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On the Control of Chaotic Systems
in Lur’e Form by Using Dither

Ömer Morg̈ul

Abstract—In this paper we propose the application of dither for
controlling chaotic systems in the Lur’e form. Dither is a high-frequency
periodic signal and has the effect of modifying the nonlinearity for some
nonlinear systems. We use piecewise constant dither signals and propose
three different methods for the selection of dither parameters. We also
present some experimental results.

Index Terms—Chaos, control of chaos, dither, Lur’e systems.

I. INTRODUCTION

Recently, there has been an extensive interest on the study of
analysis and control of chaotic behavior in nonlinear systems. Various
control problems can be defined for such systems, such as targeting
the trajectories to a desired point, stabilizing unstable periodic orbits,
[1], etc. For an extensive list of references on this subject, see [2].
In this paper we propose a technique which may enable us to switch
between the chaotic and regular (e.g., periodic) trajectories of some
systems.

We consider the systems in the Lur’e form and propose the
application of dither to control the behavior of such systems (see
Fig. 1). Dither is a high-frequency periodic signal and has the effect
of modifying the nonlinear characteristics by sweeping quickly across
the domain of the nonlinear element. Such signals are typically used
in nonlinear systems for the purpose of stabilization or elimination of
limit cycles, or quenching undesirable jump phenomena (see [5] and
[7],). If the power spectrum of dither lies above the cut-off frequency
of the linear block (i.e.,L(s) in Fig. 1), it is filtered out before
reaching the system output. However, it can be shown that prior to
being filtered out, it modifies the nonlinearity (i.e.,n(�) in Fig. 1)
(see [5]–[7]). By using this property, it may be possible to control
such a system if its behavior (e.g., chaos, limit cycle, etc.) is known
in terms of the parameters of the nonlinear block, provided that those
parameters could be modified by using dither. We may also use a
conjecture proposed by Genesio and Tesi for the prediction of chaos
in Lur’e-type systems (see [3] and [4]). By using these ideas we
propose three methods to select the appropriate dither parameters to
control the behavior of a given Lur’e system.

This paper is organized as follows. In Section II we outline the
effect of dither and propose three methods to select appropriate dither
parameters. In Section III we present some experimental results.
Finally, we give some concluding remarks.

II. DITHER CONTROL OF CHAOTIC SYSTEMS

Consider the system given in Fig. 1. Here,L(s) represents the
transfer function of a linear, time-invariant, single-input single-
output system,n(�) represents a memoryless nonlinearity, andd(t)
represents the dither. Different types of dither signals (e.g., sinusoidal,
square wave, etc.) have been analyzed in the literature and we
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Fig. 1. Application of dither.

consider the following piecewise constant periodic signal in this work:

d(t) =

�1; kT < t< (�1 + k)T
�2; (�1 + k)T < t< (�1 + �2 + k)T
� � � ; � � �

�l;

l�1

i=1

�i + k T < t< (k + 1)T

k = 0; 1; � � � (1)

where�i 2 RRR;�i> 0 for i = 1; 2; � � � ; l; �l
i=1 �i = 1 andT > 0: It

can be shown that with this dither signal, ifn(�) satisfies certain
conditions and ifT > 0 is sufficiently small, thenn(�) could be
replaced by the following functionnr(�):

nr(y) = �1n(y + �1) + �2n(y + �2) + � � �+ �ln(y + �l): (2)

That is, the system in Fig. 1 with the dither signald(t) given by (1)
is equivalent to a similar system without dither in the sense that the
trajectories of both systems starting from the same initial condition
converge to each other, provided that the nonlinearityn(�) is replaced
by nr(�) given by (2) (see e.g., [6], [7], and [12]). If the solutions are
bounded, then this property holds provided thatn(�) is Lipschitz
[6]. The amplitudes (i.e.,�1; �2; � � � ; �l) and the durations (i.e.,
�1; �2; � � � ; �l�1) can be chosen to change the qualitative behavior
of the system. The frequency of the dither should be greater than
the cut-off frequency ofL(s), hence, we assume thatjL(j!)j ! 0
as ! ! 1:

We propose three methods to control the system given in Fig. 1
by using dither.

Changing the System Parameters:Consider the Lur’e system
given in Fig. 1 and let the linear block be represented by the transfer
function L(s) = p(s)=q(s) wherep(s) and q(s) are polynomials.
Assume that the nonlinearityn(�) is also a polynomial iny as given
below:

n(y) = amy
m + am�1y

m�1 + � � �+ a1y + a0: (3)

The dynamical equation of the system in terms of the output variable
y can be given asq(D)y+ p(D)n(y) = 0 whereD = (d=dt). After
the application of the dither signal given by (1), by using (2) and
(3) we obtain

nr(y) =

m

k=0

ak

k

i=0

k
i

l

j=1

�j�
(k�i)
j yi (4)

which can be rewritten as

nr(y) = n(y) +

m�1

i=0

riy
i; ri =

m

k=1

ak
k
i

l

j=1

�j�
(k�i)
j : (5)
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Fig. 2. Wien-bridge chaos generator with dither.

Hence, after the application of the dither, the dynamical equation of
the system becomesq(D)y + p(D)nr(y) = 0: From (3) and (5) it
follows thatnr(y) = �j=m

j=0 âjy
j whereâm = am andâj = aj+rj ,

0 � j � m � 1. In other words, after the application of dither the
modified nonlinearity has the same form as given by (3), but with
different coefficients. Hence, if the dynamical behavior of the chaotic
system depends on some of these coefficients, we could modify these
coefficients by the use of dither and the required dither parameters
may be found by using (5). We note that the form of (5) imposes
some constraints onrj , hence, an arbitrary change in the parameters
may not be possible.

The next two methods will be based on the conjecture of Genesio
and Tesi. In [3], [4], Genesio and Tesi proposed a conjecture which
states that a system in Lur’e form may exhibit chaotic behavior if
there exists: 1) a stable limit cycle, 2) an unstable separate equilibrium
point, 3) suitable filtering effect on the system, and 4) interaction
between the limit cycle and the equilibrium point. The existence and
stability properties of the limit cycle can be determined by means of
describing function analysis, for details see [3] and [4]. Equilibrium
points can be found from the solutions of the following equation:

y + L(0)n(y) = 0: (6)

Stability properties of these equilibrium points can be examined by
using linearization. For the predictions made by using the describing
function analysis to be reliable, the linear block of the system
should have a low-pass characteristic (see, e.g., [5]). Finally, the
limit cycle of the system should pass close enough to the unstable
equilibrium point. If the (predicted) limit cycle is given asy(t) =
A + B sin!t, then this condition can be checked analytically by
using the interaction parameter� = B=(jA � Ej), whereE is an
unstable equilibrium point of the system interacting with the limit
cycle. When� is close to unity, simulations show that the system
may exhibit chaotic behavior and when it is small (near 0.5 in our
simulations), the system may exhibit regular motion.

Because of the approximate nature of the analyzing tools and the
uncertainty on the value of�, obviously this conjecture gives neither
necessary nor sufficient conditions for the existence of chaos. Now
we can state the next two methods.

Changing the Equilibrium Point:In this method, the dither pa-
rameters are selected such that the equilibrium points of the chaotic
system that interact with the predicted limit cycle are eliminated. This
may yield the system to exhibit regular motion. Dither parameters
to change equilibrium points can easily be selected by using the
following equation whose solutions are the equilibrium points of the
dither-applied system:

y + L(0)nr(y) = 0 (7)

wherenr is given by (2). After the parameters are found, the existence
and stability of the limit cycle should again be checked.

Changing the Interaction:This method is based on changing the
interaction between the equilibrium point and the predicted limit cycle
of the original system (i.e.,�). Since after the application of dither
� is a function of�i; �i; i = 1; � � � ; l; by fixing the values of some
of these dither parameter beforehand, other dither parameters can be
found numerically. After the parameters are found, the existence and
stability of the limit cycle should again be checked.

At this point, we compare the effect of dither with the effect of
a possible output feedback scheme. Since the effect of dither is to
change the nonlinearityn(�) to nr(�) given by (2), obviously if an
arbitrary nonlinear output feedback is allowed, then the same effect
may be obtained. However, such an output feedback requires output
measurement, which may contain measurement errors, a nonlinear
operation, which may complicate the realization of the controller
and may amplify the errors, and a feedback path, which may also
complicate the realization. On the other hand, application of dither,
if physically possible, is a much simpler scheme and does not require
any measurement. Obviously, a linear feedback may not produce the
same effect since it does not contain higher order terms [see (5)].
Also note that, in case of linear feedback, the freedom to change the
equilibrium points is limited as compared to the case of dither. To
see this, assume thatn(�) has the form given by (3) witha0 = 0. It
follows from (6) thaty = 0 is always an equlibrium point before and
after the linear feedback. However, with the application of dither we
have more degrees of freedom to change the equilibrium points (7),
(4). The same conclusions may hold if the nonlinearity is not of the
form given by (3), e.g., a piecewise linear nonlinearity.
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Fig. 3. Double scroll when dither is not applied.

Fig. 4. Period-three limit cycle when�1 = 320 mV, �2 = 220 mV.

III. EXPERIMENTAL RESULTS

In this section we will present some experimental results con-
cerning the application of dither to a chaotic electronic circuit. For
such a circuit we consider the (Wien-bridge-based) RC chaotic circuit

proposed in [8] and [9], which is shown in Fig. 2. In this figured(t)

represents a dither signal, which is a voltage source in our case. When
d(t) = 0, this circuit may realize the well-known Chua’s circuit and
this mode of operation is called the “passive mode” [9]. It is also
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Fig. 5. Single scroll when�1 = 150 mV, �2 = 50 mV.

Fig. 6. Limit cycle when�1 = 100 mV, �2 = 0 mV.

possible first to tune the Wien bridge to oscillatory mode and then
observe chaotic behavior by using the coupling resistorR; [9]. In
both modes of operations, various forms of chaotic behaviors (e.g.,
single scroll, double scroll) can be observed.

In Fig. 2, the operational amplifiersA1 and A2 and the related
resistorsR1; � � � ; R6 realize the three-segment resistor called the
Chua diode, which is also used in the standard implementation of
the Chua’s circuit [11]. As in [11], we choseR1 = R2 = 220 
;
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R3 = 2:2 k
; R4 = R5 = 22 k
; R6 = 3:3 k
: Note that this part
represents a voltage controlled resistor of the formi = g(v1) when
d(t) = 0 [11] and with the dither, this relation becomesi = g(v1�d)
(cf. Fig. 1). The circuit to the left of1� 10 is a Wien bridge circuit
and we chose the related parameters asR7 = R8 = R9 = 100 
;
R10 = 208 
; C2 = C3 = 220 nF. (We note thatR10 = 200 
 is
the theoretical value to start oscillations for the Wien bridge whenR

is open-circuited). The resistorsR10 andR are potentiometers and
while R10 is used to tune the Wien bridge part,R is used to obtain
chaotic behavior. ForR = 1980 
 and C1 = 1:5 nF and when
d(t) = 0, this circuit exhibits a double-scroll behavior, as shown in
Fig. 3. We note that all operational amplifiers are LF 351N (biased
by �9 V) in our experiments, however, equivalent ones could also
be used.

For the dither signal we used the waveform given by (1) with
l = 2 and�1 = �2 = 0:5. This type of waveform could easily be
generated by using the standard square wave generators with offsets.
By arranging the magnitudes�1; �2 we observed various behaviors
and, here, we report only four such results, due to space limitations.
In these experiments we chose the frequency of the dither signal as
f = 100 kHz, and observed the same behavior forf � 100 kHz
(and in some cases forf � 50 kHz).

1) For�1 = 320 mV, �2 = 220 mV, we observed a period-three
limit cycle, as shown in Fig. 4.

2) For �1 = 150 mV, �2 = 50 mV, we observed a single-scroll
chaos as shown in Fig. 5.

3) For �1 = 100 mV, �2 = 0 mV, we observed a limit cycle as
shown in Fig. 6.

4) For�1 = 60 mV, �2 = �40 mV, we observed a double-scroll
similar to the one shown in Fig. 3.

Various comments are in order. We generated the dither signals by
first obtaining a square wave with zero offset (100 mV peak to peak
in our experiments) and then by changing the offset. We observed
similar behaviors by increasing peak-to-peak voltage, provided that
the frequency is also increased. For example, when�1 is increased
and�2 is decreased by 150 mV in the experiments given above, the
same behaviors are observed, provided thatf � 450 kHz.

In all experiments, we first observed thev1 � v2 characteristics in
an analogue oscilloscope inX � Y mode. Then the same figure is
obtained in a digitizing oscilloscope (HP 54600B). After storing the
screen in the memory of the oscilloscope, the data is transferred to a
computer by using an HB–IB bus. Since the important information is
v1�v2 graphics, we do not present individual signalsv1(t) andv2(t).

We also note that various simulation results concerning the appli-
cation of dither to some well-known chaotic systems, such as Chua’s
circuit and the Duffing oscillator, can be found in [10] and [12].

IV. CONCLUSION

In this paper we proposed the use of an additive dither signal for
the control of chaotic systems in the Lur’e form. Many types of
dither signals could be used and we considered piecewise constant
dither signal for simplicity. Dither has the effect of modifying the
nonlinearity and by using this property it may be possible to control
the dynamic behavior of chaotic systems. By exploiting this property,
we proposed three methods to control such chaotic systems, (i.e.,
to switch between the chaotic and regular trajectories). We also
presented some experimental results.

The dither is an external signal applied before the nonlinear block.
Hence, its application does not require any continuous measurement,

which is the case in the feedback control schemes. Therefore, the
main advantage of the application of dither is its simplicity. However,
the technique is not general, its effect is limited (2), and it could be
applied to systems in Lur’e form. In chaotic electronic circuits, the
output variable is usually either a voltage or a current variable and,
for such cases, the dither source is either an independent voltage or
current source, which could easily be realized and applied.

In this work, we considered the piecewise constant dither signals.
However, different periodic signals (e.g., sinusoidal signals) may
also be used as dither signal. The effect of dither on systems not
in the Lur’e form may also be analyzed. These points require further
research.
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Corrections to “Separation Conditions and Approximation
of Continuous-Time Approximately Finite

Memory Systems”

Irwin W. Sandberg

The following errors, introduced by the staff associate editor,
occurred in the above paper.1

On page 822, the sentence following Statements 1) and 2) in
Lemma 1 should read:

“Continuing with the proof of Theorem 1, suppose that 1) of the
theorem holds and choose any positive�.”
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