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Abstract

We investigate conductance through contacts created by pressing a hard tip, as used in scanning tunneling microscopy,
against substrates. Two different substrates are considered, one a normal metal (Cu) and another a semi-metal (graphite). Our
study involves the molecular dynamics simulations for the atomic structure during the growth of the contact, and selfconsistent
field electronic structure calculations of deformed bodies. We develop a theory predicting the conductance variations as the tip
approaches the surface. We offer an explanation for a quasiperiodic variation of conductance of the contact on the graphite
surface, a behavior which is dramatically different from contacts on normal metals.q 1999 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Brundle has been a pioneer in developing and
applying spectroscopic techniques, UPS in particular,
to a variety of fundamental as well as applied
problems. Our collaborative work [1,2]. spanned a
period of more than a decade when we (IPB and
CR13) both worked at IBM Almaden Research Center
in the physical sciences department. We were most
interested in investigating the interactions of atoms
and molecules with surfaces. More specifically, the
objective was to deduce atomic arrangements from
the modified electronic properties which the adsor-
bates (and surfaces) suffered when brought within a

few Å of each other. The work we present here to
honor Brundle still deals with bringing atoms close
to a surface, but has an entirely new focus. We employ
scanning tunneling microscopy (STM) to create
contacts of atomic widths and study conductance
through such "atomic" wires. The electron transport
through an atomic size contact is important not only
for a better understanding of mesoscopic physics, but
also for novel device applications. While the
tunneling current in STM can probe the local density
of states atEF and is used also as a spectroscopic tool,
the transport through a contact can provide valuable
information about both electronic and atomic struc-
tures.

The size of the contact width created by a sharp
metal tip on metal surfaces is set by a single atom at
the apex of the STM tip and has a typical radius,
Rc � 2–4 �A. The contact size grows as the tip is
pushed closer towards the sample. For typical metallic
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charge densities, the contact diameter, 2Rc, is in the
range of the Fermi wavelengthlF. In this length scale
the level spacing of electron energy eigenstates (trans-
versally confined to the contact) is approximately,
1 eV. The discrete structure of the contact leads to
observable variations in mechanical and electronic
properties whenever there is any change in its size
and atomic arrangement. In particular, the two term-
inal conductanceG of a contact has shown discontin-
uous (sudden) variations while the tip is pushed
continuously [3–11]. Similar behavior has been
obtained in a connective neck that was formed by
the tip retracting from an indentation [12–17].

As far as the electronic transport is concerned, an
atomic size contact or connective neck can be viewed
as a constriction with lengthl smaller than the mean
free path of the electron,le, andRc , lF, where the
motion of electrons is confined in the transversal
direction. Whether the two terminal ballistic conduc-
tance through such a constriction is quantized, has
been controversial [8, 9, 18 ,19]. Most recent studies
have revealed various yielding mechanisms and
resulting novel atomic structure during the evolution
of the contact when the tip moves towards or pulls
away from the surface [20–24].

We investigate the electronic conductance through
an atomic size point contact created by a sharp STM
metal tip with two different metallic surfaces having
different electronic properties. The samples we
consider are the Cu(001) surface, a typical metal,
and the graphite (0001), a layered material. The
contacts on metal surfaces have been investigated
both experimentally and theoretically [12–17].
Measurements [25] of the conductance of a contact
created on the graphite surface showed unexpected
results. Instead of rising with the push of the tip,G
oscillated between high and low values. This observa-
tion has been known in private circles but no publica-
tion exists perhaps due to an insufficient
understanding of the phenomenon. An objective of
the present study is then to explain the variation of
G(s). To this end we first outline the theory of the
ballistic conduction mechanism in an atomic size
constriction by clarifying the concept of quantized
conductance. We then examine the growth of the
contact in those two different types of sample surfaces
by using molecular dynamics (MD) simulations.
Based on the atomic structure obtained from the

MD simulations and the results of the electronic struc-
ture calculations we deduce the variation of conduc-
tance,G with the displacement of the tip towards
sample.

2. Ballistic conductance in a constriction

To elucidate the concept of quantized conductance
we consider a uniform quasi 1D constriction (alongz)
between two 2D (yz) electron gas reservoirs with the
infinite wall confining potential. The motion of an
electron in the transversal (y)direction is confined,
but it can propagate freely along thez direction. The
current transporting states are constructed in terms of
the confined and propagating constriction states. The
upper limit for the conductance of a current trans-
porting state with the transmission coefficient,T � 1
was deduced by Batra [26] from the uncertainty prin-
ciple. The current transmitted by such a state in the
quantum limit isI � 2e=Dt for both spins. Then the
conductanceG� I =DV � 2e2

=�DteDV). SinceeDV �
DE andDtDE $ h, the upper limit is

G #
2e2

h
�1�

We note that this upper limit from uncertainty prin-
ciple is reached for eigenstates which are plane wave
like.

In the reservoirs, the mean charge density,re,
determines the Fermi energy,EF and hencelF since
EF � �h2

=2m*�l22
F The first constriction state that is

transversally confined,Fi�1�y� becomes occupied
(i.e. ei� ~1 # EF) if the width of the constriction with
the confining potential,w $ lF/2. The longitudinal
wave propagates alongz with the propagation
constant gi � ��2m*="2��EF 2 1i��1=2. Therefore,
wheneverw increases bylF/2, a new sub-band dips
below the Fermi level. With this background one can
easily calculate the conductance of the uniform
constriction of infinite length. The current under
small bias voltageDV,

I �
Xj

i�1

2nievgi�Di�EF 1 eDV�2 Di�EF�� �2�

Here j is the index of the highest occupied sub-band
that lies below the Fermi level, i.e.e j # EF ande j11 .
EF, and ni, is the degeneracy of the statei. By
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assumingT� 1, and expressing the group velocity,vgI
,

and the density of states,Di (e ) in terms of the sub-
band energy1 � 1i 1 ��"2g2

i �=�2m*�� and dividing I
by DV we obtain

G�
Xj

i�1

2e2

h
ni �3�

Therefore each current carrying state with energy,
1i ; �EF , 1i , EF 1 eDV� contributes to G by
2e2ni/h. For the uniform, infinite wall constriction
the degeneracyni � 1, and hence the increase of w
by lF/2 causesG to jump by 2e2/h. As a result, the
G(w) curve exhibits a staircase structure. This varia-
tion for l , le, is identified with the usual quantization
of conductance.

The measurements of the conductanceG through a
narrow constriction between two reservoirs of 2D
electron gas in high mobility GaAs–GaAlAs hetero-
structure confirmed the above theories [27, 28]. The
constriction made by a split gate was significantly
narrow (w � 2500 Å in the range of Fermi wave
length corresponding to a low density in a 2D electron
gas system) and also short (l , le) so that electrons can
move ballistically and their transversally confined
motion are quantized as explained above. Subsequent

theoretical studies [10] noted that the level spacing
De , lF

22, which is rather small for the low electron
density in the 2D electron gas system, the sharp step
structure is likely to be smeared out atT , 10 K or at
finite bias voltageDV. Also, the effects, such as saddle
point of the electronic potential, surface roughness,
impurity scattering, will cause the sharp step structure
of G(w) to disappear. The length of the constriction is
another important parameter. In order to get sharp step
structurel has to be greater thanlF; G(w) is smoothed
out in short (l , lF) constrictions. In summary,G(w)
exhibits sharp step structure if the constriction is
uniform, w , lF andlF p l , le

3. Atomic contacts on metal surfaces

The point contact between a metal tip and surface
represents a short but non-uniform constriction with
high electron density,re, and hence very shortlF ( ,
5–8 Å). Even the single atom at the apex of the tip can
create contact with a diameter 2Rc , lF. In such a
contact the motion of the electrons is confined in the
(xy)plane, but free in thez direction. Since in the
usual metallic charge densitieslF , 5–8 Å, and the
level spacing is large (, 1 eV), the channels do not
mix at room temperature (T , 300 K). But forl , lF

the atomic structure is highly irregular.
Almost three decades ago Sharvin [29] investigated

a very short point contact by using a semi-classical
approach and showed that the conductance is indepen-
dent of any material properties and is solely deter-
mined by the geometry (or cross-sectionA) of the
contact and mean electron density of the reservoir,
re. The expression he derived (which is now referred
to as the Sharvin’s conductance) is given by

GS� 2e2

h

 !
pRc

lF

� �2

�4�

It increases linearly withA. While the Sharvin’s
expression adequately describes the ballistic conduc-
tance of a contact of largeA, it violates the uncertainty
principle forA ! plF

2. In the quantum regime, where
A , lF

2, GS should vanish forA , Ac, some threshold
cross-section (Ac) which is determined by the uncer-
tainty principle.

For a circularly symmetric, uniform and long
constriction with infinite wall potential the variation

C. . Kilic. et al. / Journal of Electron Spectroscopy and Related Phenomena 98–99 (1999) 335–343 337

Fig. 1. The top view of the atomic structure of the contact interface
created by the Ni(111) tip on the Cu(001) metal substrate. As the tip
is pushed towards the substrate, the interface grows discontinuously
from (a) to (d). The Ni and Cu atoms are indicated by filled and
empty circles, respectively. The positions of atoms are calculated by
molecular dynamics simulations performed at 4 K.



of G with the push of the tip,s (G(s))one gets a perfect
step structure. The only allowed values are [8, 9], 2e2/h,
6e2/h, 10e2/h, 12e2/h… corresponding toni �
1,2,2,1,… fori � 1,2,3,4,… in equation (3). Clearly,
a realistic contact has finite length and hence the
variation ofG with the displacement of the tip,s or
with the cross-section,A should differ from conditions
considered either in the uniform constriction or in the
quantum Sharvin case. Ifl , lF the step structure is
smeared out by the tunneling contribution. In a
realistic potential, which includes saddle point effect,
opening of channels is delayed and channel mixing
becomes significant.

Let us now consider a realistic contact in more

detail. To this end we simulated the contact between
a Ni(111) tip on approaching the Cu(001) substrate by
the state of the art molecular dynamics method using
the embedded atom potential [30,31]. The atomic
structure of the contact interface is illustrated in Fig.
1 for different values ofs. The important results
revealed from the atomistic simulation is that the
contact of a sharp tip starts with a single atom, but
grows discontinuously to include 4, 13 and 15 atoms.
The shape of the contact area changes irregularly and
the cross-sectionA(s) varies in a discontinuous
fashion. Since the conductance is a function of the
contact cross-section and each atom at the interface
contributes to the total conductance by a significant
fraction [6–11,32] of 2e2/h, one expects a close corre-
lation betweenG(s)andA(s)curves.

Let us examine the behavior ofG(s) for a realistic
metal contact by using a simple model. We consider a
conical tip with a cone angle 2a indenting to a metal
surface within the incompressible jellium approxima-
tion. Since the volume is assumed to be conserved
during the growth of the contact, we assume that the
excess material (equivalent to the apex of the tip
already dipped into the surface) is shifted to the
contact interface to form a cylindrical neck of height
hc, and uniform cross-sectionA. AlthoughA(s)varies
with z and its shape deviates from circular symmetry,
for simplicity we assume a uniform neck with circular
symmetry. To express the electronic states quantized
in the contact in an analytical form we further simplify
the potentialV�~r� in the following form:

V ~r
ÿ � � 0 r # Rc�z�

∞ r . Rc�z�

(
�5�

in the region 0# z # l and l . hc. Here z# 0 is
substrate andr � �x2 1 y2�1=2

Earlier SCF calculations [10] of the potential in a
single Al atom contact revealed a parabolic variation
for V�~r� in the transversal plane. However, the infinite
wall potential is more appropriate for contacts
including few atoms in the interface. We divide the
above potential intoN sections so that in each one
zp , z , zp11, Rc�z� � Rc�zp� and A�z� � pR2

c�zp�.
We then express the electronic states quantized in
each section by the circularly symmetric transversal
wave, Fi(r , zp) confined to the regionr # Rc(zp)
and longitudinal wave, exp[igi(zp)z]. The current
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Fig. 2. The variation of the conductanceG as a function of the
contact cross-sectionA and tip displacement s are shown in (a) and
(b), respectively. The tip and sample described by the continuum
model is shown by the inset. Continuous, dotted and dash–dotted
curves correspond to the cone angle 2a � 608, 908, 1208, respec-
tively. For the abrupt interface growth,G(s) is schematically shown
by the dashed line in (b).



transporting stateC�~r ; ~k� corresponding to a free elec-
tron that enters into the contact with energyE �
"2k2

=2m* and finite momentum in the propagation
direction "kz, is expressed in each section,zp , z #
zp11 in terms of the linear combination of states quan-
tized in this particular section,

C�~r ; ~k�uzp#z,zp11
�
X

i

�Ai�zp; ~k�Fi�r; zp�eigi �zp�z

1 Bi�zp;
~k�F*

i �r; zp�eigi �zp�z� �6�
The coefficientsA�zp;

~k� and B�zp;
~k� are determined

by the multiple boundary matching [10] using the
transfer matrix method. The current operator is eval-
uated and summed over the Fermi surface to find the
currentI. The conductanceG is calculated as a func-
tion of A or s using the linear response theory.

Fig. 2(a) presents our calculatedG(A) results for
three different cone angles. As expected, for larger
2a values (hc becomes smaller),G(A) tends to lose
all structure. Similar behavior is seen forG vss in Fig.
2(b). In obtaining these results, it is assumed thatA
increases continuously withs. In reality though,A
changes discontinuously as has been demonstrated
by atomistic simulation [31]. HenceG must vary
discontinuously and should show a jump whenever
A(s) increases suddenly by incorporation of new
atoms into the interface (see Fig. 1). This variation
is schematically illustrated in Fig. 2(b) by dashed
lines. Owing to the single atom migration to or from
the interface (or upon atomic rearrangements within
the interface) between two consecutive jumps ofA(s),
the conductance may change by significant fraction of
2e2/h. This causes the plateaus to disappear. The beha-
vior predicted by the present analysis is in agreement
with theG(s)curves measured experimentally [3,4,5].
Other experiments providing simultaneous force and
conductance measurements in a metal constriction
[20–22] and theoretical calculations based on real-
istic potentials [8,9,23,24] also support the present
interpretation.

The disordered atomic structure at the interface
delays the opening of channels due to the increased
backscattering [10, 34, 35]. The metal contact having
only one atom at the interface is a special case, since
the conductance through this atom strongly depends
on the electronic structure of the free atom and its
bonding structure to the left and right side [32,33].

In the other extreme case whereA is large and incor-
porates many atoms in the interface, the semiclassical
picture as formulated by Sharvin is valid. Lastly, due
to the irregular shape of the layers at the close proxi-
mity of the contact, the adiabatic approximation,
where the energy of the stateFi(r ,zp) can be
expressed as a smoothly varying functione i(zp) is
not valid.

In summary,G(s) not only depends on the cross-
section of the contact but also on its detailed atomic
structure. The quantization of electronic motion in the
constriction is reflected in the variation ofG(s), but
the sudden jumps are attributed to the sudden changes
of A(s).

4. Contacts on graphite surface

Graphite is a semimetal which exhibits strongly
directional electronic and mechanical properties.
Each C (Carbon) atom with its three planarsp2-hybrid
orbitals (formed from the combination ofs, px andpy,
atomic orbitals) is bonded to the three nearest
neighbor C atoms. This way, the C atoms are arranged
in the honeycomb structure in the (xy)-plane and they
make the individual graphite plane (or graphene).

The graphite solid forms by the stacking of the
graphene along thez-direction with wide interplanar
separation,d , 3.35 Å. In the normal stacking
sequence (of Bernal graphite), adjacent planes are
shifted relative to each other so that three alternating
(a -)atoms of a hexagon face directly three atoms in
the adjacent graphenes. The remaining three (b -)
atoms face the centers of the hexagons of the
graphenes lying above and below this plane. The
strong bonding combination of two neighboring sp2-
hybrid orbitals leads to the nearest neighbor distance
(i.e. the C–C distance of a hexagon) which is rather
short (1.4 Å). The cohesion is strong (7 eV/atom)
within the graphene. On the other hand, the inter-
planar interaction is weak and mainly occurs through
the small overlapkpzuHup0zl between thea -atoms in
the adjacent layers, and partly by the Van der Waals
interaction.

The above directional behavior is reflected in the
electronic properties and the electronic energy band
structure. Thes-bands due to thesp2-hybrid orbitals
lie in the range of 2–20 eV belowEF. Thep -bands
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due to thepz, orbitals lie close toEF. Since the inter-
layer interaction is rather weak, thes - andp -bands of
a single graphene are only slightly modified when full
graphite structure is included. Along thekz-direction,
for example, the fourp -bands near the Fermi level
show the effect of the interplanar interaction. Two of
these bandspa andpa* , originate from the bonding
and antibonding ofpz-orbitals between atoms in adja-
cent planes; each has a dispersion of 1 eV. The other
two, pb andpb* are dispersionless and degenerate
due to the negligible interaction betweenpz-orbitals
of b -atoms. These overall features, revealed by many
earlier studies [36–38], show that graphite is a semi-
metal with low total density of states,D(E) at the
Fermi level.

The weak interplanar bonding, lowD(EF) and two
types of C atoms (a - and b-types) have also been
deduced from the STM experiments performed in
tunneling regime. In the normal tunneling operation
of STM three atoms of the hexagon were imaged. The
level of tunneling currentI was low even at small tip–
sample distance. In the topographic mode operating at
small tip–sample distance, the line scans exhibited
"giant" corrugations [39]. These interesting results
have been a subject of further investigations and
have been explained by theoretical studies [39,40].

The variation of conductance through an atomic
size contact created by an STM on the graphite
surface has exhibited unusual behavior. In contrast
to that of the contact on other metals,G did not
increase as the tip pushed towards the graphite
surface. InsteadG jumped between two different
values in some quasiperiodic fashion. This behavior
is different from that of Sb which also has lowD(EF)
as in graphite. It is clear that the continuum model
used for the normal metal contacts cannot be applied
to graphite.

The unusual behavior ofG(s)can be deduced from
the detailed knowledge of atomic and electronic struc-
ture which are modified in the course of contact
formation. To this end, we first investigate the evolu-
tion of contact created by a hard tip by using MD
method. We use Tersoff potential [41] extended for
multilayer graphite [42]. The results for three different
values ofs are shown in Fig. 3. Three features are
important in these atomistic simulations. As the hard
tip approached the surface, the top atomic plane is first
attracted upwards. Later it is pressed downwards and
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Fig. 3. The side views of the atomic structure of contact created by a
hard tip on the graphite planes. Atomic positions are calculated by
using the molecular dynamics method performed atT � 4 K. (a)
Before the contact is set in; (b) the first layer is punctured; and (c)
the contact is made in the second layer.



the interplanar distance is reduced locally. Eventually
the top layer is punctured, releasing the strain, and the
apex of the tip dips into the interlayer region.
Depending on the shape of the tip and its position
on the graphene, the puncture occurs either as a
local plastic deformation or as local breaking of
graphene into flakes. As the tip is pushed further,
the above sequence of events repeats.

The effect of the above local deformation induced
by a hard tip pressing towards graphite surface was
further explored by the SCF pseudopotential [43]

calculations in momentum space within local density
approximation [44]. By using the kinetic energy
cutoff, u~k 1 ~Gu2 # 37Ry we calculated total energy
ET, energy band structureEn�~k� and the density of
states D(E) of graphite by varying the interlayer
distanced. The band structure at equilibriumd and
the variation ofET with d are in good agreement with
earlier calculations [38]. Reducingd under uniaxial
strain caused the dispersion of bands along thekz-
direction to increase and the Fermi surface to enlarge.
Moreover, because of increased interlayer interaction
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Fig. 4. Densities of statesD(E) (States/eV per unit cell) is calculated as a function of the lattice parameter c (that is twice the interlayer distance
d). The variation ofD(EF) is highlighted by the inset.



between pz-orbitals, the occupiedpb-band in the
(kxky)plane moved upwards and and crossedEF. The
effect of these modifications onD(E) is illustrated in
Fig. 4. Asd (which is equal to one half of the lattice
parameterc) decreases,D(EF) increases. In factD(EF)
increases by a factor of three upon decreasingd by ,
1 Å. This is an important feature that influences the
electron transport and plays a crucial role in deter-
mining G(s). A rigorous calculation ofG(s) curve
for a graphite contact is very tedious. It requires the
knowledge of the self-consistent potential as well as
the electronic wave functions quantized at the close
proximity of the contact. Neither the model calcula-
tions used for normal metals, such as nearly free elec-
tron, nor tightbinding calculations are appropriate.

By combining the results of atomistic simulations
of contact and the density of states calculations, we
propose a mechanism for understanding the peculiar
behavior of the conductance through a contact on
graphite surface. Owing to the lowD(EF), the opening
of the first ballistic channel may not occur for a sharp
tip [45,46]. At the initial stage of the contact,D(EF) is
even lower than that of the bulk graphite since the
surface atoms are attracted by the tip and henced
has slightly increased. As the tip continues to press
towards the graphite surface,d, decreases locally.
HenceD(EF) of the region where the electrons are
transferred increases. Since the current is

I /
ZEF1eDV

EF

dED�E�T�E� �7�

whereT is the transmission coefficient, the conduc-
tance gradually increases with decreasings until the
apex makes a hole on the surface. Once the atomic
plane is punctured by the comprehensive strain is
relieved andD(EF) falls back towards its normal low
value. HenceI and G under constant bias voltage
decrease abruptly when the tip punctures through
the top plane. Here we assume that the current from
the tip to the punctured layer is negligible. Having
punctured through, the tip faces a new graphene and
the same sequence of events (which occurred for the
first graphene) repeats itself and thusG varies quasi
periodically withs. Owing to the interaction between
the tip and punctured graphene atoms, or deformation
of the apex, some irregularities may be superimposed
on the periodic variation ofG(s). The average value of
the conductance can also increase due to the increased

diffused conductance from the lateral layers. The
model calculation of conductance has been performed
recently [47].

5. Conclusion

We have investigated the conductance through a
contact created by an STM tip pushed on metal
surfaces. We considered two cases: a normal metal
and graphite. The atomistic simulations, based on
the molecular dynamics method, indicate that the
shape of the contact on the graphite surface is very
different from that of a tip on Cu. The contact inter-
face on the metal surfaces grows discontinuously
leading to sudden jumps in conductance of around
2e2/h. But when a tip approaches graphite, the inter-
layer distance first increases, then decreases and even-
tually the tip punctures the surface. This sequence of
events essentially repeats as the tip faces new
graphene. Using the results of electronic structure
calculations of graphite under strain, we proposed a
mechanism of electron transport through the contact
on graphite that successfully explains the experi-
mental results.
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