If  S 3 + t 2 < 0 downstream of the point 2, 
the flow then is subcritical. Conversely if s 3 +  t 2 >  0 downstream of  the 
point 2, the flow can not  continue and is thermally choked. Since the 
condition 

d 
(S 3 -1- t 2) > 0 

at x = 2 would imply the condition s 3 + t 2 > 0 downstream at the point 2, 
we have the following result: 

Proposition 3.2. A sufficient condition for the expansion~ of  a mixture of  
a condensible real vapor  and a perfect carrier gas through nozzles to be 
thermally choked is that 

d 
$3-1- t2  = 0 and ~x ($3 --t-/2) > 0 

at some point 2 > xk along the nozzle axis. 

The conditions stated in Proposit ions 3.1 and 3.2 become more informa- 
tive and simple for the case of  a pure condensible vapor  (m0 = 1). In this 

3 The use of the words 'subsonic' and 'supersonic' needs some caution since there is no unique 
definition of  the speed of sound in the two-phase dispersed droplet regime of the condensation zones. 
4 This condition may as well be called a 'sonic' condition. 
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limit we have 

s 3 + t 2 - - 4 I  1 27 C2 7 7 + 1 + ( 7 - - 1 ) g  A(g,x) 

where A(g, x) is given by equation (31) and 

27(1 - g )  
C _ 

[7 + 1 + (7 - 1)g] 

(Tr  + - -  q(g' x) + [1 - (7 - 1)ff]tqfl 
• 

Cp~ T( 1 - ~c~)A 

(36) 

[ 1 + (1 --  xs)u 2 + R(g ,  x)] }. 
(37) 

By equation (36) Propositions 3.1 and 3.2 now simplify as 

Proposition 3.3. A necessary condition for the expansion in nozzles of a 
condensible pure vapor treated as a real gas to be thermally choked is that 

A = O  

or equivalently 

q* q 

cpvTr cp~Tr 

at some point x - - 2  along the nozzle axis where q(g, x) is the amount of 
latent heat added to the flow given by equation (21) and q*(g, x) is the 
critical amount of heat given by equation (32). 

Proposition 3.4. A sufficient condition for the expansion in nozzles of a 
condensible pure vapor treated as a real gas to be thermally choked is that 

dA 
A = 0  and ~xx<0 

or equivalently 

q__ ,q  and e vrr <Uxx 
at some point x = 2 along the nozzle axis. 

We should finally mention that in the limit when the condensible vapor 
is treated as a perfect gas (fl'--,0), it is straightforward to show that the 
results stated in Propositions 3.1-3.4 reduce precisely to the conditions 
stated in Delale et al. [8]. 
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4. Concluding remarks 

255 

The thermal choking conditions in nonequilibrium condensing nozzle 
flows with or without a perfect carrier gas are investigated by taking into 
account real gas behavior of the condensible vapor by the second virial 
coefficient. The conditions obtained recently for thermal choking of  nozzle 
flows of a perfect condensible vapor, with or without a carrier gas, [8] are 
therefore generalized. In the case of a mixture of a condensible real vapor 
and a perfect carrier gas, the critical amount  of heat necessary to thermally 
choke the flow can only be defined implicitly by the condition given in 
Proposition 3.1. However, for the case of a pure condensible vapor treated 
as a real gas the critical amount  of heat to thermally choke the flow is 
explicitly defined by equation (32). 

It can clearly be seen that real gas effects of the condensible vapor can 
influence the flow field especially in the condensation zones where heat 
addition is significant. Although for condensing nozzle flows it seems 
sufficient to take into account real gas behavior by the second virial 
coefficient of the condensible vapor, it may be interesting to compare the 
conditions achieved herein with those to be obtained by different equations 
of  state (e.g. the van der Waals equation of state). However, the system of 
equations obtained by these different equations of state generally turns out 
to be too complicated to yield any information on the conditions of thermal 
choking in nozzles. 

Appendix: The specific enthalpy of a mixture of a condensible vapor and a 
carrier gas 

The specific enthalpy of the vapor phase h; can be evaluated from 

c' +dp'~ T,(Op'~ dQ'~ (A1) dh'~ = ( ~)~ dT' 0" - \ aT ' Jo ;  e ;  2 

where (c'~)~ is the specific heat of the vapor at constant volume. Utilizing the 
thermal equation of state (2) for the vapor we arrive at 

dh'~=cp~dT' + [ f l ' -  r ' dfi'] dT'] dp'~ (A2) 

where Cp~ is the specific heat of the vapor at constant pressure given by 
,-]2 

<' = ( c ; ) ~ + 9 1  .1 - tp  - _ _ ~ T , ) ~ /  (13) 
1- /7  Q<, J" 

C" It can be shown that ( , ) ,  is only a function of temperature for a vapor 
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obeying the thermal equation of state given by equation (2). Even so, 
equation (A2) is not readily integrable since by equation (A3) we have 
Cpv = Cpv(T', Q'~). However, simplification of equation (A3) is possible if we 
consider the nucleating flow states. Although for these states both fl' and 
T' dfl'/dT' are of the same order of magnitudes for most fluids, both ]fl'lQ; 
and IT' d~'/dT'l~'~ are small enough to be neglected compared to unity in 
equation (A3). This suggests that for most fluids in nucleating flow we can 
take 

9~ 
! ~ ! ! / cpv ~ c,,o(T ) = (co)~ + -- .  (A4) 

On the other hand, in spite of the fact that fl' and T" dfl '/dT ! show strong 
dependence on temperature in the nucleating flow states, the functions 
f l ' -  T ! d~' /dT ! and c~,~(T'), nevertheless, do not strongly depend on tem- 
perature and can be approximated by their mean values over the opera- 
tional temperature range of the nozzle 5. With these approximations in mind, 
equation (2) can now be integrated to yield 

h' = cp~T' + [B' - T' dB'~n" dT, y ~  + constant. (A5) 

On the other hand, for the specific enthalpy h~ of the perfect carrier gas we 
have 

h ~ = c'piT' + constant (A6) 

where c~; is the specific heat of the perfect carrier gas at constant pressure. 
The specific enthalpy of the mixture is then obtained by 

h ! = og0h~ + (1 - og0)h; - gL ! (A7) 

which evaluates to 

h ! =  , ( cpoT' + COo fl' - T' dfl'~ , -d-~7)p,, - gL ! + constant (A8) 
r 

where C~o is the specific heat of the mixture defined by 
! ! ! 

cp0 - co0cpv + (1 - Ogo)Cpi (A9) 

and L" is the latent heat of condensation. Utilizing equations (2) and (3), we 
finally arrive at 

h' [ '  9~~176 (c~176 , ! dfl' ,] 
= c p 0 + - - - - - g ) ( f l  ~T--d~--~-/) T ' -  

#~ 1 - (r - g)fl'O J gL! + constant. (AIO) 

s Treating f l '  - T '  d f l ' / d T '  as a constant is also possible. This then corresponds to fl' linearly varying 
with temperature. 
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Abstract 

Reai gas effects in condensing nozzle flows are discussed by the virial equation of state truncated 
after the second virial coefficient. The thermal choking conditions in nozzles previously derived for a 
perfect condensible vapor are generalized to include real gas effects. For these cases it is shown that the 
critical amount  of heat necessary to thermally choke the flow can be defined explicitly only for the 
expansion of a pure vapor. 
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