The dimension of a primitive interior G-Algebra

Article in Glasgow Mathematical Journal · March 1999
DOI: 10.1017/S001708959900726

1 author:

Laurence Barker
Bilkent University

30 PUBLICATIONS 245 CITATIONS

SEE PROFILE

All content following this page was uploaded by Laurence Barker on 20 November 2014.
The user has requested enhancement of the downloaded file.
THE DIMENSION OF A PRIMITIVE INTERIOR G-ALGEBRA

LAURENCE BARKER

Department of Mathematics, Bilkent University, 06533 Bilkent, Ankara, Turkey

e-mail: barker@fen.bilkent.edu.tr

(Received 22 May, 1997)

Abstract. We give the residue class, modulo a certain power of p, for the dimension of a primitive interior G-algebra in terms of the dimension of the source algebra. To illustrate, we improve a theorem of Brauer on the dimension of a block algebra.

Almost always, the G-algebras arising in group representation theory have been interior. Both in applications and in the general theory, it often suffices to consider primitive interior G-algebras. One of the themes of the theory is the characterisation of a primitive interior G-algebra in terms of its source algebra S. Stories revolving around this theme are told in the two books devoted to G-algebra theory, namely Külshammer [8], Thévenaz [15] and in the papers listed in their bibliographies. We mention particularly Puig [11], [12]. These stories focus on rich algebraic relationships between A and S; for a start, [11, 3.5] tells us that A and S are Morita equivalent. However, many outstanding conjectures, some old and some new, hark back to Brauer’s more arithmetical approach to group representation theory. See, for instance, conjectures in Alperin [1], Dade [4], Feit [6, Section 4.6] and Robinson [13]. In this note, we point out an arithmetical relationship between A and S. A simple illustration, we shall discuss a theorem of Knörr on the dimension of a simply defective module, and shall improve a theorem of Brauer on the dimension of a block algebra. See also Ellers [5].

Our notation is as in Thévenaz [15]; we repeat a little of it to set the scene, and extend it slightly. Let O be a complete local noetherian ring with an algebraically closed residue field k of prime characteristic p. Let G be a finite group, and let A be an interior G-algebra; as usual, we assume that A is finitely generated over O, and either free over O or annihilated by $J(O)$. Given a pointed group H on A, we choose an element $j \in \beta$, and define $A(j)$ as an interior H-algebra. Now let X be an A-module; again we assume that X is finitely generated over O, and either free over O or annihilated by $J(O)$. We define $X(j) := jX$ as an $A(j)$-module. It is easy to extend the use of embeddings in Puig [12, 2.13.1] to show that $X(j)$ is unique up to a natural isomorphism of $A(j)$-modules.

Henceforth, let us assume that A is primitive. Let P_{γ} be a defect pointed group on A. The source algebra A associated with P_{γ} is an interior P-algebra. The multiplicity module $V(\gamma)$ associated with P_{γ} is a projective indecomposable $k\tilde{\mathcal{N}}(P_{\gamma})$-module. By the construction of $V(\gamma)$, if $1 = \sum_{t \in T} t$ as a sum of mutually orthogonal primitive idempotents of A^P, then $\dim_k V(\gamma) = |\gamma \cap T|$. When $V(\gamma)$ is simple, we say that A is simply defective. This notion has its origins in Knörr [7], and was introduced explicitly in Picaronny-Puig [10]. Necessary and sufficient conditions for A to be simply defective are to be found in [2, 1.3], [10, Proposition 1], and Thévenaz [14, 15, 9.3]. We recall that any block algebra of G over O or over k is simply defective. Also, the linear endomorphism algebras of certain OG-modules are simply defective (see below). Whenever A is simply defective, the p-part of the dimension of the multiplicity module is
Let \(A \) be a primitive interior \(G \)-algebra, let \(P \gamma \) be a defect pointed group on \(A \), and let \(X \) be an \(A \)-module. Then

\[
\text{rk}_O X \equiv |G : N_G(P \gamma)|. \dim_k V(\gamma). \text{rk}_O X_\gamma \text{ modulo } |G : P| . \text{spr}_G(P).
\]

In particular, if \(A \) is simply defective, then

\[
(\text{rk}_O X)_P \equiv (|G : P|. \text{rk}_O X_\gamma)_P \text{ modulo } |G : P| . \text{spr}_G(P).
\]

Proof. If \(P \leq G \), then the points of \(P \) on \(A \) are precisely the \(G \)-conjugates of \(\gamma \). Writing \(1_A = \sum_{t \in T} t \) as above, we have

\[
\text{rk}_O X = \sum_{g \in N_G(P \gamma) \subseteq G} |T \cap g \gamma|. \text{rk}_O X_{(g \gamma)} = |G : N_G(P \gamma)| . \dim_k V(\gamma). \text{rk}_O X_\gamma.
\]

Now suppose that \(P \not\leq G \). Let \(H := N_G(P) \). By the Green Correspondence Theorem in Thévenaz [15, 20.1], there exists a unique point \(\beta \) of \(H \) on \(A \) such that \(P \gamma \leq H \beta \). Furthermore, \(\beta \) has multiplicity unity; that is to say, if \(1_A = \sum_{s \in S} s \) as a sum of mutually orthogonal primitive idempotents of \(A^H \), then precisely one element of \(S \) belongs to \(\beta \).

Consider the induced interior \(G \)-algebra \(A' := \text{Ind}_H^G(A_\beta) \). Recall that \(A' = O_G \otimes_{O_H} A_\beta \otimes_{O_G} O_G \) as \(O_G - O_G \)-bimodules, and \(A' \cong \text{Mat}_{|G:H|}(A_\beta) \) as algebras. Let \(X' := O_G \otimes_{O_H} X_\beta \) as an \(A' \)-module. Let \(\gamma' \) and \(\beta' \) be the points of \(P \) and \(H \) on \(A' \) corresponding to \(\gamma \) and \(\beta \), respectively. Since \(P \gamma \) is a defect pointed subgroup of \(H \beta \), the Green Correspondence Theorem implies that there exists a unique point \(\alpha' \) of \(G \) on \(A \) satisfying \(P \gamma \leq G_{\alpha'} \). Furthermore, \(\alpha' \) has multiplicity unity. By Puig [11, 3.6], \(A_{\alpha'} \cong A \) as interior \(G \)-algebras, and via this isomorphism, \(X_{\alpha'} \cong X \) as \(A \)-modules. A routine application of Mackey Decomposition and Rosenberg’s Lemma shows that if \(Q \) is a local pointed group on \(A' \) not \(G \)-conjugate to \(P \gamma \), then \(Q \) is
contained in the intersection of two distinct G-conjugates of P. Therefore, every point of G on A' distinct from α' has a defect group contained in $P \cap \hat{s}P$ for some $g \in G - H$. By Green’s Indecomposibility Criterion, $|G : P| \cdot \text{spr}_G(P)$ divides $\text{rk}_O X' - \text{rk}_O X$. We also have $\text{rk}_O X' = |G : H| \text{rk}_O X_\beta$ and, by the first paragraph of the argument,

$$\text{rk}_O X_\beta = |H : N_G(P_{\gamma})| \cdot \dim_k V(\gamma) \text{rk}_O X_{\gamma}.$$

To illustrate Proposition 1, let us consider an indecomposable OG-module M (finitely generated over O, and either free over O or annihilated by $J(O)$). Let P be a vertex of M, let U be a source OP-module of M, let F be the inertia group of U in $N_G(P)$, and let m be the multiplicity of U as a direct factor of the restricted OP-module of M. The linear endomorphism algebra $\text{End}_O(M)$ (interpreted as $\text{End}_k(M)$ when $J(O)$ annihilates M) is a primitive interior G-algebra with a defect pointed group P_γ such that $M_\gamma \cong U$. Also, $N_G(P_\gamma) = F$, and $\dim_k (V(\gamma)) = m$. By [2, 1.4], $\text{End}_O(M)$ is simply defective if and only if m is the multiplicity of M in the induced OG-module of U. When these equivalent conditions hold, we say that M is simply defective. If M satisfies the hypothesis of Knörr [7, 4.5] (in particular, if M is an irreducible OG-module or a simple kG-module), then by Picaronny-Puig [10, Proposition 1] M is simply defective. Proposition 1 implies the following result.

Corollary 2. Let M be an indecomposable OG-module. With the notation above, we have

$$\text{rk}_O M \equiv |G : F| m \text{rk}_O U \mod |G : P| \cdot \text{spr}_G(P).$$

In particular, if M is simply defective, then

$$(\text{rk}_O M)_p \equiv (|G : P| \cdot \text{rk}_O U)_p \mod |G : P| \cdot \text{spr}_G(P).$$

The rider to Corollary 2 relates to [7, 4.5] and [10, Proposition 3], but has slightly weaker hypothesis and conclusion.

Lemma 3. Let G and H be finite groups. Let P_γ and Q_δ be defect pointed groups on, respectively, a primitive G-algebra A and a primitive H-algebra B. Then $\gamma \otimes \delta$ is contained in a local point ε of $P \times Q$ on $A \otimes B$, and $(P \times Q)_\varepsilon$ is a defect pointed group on the primitive $G \times H$-algebra $A \otimes B$.

Proof. It is easy to check that $A \otimes B$ is primitive, and that $\gamma \otimes \delta$ is contained in a point ε of $P \times Q$. By considering the evident isomorphism of Brauer quotients

$$\overline{A}(P) \otimes \overline{B}(Q) \cong \overline{A \otimes B}(P \times Q)$$

we see that ε is local. On the other hand,

$$1_{A \otimes B} \in \text{Tr}^{G \times H}_{P \times Q}(A^P \otimes B^Q, \varepsilon, A^P \otimes B^Q)$$

so that $(P \times Q)_\varepsilon$ is a defect pointed group.

\[\square\]
Theorem 4. Given a defect pointed group P_γ on a primitive interior G-algebra A, then
\[
\text{rk}_G A \equiv (|G : N_G(P_\gamma)|, \dim_k V(\gamma))^2 \text{rk}_G A_\gamma \text{ modulo } |G : P|^2 \text{spr}_G(P).
\]
In particular, if A is simply defective, then
\[
(\text{rk}_G A)_p \equiv (|G : P|^2 \cdot \text{rk}_G A_\gamma)_p \text{ modulo } |G : P|^2 \text{spr}_G(P).
\]

Proof. This follows from Proposition 1 and Lemma 3 upon considering A as an $A \otimes A^{op}$-module by left-right translation.

Let us consider a block idempotent b of OG with defect group P. Brauer [3, Theorem 1] used character theory to prove that the block algebra OGb satisfies
\[
(\text{rk}_G OGb)_p = (|G| |G : P|)_p.
\]
A module-theoretic demonstration was later given by Michler [9, 2.1], and the result is generalised in Picaronny-Puig [10, Proposition 3]. Since OGb is simply defective, Theorem 4 gives, more precisely, the following result.

Corollary 5. Let b be a block idempotent of OG. Let (P, e) be a maximal Brauer pair associated with b, let T denote the inertia group of e in $N_G(P)$, and let W be a copy of the isomorphically unique simple $kCG(P)e$-module. Then
\[
\text{rk}_G OGb \equiv (|G| \dim_k W)^2 |Z(P)|/|T||C_G(P)| \text{ modulo } (|G| |G : P|)_p \text{spr}_G(P).
\]

Proof. By an easy adaptation of part of the argument in Michler [9, 2.1], we may and shall assume that $P \leq G$. Thévenaz [15, 40.13] describes a defect pointed group P_γ on OGb associated with (P, e), and also informs us that $T = N_G(P_\gamma)$ and $\dim_k W = \dim_k V(\gamma)$. By Puig [12, 6.6, 14.6], we have
\[
\text{rk}_G OGb_\gamma = |N_G(P_\gamma) : PC_G(P)||P| = |T||Z(P)|/|C_G(P)|.
\]

REFERENCES

