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We study the quasi-particle properties of a one-dimensional electron gas interacting via a short-
range electron—electron interaction. The electron self-energy is calculated using the leading-order
dynamical-screening approximation with (GWT approximation) and without the vertex corrections
(GW approximation). We test the reliability of the plasmon-pole approximation against the full
self-energy calculations. Energy relaxation rate via longitudinal optical (LO)-phonon emission is
also examined to explore the effects of short-range potential. Our results for the quasi-particle
properties indicate that an effective short-range interaction can be used as a qualitative model to
understand various quantities in a realistic quantum wire with long-range Coulomb interactions.

1. Introduction

Models of one-dimensional (1D) electron systems are of increasing interest because of
their applicability to realistic systems such as naturally occurring organic conductors,
artificially fabricated semiconductor structures, and certain materials exhibiting super-
conductivity. Quantum wire structures made out of semiconducting materials using
highly developed processing techniques provide a testing ground for the many-body
theories describing the dynamics of interacting electrons in restricted geometries. One-
dimensional system of electrons interacting via a short-range potential in configuration
space is a model being used to understand various properties of many realistic systems.

In the specific model of a 1D electron gas with a repulsive 6-function potential, the
ground-state properties have been considered by Yang [1] who presented an exact solu-
tion using the Bethe ansatz. Because of the significant role played by the short-range
correlations the ladder approximation provides a reasonable account of the ground
state energy [2]. Various correlation functions are determined as a function of the cou-
pling strength within mean-field theories [3 to 5] making use of the local-field factor.
These calculations show the usefulness of the concept of local-field factor even for a
very short-range interaction potential. It was also argued [6] that strongly interacting
1D fermions may be treated using the generalized random phase approximation which
includes local-field correlations.

In this work we study the quasi-particle properties of a 1D electron system interact-
ing via a repulsive contact interaction. We calculate the wave vector and frequency
dependent self-energy within the GW and GWTI approximations from which all one-
electron properties can be obtained. There are several motivations for our investiga-
tion. Firstly, we explore the extent the Fermi liquid theory can be employed in the
description of this model system similar to the quasi-one-dimensional electron gas inter-
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acting via long-range Coulomb forces. It has been shown by Hu and Das Sarma [7] that
disorder and finite temperature effects render the Fermi liquid picture meaningful in
the latter system, and we adopt this viewpoint with application to semiconducting quan-
tum wires in mind. Numerous studies [8 to 10] were devoted to the ground-state energy
and correlation functions of quasi-one-dimensional electron gas interacting via long-
range Coulomb interaction, but relatively less attention is paid to the quasi-particle
properties of these models. On the other hand, models of 1D interacting electrons on a
lattice are actively being pursued to understand various phenomena, most notable
being quantum phase transitions. Secondly, we investigate the effects of vertex correc-
tions. The extension of the random-phase approximation (RPA) GW approach is formu-
lated by the GWI approximation where I' stands for the vertex corrections. In the pre-
sent model we use the previously obtained [4] local-field factors to describe the vertex
corrections and assess their importance in the quasi-particle properties. In the case of
long-range Coulomb interaction the incorporation of vertex corrections within the self-
energy calculations requires extra computational effort. In the present model the simpli-
city of the local-field factors allows us to make better comparison to understand these
higher-order correlation effects. Lastly, because of the diminished role of the particle—
hole excitations and significant contribution from the plasmon modes to the excitation
spectrum of 1D electron systems, it has been suggested [11] that the plasmon-pole ap-
proximation to the response functions works remarkably well. We also test the plas-
mon-pole approximation in our comparative study of the self-energy for a system with
short-range interactions. As we show in the sequel, a model based on the short-range
interactions yields a number of properties of the 1D electron gas which are very similar
to that incorporating the long-range Coulomb potential. Thus, the calculation of quasi-
particle properties of realistic quantum wire systems may be facilitated by the use of
simpler interaction potentials with effective coupling strengths.

The rest of this paper is organized as follows. In the next section we provide the
theoretical background for different models in the calculation of the electron self-
energy. In Section 3 we present our numerical results of the self-energy and related quan-
tities calculated from it. We conclude in Section 4 with a brief summary of our results.

2. Model and Theory

We consider a system of electrons in 1D interacting with a contact potential V(ry, rp) =
Voo(r1 — r2), where Vj is the repulsive (V> 0) interaction strength. In terms of the
electron mass m and the linear density of the particles n, we use the dimensionless
parameter y = mVy/n to characterize the strength of the coupling (we take # = 1). The
Fermi wave vector is related to the linear density by n =2kg/m, in an unpolarized
system. The basic premise of this work is that the long-range Coulomb interaction may
be replaced by a very short-range interaction and a number of physical quantities
would be accounted for reasonably well. In fact, a class of problems for lattice electrons
interacting with a short-range potential have been treated within the 1D Hubbard
model [12] to describe more realistic systems. It was argued by Hu and Das Sarma [7]
that in some experimental situations the surrounding metallic gates or adjacent quan-
tum wires may screen the long-range Coulomb interaction and render the effective
interaction in a given quantum wire a short-ranged one. Another recent example con-
siders photoexcited semiconductor quantum wires and calculates the correlation effects
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in an electron—hole system interacting with a contact potential [13]. These examples
show that the short-range interactions replacing the long-range Coulomb interactions
may be useful in analyzing some experimental results.
The self-energy of the one-dimensional (1D) electron system within the GW approx-
imation (neglecting the vertex corrections) at 7= 0 is given by
/
Sk, w) :iJ dg daz)
(27)
where Gy(k, ) is the Green’s function for the noninteracting electron gas,
_ O(lk| —kg) | O(kp —|k])
= —+ =,
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with single-particle energies & = k?>/2m — u, (u is the chemical potential or the Fermi
energy Er =ki/2m at T=0). In the above equations 6(x) is the Heaviside step
function, W(q, w) is the dynamically screened interaction, which is given by
W(q, w) = Viyle(q, w), and 5 is a positive infinitesimal quantity. In the effective inter-
action above V| is the bare interaction potential in g-space and &(gq, w) is the dielec-
tric function which describes the dynamical screening properties of the electron gas.
We employ the usual practice of separating the dynamically screened interaction
W(q, w) into a frequency independent term which gives the exchange part of the self-
energy and frequency dependent term which gives the correlation part of the self-
energy W(q, w) = Vo + Vy[l/e(q, o) — 1]. The exchange part is given by
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where np(k) = 0(kp — k) is the Fermi distribution function at 7'=0. Performing the
integration we obtain X (k) = —4(y/n?)EF, i.e. in units of the Fermi energy. In the
GW approximation, the correlation part of the self-energy can be decomposed into two
parts [14, 15] Zcor(k, @) = Ziine(k, @) + Zpoie(k, w). Since e(q, iw) is a real and even
function with respect to w, the Zjn.(k, w) term is completely real.

The self-energy calculation which includes vertex corrections is called the GWI ap-
proximation [16]. The importance of vertex corrections in strongly correlated systems
was recently emphasized in a number of works [17]. In the GWI' approximation,
Xeor(k) is again split into two parts, Xjine(k, @) and Xpe(k, w), which are given, respec-
tively, by
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In these expressions I'(g, w) is called the vertex function and we use the approximation
[15]
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The dielectric function &(q, w) to be used in the above formulation (generalized RPA
framework) is given by

8(Q7 w) =1- VOXO(q’ w) r(Qv w)a (6)

where yo(g, w) is the density—density correlation function for non-interacting electrons.
The function G(q) is called the local-field correction factor. We employ the G(gq) calcu-
lated within the Singwi-Tosi-Land-Sjolander (STLS) approach [18] by Gold [4]. For the
contact potential model we use in this work, the local-field is independent [3, 4] of the
wave vector and only depends on the coupling strength y. This fact greatly facilitates
the calculation of the self-energy within the GWI" approximation. We also note that the
above expressions reduce to the familiar GW approximation forms when the vertex
corrections are neglected, i.e. G(q) = 0 or equivalently I'(q) = 1.

For quantum wires with long-range Coulomb interaction, Das Sarma et al. [11] devel-
oped a plasmon-pole approximation which turns out to be very accurate in the calculation
of quasi-particle properties. Here, we generalize their account to include the local-field
effects. We first note that in the GWI approximation when a local-field factor G(gq) is
used in the description of the vertex function I'(¢, ), the various cancelations render the
self-energy expression the same as in the GW approximation, except that the screening
function becomes [19, 20] e(g, w) =1 — V[l — G(q)] xo(¢, w). Using the plasmon-pole
approximation [11] for the density—density correlation function y(q, ®), we obtain

[1 - G(g)] wo
w?—w,+wi+in’

e(g, 0) =1 - (7)
where the pole strength w3 = (n/m)Voq® is determined by the f-sum rule, and w, is the
1D plasmon dispersion. We discuss the explicit form of w, in the next section. In the
above form of &(gq, w), the RPA is recovered when G(gq) = 0. With these modifications,
the calculation of the self-energy within the plasmon-pole approximation (including the
vertex corrections) proceeds along the lines given by Das Sarma et al. [11].

In this work, we calculate the self-energy in leading order perturbation theory. Our
expression for the GW and GWT self-energies contain non-interacting Green’s func-
tions. We have not attempted to perform a self-consistent calculation [21, 22] but sur-
mise that our results would remain qualitatively the same.

3. Results and Discussion

Before we present our results for the self-energy, we discuss the plasmon-pole approx-
imation as applied to the present model. The collective excitation modes (plasmons)
within the present short-range interaction model were discussed by Gold [4]. The dis-
persion relation for the collective density fluctuations is formally similar to that of 1D
electron systems with long-range Coulomb interaction, and is given by [23, 24]

e

where w. = |q?/2m =+ gkg/m| are the boundaries of the particle—hole excitation region,
and A(q) = exp{7*q/(2kry[1 — G(y)])}. Here, G(y) is the local-field factor representing
the many-body effects beyond the mean-field approximation (i.e. RPA). The RPA re-
sult is recovered when G(y) = 0. Within the STLS approximation the local-field factor

12

; (8)
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is independent [3, 4] of wave vector g, unlike the situation for systems interacting via
long-range Coulomb interaction [8 to 10]. The low energy part of the phase space in
1D electron systems largely excludes the particle—hole excitations, thus most of the
contribution comes from the collective modes. We follow Das Sarma et al. [11] to calcu-
late the oscillator strength given by

ZmOO

Flg) = = s [ dwoSn(g. 0). ©
0

for a quantitative measure of the plasmon contribution. The dynamic structure factor
(spectral weight) for plasmon excitations is given by

ks 1
Vo | O

oo Re [e(q. )

SpL(q, w) = — ’ oo —wy), (10)

where the RPA dielectric function is &(q, w) =1 — Vpyo(g, ). In Fig. 1, we compare the
oscillator strengths of plasmons within our short-range interaction model and in the
RPA for different interaction strength parameters. The plasmon oscillator strength
drops quickly to zero for small values of y at a critical vector. For large values of y, on
the other hand, the oscillator strength of the plasmon excitations extends well into the
range of large wave vectors. When we contrast this result with the situation in quasi-
one-dimensional structures interacting via the long-range Coulomb potential, we find
that F(q) is close to unity up to rather large values of ¢ and for the range of densities
of interest (i.e. n =~ 10* to 10’ cm™!), as pointed out by Das Sarma et al. [11]. Thus, the
rapid decrease in F(q) for small y is attributed to the nature of short-range interactions.
Furthermore, since the RPA plasmons never enter the particle—hole continuum in 1D,
the drop in F(q) cannot be associated with damping as in quantum-well structures. Plas-
mon dominance of the spectral weight is significantly increased as y increases. Since the
plasmon-pole approximation assumes that the excitation spectrum consists of only a
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Fig. 1. The oscillator strength F(q)
02 of plasmon excitations within the
RPA in a 1D electron system with
short-range interactions for differ-
0.0 ent interaction strengths y
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collective mode which exists for all values of wave vectors and possesses an oscillator
strength of unity, the plasmon-pole approximation works quite well at large y values.
We have also found that F(g) becomes even smaller when the local-field corrections
are included. The effect of G(y) is to lower the plasmon energies, thus the spectral
weight has less contribution in this case.

We now discuss the quasi-particle properties of the present model. In Fig. 2 we show
the frequency dependence of the real and imaginary parts of the self-energy calculated
in four different approximations; the RPA-GW, the GWI, and corresponding plasmon-
pole approximations. The self-energies at the band edge (k = 0) are depicted in Figs. 2a
and b, for y =1 and y =5, respectively. As expected the results of the plasmon-pole
approximation are very close to the GW and GWTI approximation results for large y.
However, for small values of y there are significant differences between the plasmon-
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Fig. 2. The self-energy X(k, ®) as function of the frequency w for a) and c¢) y=1 and
b) and d) y =5 values, and for two fixed wave vectors k =0 (a) and b)) and k = kr (c) and d)).
The thick solid and dashed lines correspond to the GWI' and GW (RPA) approximations, respec-
tively. The thin solid and dashed lines are for the corresponding plasmon-pole approximations. The
upper and lower set of curves show [Im X(k, )| and Re 2(k, o), respectively

pole approximation results and those of GW and GWT. This is due to the fact that the
plasmon contribution of the spectral weight is significantly larger at large interaction
strengths. Similar conclusions may be drawn from the self-energy results illustrated in
Figs. 2c and d, where we look at k = kr. The imaginary part |Im X (k, )| as a function
of w has finite discontinuities at w = +w,(k + kg) within the plasmon-pole approxima-
tion. Since Re [¥] and Im [2] are related to each other through the Kramers-Kronig
relation, a finite discontinuity in Im [X] gives rise to a logarithmic singularity in Re [X].
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In the RPA calculation of the self-energy, the finite discontinuities in Im [X] occur also
at o = +wy(k + kp) for large y values. For small values of y, Im [X] is continuous but
its derivative is discontinuous at the same points. In the GWI" approximation calcula-
tion of the self-energy the discontinuities in Im [X] occur at larger |w| values than
o = |wg(k + kg)| for large y values. For small y values the derivative of Im [] is dis-
continuous at the same point with the RPA calculations of self-energy. When we com-
pare our results with the results of a one-dimensional system with long-range Coulomb
interaction [7, 11], we observe that they are qualitatively the same. This shows that the
quasi-particle properties in 1D systems are largely determined by the short-range part
of the interaction. We can make several comments regarding the self-energy calcula-
tions. There are considerable differences between the GW and GWI' approximation
results. The main reason for this is that for the short-range interaction model the RPA
does not provide a good description of the ground-state energy beyond y = 3. The
local-field corrections restore the quality of approximation in the intermediate coupling
region (1 <y <10), thus the quasi-particle properties calculated within the GWI ap-
proximation are expected to give a better account.

Once the self-energy X(k, w) is known, other one-particle properties can be readily
calculated. We now examine the single-particle spectral function A(k, @) defined as

2Im S(k, o)

A ) = e T Restk, o) + ImE(k, )]

(11)

In Figs. 3a and b we show A(k, ) as a function of the frequency at k =0 and k = kg,
respectively, for y = 5. We again note that our results for the short-range potential are
very similar to those for the long-range Coulomb interaction [7, 11], indicating the im-
portance of short-range effects. We note that the difference between the GW and GWI'
approximation results are more prominent at the band-edge k =0 than at k = kg. The
observed quasi-particle peaks correspond the solutions of the Dyson’s equation
o — & —u=2(k, w). The single-particle spectral density also satisfies the sum-rule
[dw/(2m) A(k, ) = 1, which we verify numerically to a very high accuracy. The first
frequency sum-rule yields [22] [dw/(27) wA(k, ®) = EJF, where EJY = & + Zex(k) is
the quasi-particle energy in the Hartree-Fock approximation, and the spectral function
A(k, ) is evaluated in the GW approximation. We have selectively checked for various
y values that this sum-rule is also satisfied. We have found that the above sum-rules are
not fulfilled satisfactorily when the plasmon-pole approximation was made in the calcu-
lation of X(k, w) for small coupling strengths. This is consistent with our earlier obser-
vations in connection with the particle-hole excitations. The spectral function A(k, w)
can be observed experimentally with photoemission spectroscopy [25]. Calculations of
A(k, w) in the Hubbard model or more general lattice models [26] together with our
results can be compared with the experiments. The momentum distribution of particles

n(k) = J" A(k,w)dw/2m, is shown in Fig.4 for various values of the interaction

strength The expected behavior of a jump discontinuity at k = kp decreases with in-
creasing y, as in a normal Fermi liquid. That the short-range interaction model yields
qualitatively similar n(k) results to a 1D electron system with long-range Coulomb in-
teraction, once again indicates the importance of the short-range part of the repulsive
interaction in determining the physical properties. In a recent paper Schifer and
Schuck [21] applied Green’s function methods to calculate the momentum distribution
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for a 1D Hubbard model. They also find discontinuity in ny; for small enough on-site
interaction strengths. Although the details of both approaches are quite different it is
interesting to note their qualitative agreement.

The many-body effects renormalize the bare mass of electrons, and the deviations
from the free-particle behavior are embodied in the effective mass. The quasi-particle
effective mass m™ is calculated from the knowledge of the wave vector and frequency
dependence of the self-energy, through the expression [15]

m* |1-02(k, w)/0w
m |1+ 02(k, 0)/0&,

(12)

w=E&;

The derivative terms need to be handled with care, since logarithmic divergences ap-
pear [27] as w — 0 and k — kp. These are treated by including a phenomenological
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broadening factor in the density—density response function yo(g, w) which restores the
Fermi liquid behavior in our system. We display in Fig. 5 the effective mass m™*/m as a
function of y, which we obtain by calculating Eq. (12) at k = kr and w = 0. The effec-
tive mass shows a strong dependence on the coupling strength in the GW approxima-
tion, but the inclusion of vertex corrections somewhat diminishes this effect. This may
be related to the overestimation of correlation effects in the RPA.

The quasi-particle broadening or the damping rate I'(k) is given by the imaginary
part of the self-energy,

I'(k) = —Im3(k, &,). (13)

From the damping rate, we can calculate the quasi-particle scattering rate 2I'(k), the
inelastic lifetime 7(k) = [2I'(k)]™", and the inelastic mean free path I(k) = v(k) z(k),

Fig. 5. The effective mass ratio
m”/m as a function of y with and
05 |- | without the vertex corrections.
The solid and dashed lines are
for GWI' and GW approxima-
0 . \ s ! . tions, respectively
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where v(k) is the electron velocity. Figure 6 shows I'(k) for y =5 in the RPA-GW, GWT'
and their corresponding plasmon-pole approximations. We find that the plasmon-pole
approximations provide a reasonable agreement at this intermediate coupling. The
damping rate calculated within the GWI approximation is not drastically different from
the one calculated within the GW (RPA). Firstly, I'(k) within the GWT is about three
times smaller in magnitude than that in the RPA-GW. This is consistent with the earlier
results shown in Fig. 2. A similar comparison for 2D electron systems we made by Mar-
morkos and Das Sarma [28]. There, it was found that the vertex corrections were only
10 to 30% smaller than the RPA results. We are not aware of any calculations of the
damping rate in 1D electron systems with long-range interaction which includes the
vertex corrections. The threefold decrease in I'(k) may be partly due to the dimension-
ality and partly due to the short-range nature of the interaction. In any case, our results
indicate the significance of vertex corrections or correlation effects beyond the RPA.
For wave vectors away from kg, but less than some threshold wave vector k.
(ke ~ 1.6 kp for y =5 and k¢~ 2.1 kg for y = 10 in the RPA), damping rates including
the vertex corrections are higher than those in the RPA. In the large wave vector
regime, indicated by the sharp increase in I'(k) in Fig. 6, plasmon excitation mechanism
becomes important. Here the effects of vertex corrections are observed to decrease the
damping rate. Furthermore, the threshold wave vector k. for the onset of plasmons
decreases compared to the RPA values (k. ~ 2 kg for y =5 and k.~ 3 kg for y =10 in
the GWI approximation). As it is known, the vertex corrections (local-field corrections)
in general lower the plasmon energies. As argued before, for larger values of y the
RPA breaks down, and the results which include the local-field corrections (i.e. GWT
approximation) should be more trustworthy.

The above examples of quasi-particle properties, when compared with the results for
quantum-wires with long-range interaction [7], suggest that as far as the Fermi liquid
concept is applicable the short-range Coulomb interaction plays an important role. Si-
milar to the recent attempts [13, 17] one can model the realistic quantum-wire struc-
tures with an effective contact interaction to calculate various quantities, provided that

4.0 T T T T
30 |
w
:2 20
~ Fig. 6. The damping rate I'(k) as
a function of k for y =5. The
thick solid and dashed lines cor-
1.0 respond to the GWI' and GW
approximations, respectively. The
thin solid and dashed lines indi-
cate the corresponding plasmon-
0.0 pole approximations
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dynamical effects are accounted for through the dielectric function &(g, w). An example
was given by Hu and Das Sarma [7] of a situation under which a 1D system of elec-
trons (a quantum wire) may be regarded as interacting with a contact potential (cf.
Section 2). Thus, our results may be useful in understanding the quasi-particle proper-
ties of similar systems within the Fermi liquid theory. The idea is basically to relate the
density and lateral width of a quantum wire to a single interaction parameter y in our
model, as employed by Tassone and Piermarocchi [13] in their study. Our calculations
indicate that in contrast to the long-range interaction case, the plasmon-pole approxima-
tion may not be very reliable for small couplings. Nevertheless, the plasmon-pole ap-
proximation yields qualitatively correct description of the 1D electrons interacting via a
short-range potential.

To further test the similarity between the results of the short-range interaction mod-
el and that of the long-range Coulomb potential, we investigate the energy relaxation
in a 1D structure due to electron—phonon interaction [29]. Since we shall be inter-
ested in the qualitative effects rather than a precise comparison, we employ the plas-
mon-pole approximation in this part of the calculations to study the hot-electron en-
ergy relaxation through longitudinal optical (LO)-phonon emission within the Frohlich
coupling. When excess energy is supplied to the electron gas, either by a strong ap-
plied electric field or by optical excitation, the electrons go out of equilibrium with
the lattice and attain a higher electron temperature 7 than the ambient lattice tem-
perature 71. The hot-electron gas loses energy to its surroundings in order to achieve
equilibrium with the lattice. For lattice temperature 71 = 0, the energy relaxation rate
is given by [30]

P =

Qe

> J do onr(w) Im y4(q, @) Im Vie_pn(gq, o), (14)
q
0

where np(w) is the Bose distribution factor at electron temperature 7, and
Vee—ph(q, @) = |Mq|2 D(q, w)/€*(q, ) is the dynamically screened phonon potential in
which |[M,|*> is the Frohlich coupling matrix element squared given by
|Mq|2 = Vo(1/exw — 1/€0) wLo/2. We use the material parameters appropriate for GaAs:
€ =12.9, ¢, = 10.9, and wy o = 36.8 meV. The phonon propagator D(g, w) is given by

2wL0

wZ - w%O - 2wLO|Mq|2 XO(Qa (U)/S(q, w) .

D(q,w) = (15)
The last term in the denominator (phonon self-energy) is the correction due to many-
body electron—phonon coupling, which broadens the phonon spectral function. If the
phonon self-energy is ignored, Im D(q, w) becomes

Im Dy(q, w) = 7[d(w + wro) — 8(w — wro)] - (16)
Inserting this into Eq. (14), we obtain the energy loss rate for bare (without many-body

coupling) phonon emission as

Im ,
Py = —2wr0nr(wL0) X M, Im %(¢, @ro)

q EZ(Qa wLO) (17)

When we keep the phonon self-energy in the denominator of Eq. (15), Im D(q, w) can
again be expressed as a sum of a pair of d-functions at the coupled plasmon-phonon
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excitation frequencies. In this case, the energy loss rate is given by [11] P=P, + P_,
where

wLolwl — o}

2 Imyo(q, w+)

P, = qu:a)inT(wi) w:t(w%r — o) ‘ q‘ 2(q, w) (18)
in which w. (not to be confused with the particle—hole excitation region boundaries in
this context) are the coupled plasmon—phonon excitation energies [11] and w, is the
uncoupled plasmon excitation for a 1D electron gas discussed earlier. We show the
energy loss rates with and without the phonon renormalization effects in Fig. 7. The
effect of the phonon renormalization is seen to be negligible at high temperatures but it
is very large at low temperatures. The inclusion of vertex corrections seems to increase
the power loss. These results are very similar to those obtained with the long-range
Coulomb interaction [11, 31, 32]. We believe that the plasmon-pole approximation gives
a qualitatively faithful description of the energy loss rate at this large coupling strength
(v = 10, and our results may be compared with the experiments [33].

4. Summary

In this work, we have calculated the quasi-particle properties of a 1D electron gas inter-
acting via a short-range repulsive contact potential. We have used the RPA based GW
approximation and the GWT approximation which includes the local-field corrections to
calculate the electron self-energy. We found that a number of quasi-particle properties
are very similar to those calculated for 1D electron systems interacting via long-range
Coulomb potential. Thus, a number of physical quantities of interest for realistic 1D
electron systems may be modeled by an effective short-range Coulomb interaction. Our
results demonstrate the importance of short-range correlation effects and also the sig-
nificance of Fermi-liquid picture in some of the quasi-particle properties. Making the
plasmon-pole approximation to the dielectric function in the self-energy calculations is
tested against the exact RPA-GW and GWT approximation schemes. We found that
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although the plasmon-pole approximation captures the qualitative aspects of the full
calculations, it works less satisfactorily (compared to the 1D electron gas with long-
range interaction) in the present problem for small couplings.
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