Second-order second degree Painleve equations related with Painleve I, II, III equations

A Sakka and U Mugan†
Department of Mathematics, Bilkent University, 06533 Bilkent, Ankara, Turkey

Received 30 December 1996

Abstract. The algorithmic method introduced by Fokas and Ablowitz to investigate the transformation properties of Painleve equations is used to obtain a one-to-one correspondence between the Painleve I, II and III equations and certain second-order second degree equations of Painleve type.

1. Introduction

Second-order and first degree equations
\[y^{(00)} = F(z,y,y^0) \] (1.1)

where \(F \) is rational in \(y^0 \), algebraic in \(y \) and locally analytic in \(z \) with the property that the only movable singularities are poles, that is, the Painleve property, were classified at the turn of the century by Painleve and his school [22,15,17]. Within the M’obius transformation, they found 50 such equations. Among all these equations, six of them are irreducible and define classical Painleve transcendent, \(\text{PI} \), \(\text{PII} \),...,\(\text{PVI} \). The remaining 44 equations are either solvable in terms of the known functions or can be transformed into one of the six equations.

Besides the physical importance, the Painleve equations possess a rich internal structure. Some of these properties can be summarized as follows. (i) For a certain choice of parameters, \(\text{PII–PVI} \) admit a one-parameter family of solutions which are either rational or expressible in terms of the classical transcendental functions. For example, \(\text{PI} \) admits a one-parameter family of solutions expressible in terms of Airy functions [9]. (ii) There are transformations (Backlund or Schlesinger) associated with \(\text{PII–PVI} \), these transformations map the solution of a given Painleve equation to the solution of the same equation but with different values of parameters [11,19,20]. (iii) \(\text{PI–PV} \) can be obtained from \(\text{PVI} \) by the process of contraction [17]. It is possible to obtain the associated transformations for \(\text{PII–PV} \) from the transformation for \(\text{PVI} \). (iv) They can be obtained as the similarity reduction of the nonlinear partial differential equations solvable by inverse scattering transform (IST). Since the work of Kowalevskaya that was the first connection between the integrability and the Painleve property. (v) \(\text{PI–PVI} \) can be considered as the isomonodromic conditions of a suitable linear system of ordinary differential equations with rational coefficients possessing both regular and irregular singularities [18]. Moreover, the initial value problem of \(\text{PI–PVI} \) can be studied by using the inverse monodromy transform (IMT) [12,13,21].
The Riccati equation is the only example of the first-order first degree equation which has the Painleve property. Before the work of Painleve and his school Fuchs [14,17] considered the equation of the form

\[F(z,y,y^0) = 0 \]

(1.2)

where \(F \) is polynomial in \(y \) and \(y^0 \) and locally analytic in \(z \), such that the movable branch points are absent, that is, the generalization of the Riccati equation. Briot and Bouquet [17] considered the subcase of (1.2), that is, first-order binomial equations of degree \(m \in \mathbb{Z} \):

\[(y^0)^m + F(z,y) = 0 \]

(1.3)

where \(F(z,y) \) is a polynomial of degree at most 2m in \(y \). It was found that there are six types of equation of the form (1.3). But, all these equations are either reducible to a linear equation or solvable by means of elliptic functions [17]. Second-order binomial-type equations of degree \(m > 3 \)

\[(y^00)^m + F(z,y,y^0) = 0 \]

(1.4)

where \(F \) is polynomial in \(y \) and \(y^0 \) and locally analytic in \(z \), was considered by Cosgrove [4]. It was found that there are nine classes. Only two of these classes have arbitrary degree \(m \) and the others have degree three, four and six. As in the case of first-order binomial-type equations, all these nine classes are solvable in terms of the first, second and fourth Painleve transcendents, elliptic functions or by quadratures. Chazy [3], Garnier [16] and Bureau [1] considered the third-order differential equations possessing the Painleve property of the following form

\[y^{000} = F(z,y,y^0,y^{00}) \]

(1.5)

where \(F \) is assumed to be rational in \(y,y^0,y^{00} \) and locally analytic in \(z \). But, in [1] the special form of \(F(z,y,y^0,y^{00}) \)

\[F(z,y,y^0,y^{00}) = f_1(z,y)y^{00} + f_2(z,y)(y^0)^2 + f_3(z,y)y^0 + f_4(z,y) \]

(1.6)

where \(f_i(z,y) \) are polynomials in \(y \) of degree \(k \) with analytic coefficients in \(z \) was considered. In this class no new Painleve transcendents were discovered and all of them are solvable either in terms of the known functions or one of six Painleve transcendents. Second-order second degree Painleve-type equations of the following form

\[(y^{00})^2 = E(z,y,y^0)y^{00} + F(z,y,y^0) \]

(1.7)

where \(E \) and \(F \) are assumed to rational in \(y, y^0 \) and locally analytic in \(z \) was the subject of the articles [2,8]. In [2] the special case of (1.7)

\[y^{00} = M(z,y,y^0) + pN(z,y,y^0) \]

(1.8)
was considered, where M and N are polynomials of degree two and four respectively in y, rational in y and locally analytic in z. Also, in this classification, no new Painlevé transcendent were found. In [8], the special form, $E = 0$ and hence F is polynomial in y and y^0 of (1.7) was considered and that six distinct class of equations were obtained by using the so-called α-method. These classes were denoted by SD_{I},...,SD_{VI} and are solvable in terms of the classical Painlevé transcendent $\text{PI},...$,PVI, elliptic functions or solutions of the linear equations.

Second-order second degree equations of Painlevé type appear in physics [5–7]. Moreover, second degree equations are also important in determining transformation properties of the Painlevé equations [10,11]. In [11], the aim was to develop an algoriithic method to investigate the transformation properties of the Painlevé equations. But, certain new second degree equations of Painlevé type related with PIII and PVI were also discussed. By using the same notation, the algorithm introduced in [11] can be summarized as follows. Let $v(z)$ be a solution of any of the fifty Painlevé equations, as listed by Gambier [15] and Ince [17], each of which takes the form

$$v^{00} = P_1(v^0)^2 + P_2v^0 + P_3$$

where P_1, P_2, P_3 are functions of v, z and a set of parameters α. The transformation, i.e. Lie-point discrete symmetry which preserves the Painlevé property of (1.9) of the form $u(z; ^*\alpha) = F(v(z;\alpha),z)$ is the Mobius transformation

$$u(z; ^*\alpha) = \frac{a_1(z)v + a_2}{a_3(z)v + a_4(z)} (z)$$

(1.10)

where $v(z,\alpha)$ solves (1.9) with the set of parameters α and $u(z; ^*\alpha)$ solves (1.9) with the set of parameters α^*. Lie-point discrete symmetry (1.10) can be generalized by involving the $v^0(z;\alpha)$, i.e. the transformation of the form $u(z; ^*\alpha) = F(v^0(z;\alpha),v(z,\alpha),z)$. The only transformation which contains v^0 linearly is the one involving the Riccati equation, i.e.

$$u(z, ^*\alpha) = \frac{v' + av^2 + bv + c}{dv^2 + ev + f}$$

(1.11)

where a, b, c, d, e, f are functions of z only. The aim is to find a, b, c, d, e, f such that (1.11) defines a one-to-one invertible map between solutions v of (1.9) and solutions u of some second-order equation of the Painlevé type. Let

$$J = dv^2 + ev + f \quad \text{and} \quad Y = av^2 + bv + c$$

(1.12)

then differentiating (1.11) and using (1.9) to replace v^{00} and (1.11) to replace v^0, one obtains:

$$Jv^0 = [P_1J^2 - 2dvJ - eJ]v^2 + [-2P_1JY + P_3J + 2avJ

+ bJ + 2dvY + eY - (d^2v^2 + e^2v + f^0)]u + [P_1Y^2 - P_2Y

+ P_3 - 2avY - bY + n^2v^2 + b^2v + c^0].$$

(1.13)

There are two distinct cases.

(I) Find $a,...,f$ such that (1.13) reduces to a linear equation for v,
A(u₀,u,z)v + B(u₀,u,z) = 0. \hspace{1cm} (1.14)

Having determined a,...,f upon substitution of v = −B/A into (1.11) one can obtain the
equation for u, which will be one of the fifty Painlevé equations.\’\’

(II) Find a,...,f such that (1.13) reduces to a quadratic equation for v,

\[A(u₀,u,z)v² + B(u₀,u,z)v + C(u₀,u,z) = 0. \hspace{1cm} (1.15) \]

Then (1.11) yields an equation for u which is quadratic in the second derivative.

As mentioned before in [11] the aim is to obtain the transformation properties of PII–PVI.

Hence, the case I for PII–PV, and case II for PVI was investigated.

In this article, we investigate the transformation of type II to obtain the one-to-one

correspondence between PI, PII, PIII and the second-order second degree Painleve-type’
equations. Some of the second degree equations related with PI–PIII were obtained in [2,8]
but most of them have not been considered in literature. Instead of having the transformation

of the form (1.11) which is linear in v₀, one may use the appropriate transformations related
to

\[(v')^m + \sum_{j=1}^{m} P_j(z,v)(v')^{m-j} = 0 \quad \text{m > 1} \]

where \(P_j(z,v) \) is a polynomial in v, which satisfies the Fuchs theorem concerning the absence

of movable critical points [14, 17]. This type of transformations and the transformations of
type II for PIV–PVI will be published elsewhere.

2. Painleve I’

Let v(z) be a solution of PI

\[v^{10} = 6v² + z. \hspace{1cm} (2.1) \]

Then, for PI equation (1.13) takes the form of

\[[2d²u² − 4adu + 2a²]v³ + [d u' + 3deu² + (d² − 3ae − 3bd)u − (a² − 3ab + 6)]v² \]
\[+ [eu' + (2df + e²)u² + (e² − 2af − 2be − 2cd)u − (b² − b² − 2ac)]v \]
\[+ [fu' + efu² + (f² − bf − ec)u − (c² − bc + z)] = 0. \hspace{1cm} (2.2) \]

Now, the aim is to choose a,b,...,f in such a way that (2.2) becomes a quadratic equation for

\(v \). There are two cases: either the coefficient of \(v³ \) is zero or not.

Case I. 2d²u² − 4adu + 2a² = 0. In this case the only possibility is a = d = 0, and one has
to consider the two cases separately (i) e = 0 and (ii) e 6= 0.

Case I.i. e = 0. One can always absorb c and f in u by a proper Mobius transformation, and
hence, without loss of generality, one sets c = 0, and f = 1. Then equation (2.2) takes the
following form,

\[6v² + (b² − b²)v − (u² − bu − z) = 0. \hspace{1cm} (2.3) \]

The procedure discussed in the introduction yields the following second-order second degree
Painleve-type equation for u(z)
Second degree Painleve' equations

\[u'' + bu' - (b' + 2b^2)u + \frac{1}{12}(b'' - b^2)(b'' - bb' - b^3) - 2zb - 1 \]
\[= [u + \frac{1}{12}(b'' - bb' - b^3)]^2[24u' - 24b + (b' - b^2)^2 - 24z] \quad (2.4) \]

and there exist the following one-to-one correspondence between solutions \(v(z) \) and \(u(z) \)

\[u(z) = p(x)y(x) + q(x), \quad z = z(x) \]
\[v = \frac{u'' + bu' - (2b' + b^2)u - 2zb - 1}{b^3}. \quad (2.5) \]

The change of variable where

\[f(x) = c_1 x + c_2 \]
\[R(x) = \exp \left(-5 \int b(z) \, dz \right) \]
\[z = c_4^{-4/5} \left(c_4 \int f^{-2} R^{-3/5} \, dx + c_5 \right) \]
\[p(x) = \frac{1}{4} c_4^{-3/5} f^{-1} R^{-1/5} \]
\[q(x) = \frac{1}{2} c_4^{3/5} R^{1/5} \left(\int \left\{ f^6 \left[-\frac{1}{5} \bar{R} + \frac{1}{25} R^{-1} \bar{R}^2 - \frac{2c_1}{5\bar{R}} \right]^2 \right. \right. \]
\[\left. \left. -24c_4^{4/5} f^{-2} R^{-2/5} z(x) + c_5 f^{-2} \right] \, dx + c_6 \right) \quad (2.6) \]

\(c_j, j = 1,2,\ldots, 6 \) are constants and \(R = \frac{1}{4} \delta \), transforms (2.4) into the following form,

\[y'^2 = [A(x)y + B(x)]^2[c_1(xy' - y) + c_2y' + c_3] \quad (2.7) \]

where \(A(x) \) and \(B(x) \) are given in terms of \(f(x) \) and \(R(x) \). Equation (2.7) was first obtained by Cosgrove and Scoufis [8] and labelled as SD-V.A.

Case Iii. \(e \neq 0 \). Without loss of generality one can set \(b = 0 \) and \(c = 1 \). Hence, equations (1.11) and (2.2) become

\[u = \frac{u' + c}{v + f}, \quad Av^2 + Bv + C = 0 \quad (2.8) \]

respectively, where

\[A = 6, \quad B = -(u^0 + u^3) \]
\[C = -(fu^0 + fu^2 - a_1u - a_0 + 6f^2), \quad a_1 = c - f \]
\[a_0 = c^0 + 6f^2 + z. \quad (2.9) \]

The discriminant 1 of the second equation of (2.8) is

\[1 = (u^0 + u^2 + 12f^2)^2 - 24(a_1u + a_0). \quad (2.10) \]

If 1 is not a complete square, that is, \(a_1 \) and \(a_0 \) are not both zero, then the first equation of (2.8)

\[v = -\frac{fu'' + (fu - 2a_1)u' - fu^3 + a_1u^2 - (a_1^2 - 2a_0 + 12f^2)u - c'' - 1}{u'' + uu' - u^3 - 12fu - 12c} \quad \text{and (2.11)} \]
A Sakka and U Mug´an define a one-to-one correspondence between a solution v(z) of PI and a solution u(z) of the following second degree equation

\[[2(a_1 u + a_0)u_0 - 2a_1 u_0 + R(u)u_0 - Q(u)]]_1 \]

\[= [2a_1 u^0 - a_1 u^2 + (a_1^0 - 2a_0)u + (a_0^0 + 12fa_1)]^2 \]

where

\[
R_2(u) = a_1 u^2 - (a_1^1 - 4a_0)u - (a_0^1 + 36fa_1)
\]

\[
Q_4(u) = a_1 u^4 + a_1^0 u^3 + (a_0^0 + 24fa_1)u^2 + 12(fa_1^0 - 2f^0a_1 - 2a_1^2)u + 12(fa_0^0 - 2f^0a_1 + 12f^2a_1 - 2a_0a_1). \]

Note that if \(a_1 = f = 0 \), then \(y = -u \) solves the following equation

\[y'' - 2yy' = 1 \frac{1}{2z} (y' - y^2) + \left(y + \frac{1}{2z} \right) \sqrt{(y' - y^2)^2 - 24z}. \]

The second-order second degree Painleve-type equation for \(y(z) \) was first obtained by Bureau [2]. If \(1 \) is a complete square, that is \(a_0 = a_1 = 0 \) then \(u \) satisfies PX in [17 p 334].

Case II. 2\(d^2 u^2 - 4audu + 2a^2 6 = 0 \). In this case equation (2.2) can be written as

\[(v + h)(Av^2 + Bv + C) = 0 \]

where

\[
A = 2d^2u^2 - 4audu + 2a^2
\]

\[
B = du^0 + d(3e - 2dh)u^2 + (d^0 - 3ae - 3bd + 4adh)u - (a^0 - 3ab + 2a^2h + 6)
\]

\[
C = (e - dh)u^0 + (e^2 + 2df - 3deh + 2d^2h)u^2 \]

\[+ (e^0 - hd^0 - 2af - 2be - 2cd + 3ah + 3bdh - 4adh)u \]

\[-(b^0 - b^2 - ha^0 - 2ac + 3abh - 6h - 2a^2h^2) \]

and \(h \) is a function of \(z \). \(f = h(e - dh) \) and \(b, c, d, e \) satisfy the following equations

\[(e - 2dh)(h^0 + bh - ah^2 - c) = 0 \]

\[c^0 - bc + z = h(b^0 - ha^0 - b^2 - 2ac + 3abh - 6h - 2a^2h^2). \]

One has to distinguish two cases: (i) \(d = 0 \) and (ii) \(d 6 = 0 \).

Case II.i. \(d = 0 \). When \(d = 0 \), without loss of generality, one can choose \(b = 0 \) and \(e = 1 \), then equations (1.11) and (2.2) take the following forms

\[u = \frac{v' + av^2 + c}{v + f} \quad Av^2 + Bv + C = 0 \]

respectively, where
Second degree Painleve’ equations

\[A = 2a^2 \quad B = - (3au + a^0 + 2a^2f + 6) \]

\[C = u^0 + u^2 + afu + f(a^0 + 2a^2f + 6) + 2ac. \] (2.19)

Clearly, a should be different than zero, then (2.17) and \(f = h \) yield

\[c = f^0 - af^2 \quad f^{00} + 6f^2 + z = 0. \] (2.20)

Then, for these choices \(u \) satisfies the following second degree equation of Painleve type

\[[8a^3u^{00} + 2a^2(3au - 7a^0 + 6a^2f + 6)u^0 - Q_3(u)]^2 = [2a^2u^0 - R_3(u)]^2 \] (2.21)

where

\[1 = -(8a^2u^0 - a^2u^2 - 2aa_1u - a_0) \]

\[Q_3(u) = a^3u^3 + a^2(5a^0 + 6a^2f + 42)u^2 + a[2aa_1^0 - 2a_1(2a^0 - 2a^2f - 6) + a_0]u \]

\[+ + aa_0^0 - a_0(3a^0 - 2a^2f - 6) \]

\[2 \]

\[R_3(u) = a^2u^2 + 2a(a^0 + 2a^2f - 12)u + 2a^0 - 3a^0 - 12a^0 + 4ca + 36a_1 = 3a^0 + 2a^2f + 18a_0 = a_0^2 - 4(a^2f - 3)a^0 - 4a^2(4ac + 3a_1f^2 + 6f) + 36. \]

Case II.ii. \(d \neq 0. \) Without loss of generality, one can set \(a = 0, d = 1. \) Then \(f = h(e^{-h}) \) and the first equation of (2.17) gives

\[(e - 2h)(h^0 + bh - c) = 0. \] (2.23)

If \(e = 2h, \) then \(f = h^2 \) and equations (1.11) and (2.2) become

\[u = \frac{u^0 + bv + c}{(v + h)^2} \quad Av^2 + Bv + C = 0 \] (2.24)

respectively, where

\[A = 2u^2 \quad B = u^0 + 4hu^2 - 3bu - 6 \]

\[C = hu^0 + 2h^2u^2 + (a_1 - 3b)u + a_0 - 6h a_1 = 2(h^0 + bh - c) \]

\[a_0 = -(b^0 - b^2 - 12h) e^0 - bc + z + h(a_0 - 6h) = 0. \] (2.25)

The discriminant \(1 \) of the second equation of (2.24) is

\[1 = (u^0 - 3bu - 6)^2 - 8u^2(a_1u + a_0). \] (2.26)

If \(1 \) is not a complete square, that is, \(a_1 \) and \(a_0 \) are not both zero, then \(u \) satisfies the following second degree equation

\[[4u(a_1u + a_0)u^0 - 3(2a_1u + a_0)u^2 - R_3(u)]u^0 + Q_3(u)]^2 \] (2.27)

\[= [3a_0u^0 - 2(a_1^0 - ba_1)u^2 - (2a_0^0 + ba_0 - 12a_1)u + 6a_0]^2 \]

where
\[R_2(u) = 2[(a'_1 - 3ba_1)u^2 + (a'_0 + 3ba_0 - 18a_1)u - 6a_0] \]

\[Z(u) = 2[3ba'_1 + 2a_1(a_0 - 36h - 3b^2)]u^3 \]
\[+ [12a'_1 + 3b(2a'_0 - ba_0) + 4a_0(a_0 - 36h)]u^2 + 12(a'_0 + 3ba_0)u + 36a_0. \]

If \(e \neq 2h \), then \(c = h^0 + bh, f = h(e - h) \) and equations (1.11) and (2.2) become

\[u = \frac{v' + bv + c}{(v + h)(v + e - h)} \quad Av^2 + Bv + C = 0 \]

(2.29)

respectively, where

\[A = 2u^3 \quad B = u^0 + (3e - 2h)u^2 - 3bu - 6 \]
\[C = (e - h)u^0 + e(e - h)u^2 + (a_1 - 3be + 3bh)u + a_0 - 6(e - h) \]
\[a_1 = e^0 - 2h^0 + b(e - 2h) \quad a_0 = -(b^0 - b^2 - 6e)h^0 + 6h^2 \]
\[+ z = 0. \]

The discriminant \(1 \) of the second equation of (2.29) is

\[1 = [u^0 - (e - 2h)u^2 - 3bu - 6]^2 - 8u^2(a_1u + a_0). \]

(2.31)

If \(1 \) is not a complete square, that is, \(a_1 \) and \(a_0 \) are not both zero, then \(u \) satisfies the following second degree equation

\[[4u(a_1u + a_0)u^0 - (7a_1u + 3a_0)u^2 - F_2(u)u^0 - Q_3(u)]^2 = [(a_1u - 3a_0)u^0 + R_3(u)]^2 \]

(2.32)

where

\[F_2(u) = [a_1^0 - 6ba_1 + 3a_0(e - 2h)]u^2 + (a_0^0 + 3ba_0 - 24a_1)u - 6a_0 \]
\[Q_3(u) = a_1(e - 2h)^2u^5 - [2(e - 2h)(a_1^0 - ba_1) + 4a_1^2 - (e - 2h)^2a_0]u^4 \]
\[-[3b(2a_1^0 - 7ba_1) + 4a_1(2a_0 + 6h - 21e) + 2(e - 2h)(a_0^0 + 5ba_0)]u^3 \]
\[-[12(a_1^0 - 3ba_1) + 3b(2a_0^0 - ba_0) + 4a_0(a_0 - 15e - 6h)]u^2 \]
\[-12(a_0^0 + 3ba_0 - 3a_1)u - 36a_0 \]
\[R_3(u) = a_1(e - 2h)u^3 + [2a_1^0 - 5ba_1 - 3a_0(e - 2h)]u^2 + (2a_0^0 + ba_0 - 18a_1)u - 6a_0. \]

If \(1 \) is a complete square, that is, \(a_1 = a_0 = 0 \), then \(w = 6/u \) solves PXXVIII [17, p 340].
3. Painleve II

In this section we consider the equation PII. Let \(v(z) \) be a solution of PII

\[
\frac{dv}{dz} = 2v^3 + zv + \alpha. \tag{3.1}
\]

One finds that \(P_1 = P_2 = 0 \) and \(P_3 = 2v^3 + zv + \alpha \) by comparing (3.1) with (1.9). Then equation (1.13) becomes

\[
2d^2u^2 - 4adu + 2a^2 - 2)v^3 + [du' + 3deu^2 + (d' - 3ae - 3bd)u - (a' - 3ab)]v^2
+ [eu' + 2df + e^2]u^2 + (e' - 2af - 2be - 2cd)u - (b' - b^2 - 2ac + z)]v
+ [fu' + efu^2 + (f' - bf - ec)u - (c' - bc + \alpha)] = 0. \tag{3.2}
\]

To reduce (3.2) to a quadratic equation for \(v \), there are two cases depending on whether the coefficient of \(v^3 \) is zero or not.

Case I. \(2d^2u^2 - 4adu + 2a^2 - 2 = 0 \). This implies that \(d = 0, a^2 = 1 \). One has to consider the two cases: (i) \(e = 0 \), and (ii) \(e \neq 0 \) separately.

Case I.i. \(e = 0 \).

With a proper Mobius transformation, one can choose \(c = 0 \), and \(f = 1 \).

Then equations (1.11) and (3.2) take the form of

\[
u = v^0 + av^2 + bv \quad \quad Av^2 + Bv + C = 0 \tag{3.3}
\]

respectively, where

\[
A = -3ab \quad \quad B = 2au + b_0 \quad \quad C = -(u^0 - bu - \alpha) \quad \quad b_0 = b^0 - b^2 + z. \tag{3.4}
\]

When \(b = 0 \), \(u(z) \) satisfies the following second-order second degree Painleve-type equation:

\[
[18b^2u'' + 6b(2au - 2b_0 + 3z)u' - Q_3(u)]^2
= [4u^2 - 2a(b_0 + 6b^2 - 3z)u + 3bb'_0 - 2b_0^2 + 3zb_0 + 6aab]^2 \Delta \tag{3.5}
\]

where

\[
1 = -[12abu_0^0 - 4u^2 - 4a(b_0 + 2b^2 + z)u - b_0^2 - 12aab]
\]

\[
Q_3(u) = 8u^3 + 12a(2b^2 + z)u^2 + 6(bb'_0 - b_0^2 + 2b^2b_0 + 2zb_0 + 6b^4 + 4ab_0)u
+ 3abb_0 - 2ab_0^3 + 3azb_0^2 - 6abb_0 + 18ab(b^2 + z). \tag{3.6}
\]

When \(b = 0 \) the discriminant \(1 \) is a complete square, \(u \) is a solution of PXXXIV in [17, p 340].

Case Iii. \(e \neq 0 \).

Without loss of generality, one can choose \(b = 0 \) and \(e = 1 \). Hence equations (1.11) and (3.2) become

\[
u = \frac{v'}{v + f} \quad \quad Av^2 + Bv + C = 0 \tag{3.7}
\]
respectively, where
\[A = 3au \quad B = -(u^0 + u^2 - 2afu + b_0) \]
\[C = -[fu^0 + fu^2 + (a_1 + af^2)u + a_0 + fb_0] \]
\[a_0 = -f(e^0 + 2afc - zf + \alpha) \quad b_0 = 2ac - z. \]

The discriminant \(1 \) of the second equation of (3.7) is
\[1 = (u^0 + u^2 + 4afu + 2ac - z)^2 + 12au(a_1u + a_0). \]

If \(1 \) is not a complete square, that is, \(a_1 \) and \(a_0 \) are not both zero. Then \(u \) satisfies the following second degree equation
\[[6u(a_1u + a_0)u00 - 2(4a1u + a_0)u02 + F_3(u)u0 - Q_5(u)]_2 = [2(2a_1u - a_0)u0 - R_5(u)]_21 \]

where
\[F_3(u) = 2a_1u^3 - (3a_1^0 - 11a_0^0 + 16afa_1)u^2 - (3a_0^0 - 20afa_0 + 10a_1b_0)u - a_0b_0 \]
\[Q_5(u) = 2a_1u^5 + (3a_0^0 - a_0 + 16afa_1)u^4 + [3a_0^0 + 12afa_0^0 + 4(2f^2 - 4ac - z)]a_1 \]
\[-8afa_0]u^3 + [b_0(3a_0^0 + 28afa_1) + 12afa_0^0 + 6(2a_1 + 1)a_1 \]
\[-2a_0(20f^2 + 14ac - z)]u^2 + [b_0(3a_0^0 + 4afa_0) \]
\[+6a_0(2a_1 + 1) + 2a_1b_0^2]u - a_0b_0^2 \]
\[R_5(u) = 2a_1u^3 - (3a_0^0 + 4afa_1 - 5a_0^0)u^2 - (3a_0^0 - 8afa_0 - 4a_1b_0)u - a_0b_0. \]

If \(1 \) is a complete square, that is, \(a_1 = a_0 = 0 \), then \(u \) satisfies PXXXV [17, p 340].

Case II. \(2d^2u^2 - 4adu + 2a^2 - 2 = 0. \) In this case (3.2) can be written as
\[(v + h)(Av^2 + Bv + C) = 0 \]

where
\[A = 2d^2u^2 - 4adu + 2a^2 \]
\[B = du^0 + d(3e - 2dh)u^2 + (d^0 - 3ae - 3bd + 4ad)u - (a^0 - 3ab + 2a^2h - 2h) \]
\[C = (e - dh)u^0 + (e^2 + 2df - 3deh + 2d^2h^2)u^2 \]
\[+(e^0 - hd^0 - 2af - 2be - 2cd + 3ae + 3bdh - 4ad^2)u \]
\[-(b^0 - b^2 - ha^0 - 2ac + 3abh + 2h^2 - 2a^2h^2 + z) \]

\(h \) is a function of \(z, f = h(e - dh) \), and \(b,c,d,e \) satisfy the following equations
\[(e - 2dh)(h' - ah^2 + bh - c) = 0 \]
\[c' - bc + \alpha = h(b' - ha' - b^2 - 2ac + 3abh + 2h^2 - 2a^2h^2 + z). \]
There are two distinct cases: (i) \(d = 0 \) and (ii) \(d \neq 0 \).

Case II.i. \(d = 0 \). With a proper Mobius transformation, one can set \(b = 0, e = 1 \). Therefore equations (1.11) and (3.2) become

\[
\frac{u'}{v} + \frac{av^2 + c}{v + f} = 0 \quad \text{Av}^2 + \text{Bv} + \text{C} = 0 \tag{3.15}
\]

respectively, where

\[
\begin{align*}
A &= -2(a^2 - 1) \\
B &= 3au + b_0 \\
C &= -(u^0 + u^2 + afu + c_0) \\
b_0 &= a^0 + 2f(a^2 - 1) \\
c_0 &= fb_0 + 2ac - z.
\end{align*}
\tag{3.16}
\]

Then \(h = f \) and equation (3.14) imply

\[
\begin{align*}
\frac{f^0}{u} &= 2f^3 + zf - a, \\
c &= f^0 - af^2.
\end{align*}
\tag{3.17}
\]

When \(A \neq 0 \), \(u \) satisfies the following second-order second degree equation of Painlevé type:

\[
\begin{align*}
&[8(a^2 - 1)^2u'' + 2a(a^2 - 1)(3au - 7a' + 6fa^2 - 6fu - Q_3(u))'' \\
&= [2a(a^2 - 1)u' - R_2(u)]^2 \Delta
\end{align*}
\tag{3.18}
\]

where

\[
1 = -[8(a^2 - 1)u^0 - (a^2 + 8)u^2 - 2a_1u - a_0]
\]

\[
Q_3(u) = (a^2 + 8)(a^2 + 2)u^3 + a[(5a^2 - 14)a^0 + 6fa^2 - 1)(a^2 + 4)]u^2
\]

\[
+[2a(a^2 - 1)(a^0 + 2afa_1) - 2a(2a^2 + 1)a^0 + a_0(a^2 + 2)]u
\]

\[
+(a^2 - 1)(a_0^0 + 2afa_0) - 3aa_0^a
\]

\[
R_2(u) = a(a^2 - 10)u^2 + 2[(a^2 + 2)a_0 + 2f(a^2 - 1)(a^2 - 3)]u
\]

\[
-2(a^2 - 1)[a^00 + 2c(a^2 - 3) + 2az] + 3aa_0^2a_1 = 3a^0 +
\]

\[
2f(a^2 - 1) a_0 = a^0 - 4f(a^2 - 1)a^0 - 12f(a^2 - 1)^2 - 8(a^2 - 1)(2ac - z).
\]

Case II.ii. \(d \neq 0 \). Without loss of generality we set \(a = 0, d = 1 \). Then the first equation of (3.14) gives

\[
(e - 2h)(h^0 + bh - c) = 0.
\tag{3.20}
\]

If \(e = 2h \), then \(f = h^2 \) and equations (1.11) and (3.2) become

\[
\frac{u'}{v} + \frac{bv + c}{(v + h)^2} = 0 \quad \text{Av}^2 + \text{Bv} + \text{C} = 0 \tag{3.21}
\]

respectively, where

\[
\begin{align*}
A &= 2(u^2 - 1) \\
B &= u^0 + 4hu^2 - 3bu + 2h \\
C &= hu^0 + 2h^2u^2 + (a_1 - 3bh)u + a_0 + 4h^2
\end{align*}
\tag{3.22}
\]
The discriminant 1 of the second equation of (3.21) is
\[1 = (u^0 - 3bu + 6h)^2 - 8(u^2 - 1)(a_1u + a_0). \] (3.23)

If 1 is not a complete square, that is, \(a_1\) and \(a_0\) are not both zero, then \(u\) satisfies the following second degree equation
\[[4(u^2 - 1)(a_1u + a_0)u'' - 3(2a_1u^2 + a_0u - a_1)u'u^2 - 2F_3(u)u' + Q_4(u)]^2 \]
\[= [3(a_0u + a_1)u' - R_3(u)]^2 \] \(\Delta\) (3.24)

where
\[F_3(u) = (a_1^0 - 3ba_1)u^3 + (a_0^0 + 3ba_0 + 18ha_1)u^2 - (a_1^0 - 6ha_0)u - (a_0^0 + 6ba_0 + 12ha_1)Q_4(u) = 2[3b(a_1^0 - 2ba_1) + 2a_1(a_0 + 18h^2 + 3z)]u^4 - [12h(a_1^0 + 2ba_1) \]
\[-4a_1(a_1 + 6c) - 3b(2a_0^0 - ba_0) - 4ba_0(a_0 + 18h^2 + 3z)]u^3 \]
\[-3[b(2a_0^0 - 7ba_1) + a_1(6h^2 + z) + 4ha_0^0 + 4a_0(5bh - 2c)]u^2 \]
\[+2[6h(a_0^0 - ba_1) - 2a_1(a_1 + 6c) - 3ba_0^0 \]
\[-2a_0(a_0 + 18h^2 + 3z - 3b^2)]u + 4[3ha_0^0 - a_0^0(a_1 + 6c - 6bh) + 9h^2a_1] \]
\[R_3(u) = 2(a_1^0 - ba_1)u^3 + (2a_0^0 + ba_0 + 12ha_1)u^2 \]
\[-(2a_1^0 + ba_1 - 6ha_0)u - 2(a_0^0 + 2ba_0 + 3ha_1). \]

If \(e \neq 0\) and \(e = h' + bh\) and \(f = h(e - h)\), then equations (1.11) and (3.2) become
\[Av^2 + Bv + C = 0 \] (3.26)
respectively, where
\[A = 2(u^2 - 1) \quad B = u^0 + (3e - 2h)u^2 - 3bu - 6 \]
\[C = (e - h)u^0 + e(e - h)u^2 + (a_1 - 3be + 3bh)u + a_0 - 2e(e - h) \]
\[a_1 = g^0 + bg_0 = -(b^0 - b^2 + z + 2e^2 - 2eh + 2h^2)h^{00} - 2h^3 - zh + \]
\[a_0 = 0 \quad g = e - 2h. \] (3.27)

The discriminant 1 of the second equation of (3.26) is
\[1 = [u^0 - gu^2 - 3bu + 2(2e - h)]^2 - 8(u^2 - 1)(a_1u + a_0). \] (3.28)

If 1 is not a complete square, that is, \(a_1\) and \(a_0\) are not both zero, then by using the linear transformation \(u = py + q\), where \(p(z)\) and \(q(z)\) are solutions of the following equations
Second degree Painlevé equations

\[p^2 - 2gpq - 3bp = 0 \quad q^2 - gq^2 - 3bq + 2(2e - h) = 0 \]
\text{(3.29)}

y(z) satisfies the following second degree equation

\[
[F_3(y) y'' - p^3 Q_3(y) y'^2 - p^3 R_3(y) y' - p^4 S_3(y)]^2 \\
= [T_2(y) y' + G_4(y)]^2 [p^2 (y' - pgq)^2 - 2F_3(y)]
\]
\text{(3.30)}

where

\[F_3(y) = 4(p^3y^2 + 2pqy + q^2 - 1)(c_1 y + c_0) \]
\[Q_3(y) = 7pf_3 y^2 + (3pf_2 + 5qf_3) y + 3pf_1 - 5q(f_2 - 2qf_1) \]
\[R_3(y) = [c_1 + g(3p^3 f_2 - 5qc_1)] y^3 + [p(p f_3 + 2pf_2) + g(4p^3 f_1 + 5qc_0)] y^2 \\
+ [p(p f_1 + 2pf_0) + 4gp_3 f_0] y + p(p f_0 + 2pf_0) \]
\[S_3(y) = g^2 p^3 f_3 y^5 - [2p^2 (g f_3 - 2g f_3) - g^2 (3qc_1 - pc_0) + 4p^3 f_3^2] y^5 \\
- [2p^2 (g f_0^3 - 2g f_1 + 4f_3(3qc_1 - pc_0) - g^2 (2p^3 f_1 - 5qc_0)) y^4 \\
- [2p^2 (g f_0^3 - 2g f_1 + 4f_3(3qc_1 - pc_0) - 4f_3(3qc f_1 - 5qc_0))] y^3 \\
- [2p^2 (g f_0^3 - 2g f_1 + 4f_3(p^3 f_1 - 5qc_0) + 20qc f_1 + 5p^3 f_0 f_3)] y^2 \\
- 4[2p^2 f_1^3 - 5qc f_0^3 f_1 + 6f_3(3qc_1 - pc_0)] y - 4f_0(2p^3 f_1 - 5qc_0) \]
\[T_2(y) = p[p^3 f_3 y^2 + (5qc_1 - 3pc_0) y + 11qc_0 - 4p^3 f_1] \]
\[G_4(y) = gp^3 f_1 y^4 + p[2f_3 - f_3(2gq - b) + 3gp f_2] y^3 \\
+ p^2 [2p^2 f_3 + 8f_3(qp - q' p) + 2gp^3 f_1 \\
+ 3gq f_0 + 4p^2 f_3(qg + b)] y^2 + [4pq f_0 - 4(p' q + pq') c_0 \\
+ 2(q^2 - 1)c_1 - 4qq' c_1 + 4gp^5 f_0 - 4p^4 f_1(qg + b)] y \\
+ 2[(q^2 - 1)c_1 - 2qq' c_1 + 2p^4 f_0(qg + b)] \]
\[c_1 = p a_1 \quad c_0 = qa_1 + a_0 \]
\[f_3 = \frac{c_1}{p^2} \quad f_2 = \frac{2qc_1 + pc_0}{p^3} \quad f_1 = \frac{c_1(q^2 - 1) + 2pq c_0}{p^4} \quad f_0 = \frac{c_0(q^2 - 1)}{p^4} \]
\text{(3.31)}

If 1 is a complete square, then \(u = \frac{a + 1}{2} \) is a solution of PXLV [17, p 342].

4. Painlevé III Let \(v(z) \) be a

solution of PIII
Then, equation (1.13) takes the form of:

\[
[d^2 u^2 - 2adu + a^2 - \gamma]v^4 + [du' + deu^2 + \left(d' - ae - bd + \frac{d}{z}\right)u
- \left(a' + 2a + \alpha - ab\right)v^3 + \left(eu' + \left(e - \frac{e}{z}\right)u - \left(b' + \frac{b}{z}\right)\right)v^2
+ \left[f' - ef + \left(f - \frac{f}{z} + bf + ce\right)u - \left(c' + \frac{c + \beta}{z} + bc\right)\right]v
\]

(4.2)

There are three distinct cases to reduce (4.2) to a quadratic equation in \(v\).

Case I. If \(d^2 u^2 - 2adu + a^2 - \gamma \neq 0\), then (4.2) can be written as

\[
(v + hv + g)(Av + Bv + C) = 0
\]

(4.3)

where

\[
A = d^2 u^2 - 2adu + a^2 - \gamma
\]

\[
B = du' + d(e - dh)u^2 + \left(d' - \frac{d}{z} - bd - ae + 2adh\right)u
- \left(a' + 2a + \frac{\alpha}{z} - ab\right) - h(a^2 - \gamma)
\]

\[
C = (e - dh)u' - d(dg + h(e - dh))u^2
+ \left[e' + \frac{e}{z} - h\left(d' + \frac{d}{z} - \frac{bd - ae + 2adh}{z}\right) + 2adg\right]u
- \left(b' + \frac{b}{z}\right) + h\left(a' + \frac{a + \alpha}{z} - ab\right) + h^2(a^2 - \gamma) - g(a^2 - \gamma)
\]

(4.4)

and \(a, b, c, d, e, f, g, h\) satisfy

\[
g(e - dh) = 0 \quad h(e - dh) = f - dg
\]

\[
dgh(e - dh) = f^2 - d^2 g^2 \quad dh(dg + h(e - dh)) - dg(e - dh) = ef
\]

\[
g\left[e' + \frac{e}{z} - h\left(d' + \frac{d}{z} - \frac{bd - ae + 2adh}{z}\right) + 2adg\right] = 2cf
\]

\[
g\left[b' + \frac{b}{z} - h\left(a' + \frac{a + \alpha}{z} - ab\right) - h^2(a^2 - \gamma) + g(a^2 - \gamma)\right] = c^2 + \delta
\]

\[
h\left[e' + \frac{e}{z} - h\left(d' + \frac{d}{z} - \frac{bd - ae + 2adh}{z}\right) + 2adg\right]
+ g\left(d' + \frac{d}{z} - \frac{bd - ae + 2adh}{z}\right) = f' + \frac{f}{z} + bf + ce
\]

\[
h\left[b' + \frac{b}{z} - h\left(a' + \frac{a + \alpha}{z} - ab\right) - h^2(a^2 - \gamma) + 2g(a^2 - \gamma)\right]
+ g\left(a' + \frac{a + \alpha}{z} - ab\right) = \left(c' + \frac{c + \beta}{z} + bc\right).
\]

(4.5)

Hence

there are two subcases: (i) \(e \neq dh\) and (ii) \(e = dh\).

Case I.i. \(e \neq dh\). Then (4.5) implies \(f = g = h = 0\), and
Second degree Painleve’ equations

\[c^2 + \delta = 0 \quad \text{ce} = 0 \quad \frac{c + \beta}{z} + bc = 0. \] (4.6)

Equation (4.6) gives \(c = \beta = \delta = 0 \). In the case of \(\beta = \delta = 0 \), the transformation [11]

\[w = z \left(\frac{v'}{v} + \gamma^{1/2} \right) \quad v = \frac{w'}{\gamma^{1/2}w + \alpha + \gamma^{1/2}} \]

transforms PIII into

\[w'' = \frac{1}{z} w w' \] (4.7)

which has the first integral \(z w' = \frac{1}{2} w^2 + w + k, \ k = \text{constant} \).

There are two subcases which should be considered separately: (1) \(d = 0 \) and (2) \(d \neq 0 \).

Case I.i: \(d = 0 \). Then without loss of generality one can set \(b = 0 \) and \(e = 1 \). With these choices equations (1.11) and (4.2) become

\[u = \frac{v' + av^2}{v} \quad Av^2 + Bv + C = 0 \] (4.8)

respectively, where

\[A = -z(a^2 - \gamma) \]
\[B = za + za^0 + a + \alpha \] (4.9)
\[C = -(zu^0 + u). \]

Note that \(A \neq 0 \), thus the second-order second degree Painleve-type equation related with PIII is:

\[2z^2(a^2 - \gamma)^2u'' - F_1(u)u' - Q_3(u) = [za(a^2 - \gamma)u_0 - R_2(u)]^2 \] (4.10)

where

\[\Delta = -4z^2(a^2 - \gamma)u' - z^2a^2u^2 - 2z(zaa' - a^2 + a\alpha + 2\gamma)u - (za' + a + \alpha)^2 \]
\[F_1(u) = z(a^2 - \gamma)[zaa' - 5a^2u + zaa' - 5a^2u + 3a\alpha + 2\gamma] \]
\[Q_3(u) = z[za^2(a^2 - \gamma)u'' - z^2(zaa' - a^2(a^2 - \gamma)]u + za\alpha(a^2 + \gamma)(za' - a) + 2(a\alpha + \gamma)^2 + \gamma(2a^2 + 4aa + 2a^2)u \]
\[+ \left(a' + \frac{1}{z} \right) \left(za^2(a^2 - \gamma)u'' \right) \]
\[- za'a^2 + za^2 + z(a^2 - \gamma)a' + \alpha \right] \]
\[R_2(u) = za^2u' - (a^3 - aa^2 + \gamma - a\alpha)u + (a^2 - \gamma)(za' + 2a') \]
\[- (za' + a + \alpha) \left(za' + a + \alpha \right) \right) \] (4.11)

As a special case of (4.10), if \(a = 0, \gamma \neq 0 \) then the transformation
transforms (4.10) to the following second degree equation
\[y'' = 2(y + a_0)y' + 2(b_1y + b_0)p y' \] (4.13)

where
\[a_0 = 1 - \frac{a^2 x}{4y} \quad b_1^2 = \frac{a^2}{y} \quad b_0 = b_1a_0. \]

Equation (4.13) was also obtained in [2].

Case I.1-2. \(d \neq 0 \). With a proper Mobius transformation one can set \(a = 0 \) and \(d = 1 \). Hence, equations (1.11) and (4.2) respectively become
\[u = \frac{u' + bv}{v^2 + ev} \quad \quad Av^2 + Bv + C = 0 \] (4.14)

where
\[A = u^2 - \gamma \]
\[B = u' + eu^2 - \left(b - \frac{1}{z} \right) u - \frac{1}{z} \alpha \]
\[C = eu' + \left(g_1 - be + \frac{1}{z} e \right) u + g_0 - \frac{1}{z} \alpha e + \gamma e^2 \] (4.15)
\[g_1 = \epsilon' + be \quad g_0 = - \left(b' + \frac{b - \alpha e}{z} + \gamma e^2 \right). \]

The discriminant \(\Delta \) of the second equation of (4.14) is
\[\Delta = \left[u' - eu^2 - \left(b - \frac{1}{z} \right) u + 2\gamma e - \frac{1}{z} \alpha \right]^2 - 4(u^2 - \gamma)(g_1u + g_0). \] (4.16)

If \(g_1 \) and \(g_0 \) are not both zero, then \(y = \frac{u - q}{p} \), where \(p(z) \) and \(q(z) \) are solutions of the following equations
\[p' - 2epq - p \left(b - \frac{1}{z} \right) = 0 \quad q' - eq^2 - q \left(b - \frac{1}{z} \right) + 2\gamma e - \frac{1}{z} \alpha = 0 \] (4.17)

satisfies the following second degree Painlevé equation.
Second degree Painleve’ equations

\[[pF_3(y)y'' - pQ_2(y)y'^2 - R_4(y)y' + p^2 S_5(y)]^2 = p^2 [T_2(y)y'' + G_3(y)]^2 [(y' - ep y')^2 - 2p^2 F_3(y)] \]
(4.18)

Where

\[F_3(y) = 2(c_1y + c_0)(y^2 + 2a_1y + \alpha_0) \]
\[Q_2(y) = 3c_1y^2 + (c_0 + 5a_1c_1)y + a_1c_0 + 2a_0c_1 \]
\[R_4(y) = ep^2c_1y^4 + \{pc_1 + 2p^2c_1 + 2ep^2(c_0 - a_1c_1)\}y^3 \]
\[+ [pf_2 + 2p^2 f_2 + ep^2(8a_1c_0 + a_0c_1)]y^2 \]
\[+ [pf_1 + 2p^2 f_1 + 4ep f_0]y + pf_0 + 2p^2 f_0 \]
\[S_5(y) = [ec'_1 - 2e' c_1 + pe^2(c_0 - a_1c_1)]y^5 \]
\[+ [ef'_2 - 2e' f_2 - 4c_1(c_0 - a_1c_1) + pe^2(a_1c_0 - a_0c_1)]y^4 \]
\[+ [ef'_1 - 2e' f_1 - 4pc_1(c_0 - a_1c_1) - 4pf_2(c_0 - a_1c_1)]y^3 \]
\[+ [ef_0 - 2e' f_0 - 4pf_2(c_0 - a_1c_1)]y^2 \]
\[- 4p[f_1(c_0 - a_1c_1) + f_0(c_0 - a_1c_1)]y - 4pf_0(a_1c_0 - a_0c_1) \]
\[T_2(y) = c_1y^2 - (c_0 - 3a_1c_1)y + 2a_0c_1 - 4a_1c_0 \]
\[G_3(y) = [c_1 + c_1(eq - 2b) + ep f_2]y^3 \]
\[+ [f'_2 - 4c_1a'_1 + ep(3a_1c_0 + a_0c_1) + 2f_2(eq - b)]y^2 \]
\[+ [f'_1 - 2c_1a'_0 - 4c_0a'_1 + 2ep f_0 + 2f_1(eq - b)]y \]
\[+ f'_0 - 2c_0a'_0 + 2f_0(eq - b) \]

\[a_1 = \frac{-q}{p} \quad a_0 = \frac{-1}{p^2} \quad c_1 = \frac{-1}{p^g_1} \quad c_0 = \frac{-1}{p^2 (qg_1 + g_0)} \]
\[f_2 = 2a_1c_1 + c_0 \quad f_1 = 2a_1c_0 + a_0c_1 \quad f_0 = a_0c_0. \]
(4.19)

If \(g_1 = g_0 = 0 \) and \(\gamma = 0 \) then \(w = \frac{u - \sqrt{\gamma}}{u + \sqrt{\gamma}} \) is a solution of PXL in [17, p 341]. If \(g_1 = g_0 = 0 \) and \(\gamma = 0 \) then \(w = \frac{a}{b} \) is a solution of PXVI in [17, p 335]. It should be noted that both PXL and PXVI have first integrals [17].

Case I.ii: \(e = dh \). Then the second equation of (4.5) gives \(f = dg \) and hence \(d = 0 \). Without loss of generality one can take \(a = 1 \) and \(d = 1 \). Thus (4.4) and (4.5) yield respectively

\[A = u^2 - \gamma \]
\[B = u' - \left(b - \frac{1}{z} \right) u + \gamma e - \frac{1}{\gamma} \]
\[C = -(fu^2 + g_1u + g_0) \]
\[g_1 = -(e' + be) \quad g_0 = b' + \frac{1}{z} - \frac{\alpha}{z} + e^2 + \gamma f \]
(4.20)

and

\[f(g_1 + 2c) = 0 \quad e(g_1 + c) + f' + 2bf = 0 \]
\[fg_0 = c^2 + \delta \quad eg_0 = f \left(\gamma e - \frac{1}{z} \right) + c' + \frac{c + \beta}{z} + bc = 0 \]
(4.21)

Thus (1.11) becomes
The discriminant 1 of $Av^2 + Bv + C = 0$ is

$$\Delta = \left[u' - \left(b - \frac{1}{z}\right)u + \gamma e - \frac{1}{z} \alpha\right]^2 + 4(u^2 - \gamma)(fu^2 + g_1u + g_0).$$ \hspace{1cm} (4.23)$$

If 1 is not a complete square, then one obtains the following the second-order second degree equation related with PIII

$$[2(u^2 - \gamma)(cu - g_0)u'' - u(cu - g_0)u^2 + F_3(u)u' + Q_5(u)]^2 = [u(cu - g_0)u' + R_4(u)]^2 \Delta$$ \hspace{1cm} (4.24)$$

where

$$F_3(u) = (u^2 - \gamma)(3cb_1u + g'_0 - 2b_1g_0 + cb_0)$$

$$Q_5(u) = 8\delta u^5 + 2c(b'_1 + b'_2 + 6g_0)u^4$$

$$- (2g_0b'_1 - 2cb'_0 - b_1g'_0 + 4g'_0 + g_0b^2_1 - 4cb_0b_1 - 12\gamma \delta)u^3$$

$$- (2g_0b'_0 + 2\gamma cb'_1 - b_0g'_0 + 16\gamma e g_0 + \gamma cb^2_1 + 2g_0b_0b_1 - 2cb^2_0)u^2$$

$$+ (2\gamma g_0b'_1 - 2\gamma b_1g'_0 - \gamma b_1g'_0 + 4\gamma g'_0 - 2\gamma b_0b_1 + 4\delta \gamma^2 - g_0b^2_0)u$$

$$+ \gamma (2g_0b'_0 + b_0g'_0 + 4\gamma e g_0 - cb^2_0)$$

$$R_4(u) = 2ceu^4 - 2(eg_0 + bc)u^3 + (g'_0 + 2bg_0 + b_1g_0 - 2\gamma ce)u^2$$

$$+ (2cb + 2\gamma eg_0 - \gamma cb_1 - b_0g_0)u - \gamma (g'_0 + 2bg_0 + cb_0)$$

$$b_1 = -\left(b - \frac{1}{z}\right), \quad b_0 = \gamma e - \frac{1}{z} \alpha$$

if $f = 0$. If $f \neq 0$ then by using the linear transformation $u = py + q$, where $p(z)$ and $q(z)$ are given as follows

$$p(z) = \frac{1}{z} \exp \left(\int^z b(s) \, ds \right), \quad q(z) = -p(z) \int^z \frac{1}{p(s)} \left[\gamma e(s) - \frac{s}{s} \alpha \right] \, ds$$ \hspace{1cm} (4.26)$$

$y(z)$ solves the following second degree equation of Painleve type1

$$[F_4(y)y'' - Q_5(y)y'^2 - R_4(y)y' + F_4(y)S_5(y)]^2$$

$$= p^2[T_2(y)y' - G_5(y)]^2[y'^2 + 2pF_4(y)]$$ \hspace{1cm} (4.27)$$
Second degree Painlevé equations

\[F_4(y) = 2p(y^2 + 2a_1y + a_0)(f'y^2 + 2c_1y + c_0) \]
\[Q_3(y) = p(2fy^3 + 3f_1y^2 + f_2y + f_1) \]
\[R_4(y) = (pf' + 2pf')y^4 + (pf'_1 + 2pf'_3)y^3 + (pf'' + 2pf''_2)y^2 + (pf''' + 2pf'''_1)y + (pf'_0 + 2pf'_0) \]

\[S_1(y) = 2p(2fy^3 + 3f_1y^2 + f_2y + f_1) \]

\[T_3(y) = -\frac{c}{p}y^2 + (f - 2c_0 - 4a_1c_1)y + f_1 - 2a_1c_0 \]

\[G_5(y) = 2epfy^3 - [f' - 2f(eq - b) - 4epf_3]y^4 \]

\[= \frac{1}{p^2}(q^2 - \gamma) \]

\[a_1 = \frac{c}{p} \]

\[c_1 = \frac{1}{p}(fq - c) \]

\[c_0 = \frac{1}{p^2}(p^2c_1^2 + \delta) \]

If 1 is a complete square, that is, \(C = 0 \), then \(ec = 0 \). If \(e = 0 \) then this case reduces to the case Li-2 with \(a_1 = a_0 = 0 \). If \(e = 0 \) and \(\gamma = 0 \), then \(w = zu \) is a solution of PIII. If \(e = 0 \) and \(\gamma = 0 \), then

\[w(x) = \frac{u - \sqrt{\gamma}}{u + \sqrt{\gamma}} \]

where \(z^2 = 2x \), is a solution of PV with \(\delta = 0 \) [11].

Case II.

Then (4.2) can be written as:

\[(v + f)(Av^2 + Bv + C) = 0 \]

where

\[A = au + \frac{a + \alpha}{z} \]

\[B = -\left[u' + \left(af + \frac{1}{z}\right)u + f\left(\frac{a + \alpha}{z}\right)\right] \]

\[C = fu^2 - (f' - af^2 + c) + \left(c' + c + \frac{\beta}{z} + a + \frac{\alpha}{z} f^2\right) \]

and

\[a^2 - \gamma = 0 \]

\[f(f' - af^2 - c) = 0 \]

\[f\left(c' + \frac{c + \beta}{z} + a + \frac{\alpha}{z} f^2\right) = c^2 + \delta. \]

If \(f = 0 \) then (4.31) implies

\[c = f^0 - af^2 \]

\[c' + \frac{c + \beta}{z} + a + \frac{\alpha}{z} f^2 = \frac{1}{f}(c^2 + \delta). \]

The discriminant 1 of \(Av^2 + Bv + C = 0 \) reads

\[\Delta = \left[u' + \left(af + \frac{1}{z}\right)u + f\left(\frac{a + \alpha}{z}\right)\right]^2 - 4\left(au + \frac{a + \alpha}{z}\right)\left(fu^2 - 2cu + \frac{c^2 + \delta}{f}\right) \]
and equation (1.11) becomes

\[u = \frac{v' + av^2 + c}{v + f}. \]
(4.34)

Let \(y = \frac{u - q}{p} \), where \(p(z) \) and \(q(z) \) are given as

\[
\begin{align*}
p(z) &= \frac{1}{z} \exp \left[-a \int f(s) \, ds \right] \\
q(z) &= \frac{a + \alpha}{a} \left[\frac{p(z) - 1}{z} \right] = 0 \\
q(z) &= -\frac{\alpha}{z} \int f(s) \, ds \quad a = 0
\end{align*}
\]
(4.35)

Then \(y(z) \) is a solution of the following second degree Painlevé-type equation

\[
[F_3(y) y'' - Q_2(y) y'^2 - R_3(y) y' - F_1(y) S_2(y)]^2 = [Q_2(y) y' - T_4(y)]^2 y'^2 - 2pF_3(y) \]
(4.36)

where

\[
\begin{align*}
F_3(y) &= 2(ay + \sigma)(fy^2 + 2c_1y + c_0) \\
Q_2(y) &= (ay + \sigma)(fy + c_1) \\
R_3(y) &= a \left(f' + \frac{p'}{p} f \right) y^3 + \left(f'_1 + \frac{p'}{p} f_2 \right) y^2 + \left(f'_2 + \frac{p'}{p} f_1 \right) y + \sigma \left(c'_0 + \frac{p'}{p} c_0 \right) \\
S_2(y) &= 2p[2afy^2 + (3ac_1 + \sigma f)y + ac_0 + \sigma c_1] \\
T_4(y) &= 2afy^4 - \left[a \left(f' + \frac{p'}{p} f \right) - 2(pf_2 + aqf) \right] y^3 \\
&\quad - \left[\sigma \left(f' + \frac{p'}{p} f \right) + 2a \left(c'_1 + \frac{p'}{p} c_1 \right) - 2(pf_1 + qf_2) \right] y^2 \\
&\quad - \left[2\sigma \left(c'_1 + \frac{p'}{p} c_1 \right) + a \left(c'_0 + \frac{p'}{p} c_0 \right) - 2(\sigma pc_0 + qf_1) \right] y \\
&\quad - \left[\sigma \left(c'_0 + \frac{p'}{p} c_0 \right) - 2\sigma qc_0 \right]
\end{align*}
\]
(4.37)

\[\sigma = a + \alpha \quad c_1 = \frac{1}{p} (f_0 - c) \quad c_0 = \frac{1}{p^2 f} (p^2 c_1^2 + \delta) \]
(4.38)

If \(f = 0 \), then \(w = zu \) is a solution of the equation

\[
\left(w'' + \rho w + \sigma \frac{w}{2} \right)^2 = \frac{w^2}{z^2} (w'^2 + \rho w^2 + \sigma w + \tau) \\
\rho = 4\gamma^{1/2}(-\delta)^{1/2} \quad \sigma = 4[\alpha(-\delta)^{1/2} - \beta \gamma^{1/2}] \\
\tau = -4(\alpha + \gamma^{1/2})[\beta + (-\delta)^{1/2}] \]
(4.39)

Equation (4.39) was first obtained in [11] and also in [8] which was denoted as SD-III\(^0 \). When \(f = c = 0 \) then 1 is a complete square, and \(w = zu \) is a solution of (4.7).

Case III. \(d^2 u^2 - 2adu + a^2 - \gamma = 0 \) and \(du' + deu^2 + (d' - \alpha e - bd + \frac{d}{z}) u - (a' + \frac{d^2}{z} - ab) = 0 \). Then (1.11) and (4.2) become
Second degree Painlevé equations

\[u = \frac{v' + \alpha v^2 + \beta v + c}{ev + f} \]

\[Av^2 + Bv + C = 0 \] \hspace{1cm} (4.40)

respectively, where

\[A = eu' + \left(e' + \frac{1}{z} \right) u - \left(b' + \frac{1}{z} b \right) \]

\[B = fu' - ef u^2 + \left(f' + \frac{1}{z} f + bf + ce \right) u - \left(c' + \frac{\beta + \beta}{z} + bc \right) \] \hspace{1cm} (4.41)

\[C = -(f^2 u^2 - 2cfu + \alpha^2 + \delta). \]

and

\[a^2 - \gamma = 0 \quad \text{ae} = 0 \quad \frac{a + \alpha}{z} - ab = 0. \] \hspace{1cm} (4.42)

The discrete Lie-point symmetry of PIII [11]

\[\tilde{v} = \frac{1}{v} \quad \alpha^- = \beta \quad \beta^- = \alpha \quad \gamma^- = -\delta \quad \delta^- = -\gamma \] \hspace{1cm} (4.43)

transforms this case to the case I.i.

References

[17] Ince E L 1956 Ordinary Differential Equations (New York: Dover)
Jimbo M and Miwa T 1981 Physica 4D 47
Jimbo M 1979 Prog. Theor. Phys. 61 359