Recursion operator and dispersionless rational Lax representation

K. Zheltukhin

Department of Mathematics, Faculty of Sciences, Bilkent University, 06533 Ankara, Turkey
Received 19 September 2001; received in revised form 13 February 2002; accepted 27 March 2002
Communicated by A.P. Fordy

Abstract

We consider equations arising from dispersionless rational Lax representations. A general method to construct recursion operators for such equations is given. Several examples are given, including a degenerate bi-Hamiltonian system with a recursion operator. © 2002 Elsevier Science B.V. All rights reserved.

PACS: 02.30.Ik; 02.30.Sr

Keywords: Integrable system; Recursion operator

1. Introduction

Recently a new method of constructing a recursion operator from Lax representation was introduced in [1]. This construction depends on Lax representation of a given system of PDEs. Let

\[L_t = [A, L] \] \hspace{1cm} \text{(1)}

be Lax representation of an integrable nonlinear system of PDEs. Then a hierarchy of symmetries can be given by

\[L_{t_n} = [A_n, L], \quad n = 0, 1, 2, \ldots, \] \hspace{1cm} \text{(2)}

where \(t_0 = t \), \(A_0 = A \) and \(A_n, n = 0, 1, 2, \ldots, \) are Gel’fand–Dikkii operators given in terms of \(L \). The recursion relation between symmetries can be written as

\[L_{t_{n+1}} = LL_{t_n} + [R_n, L], \quad n = 0, 1, 2, \ldots, \] \hspace{1cm} \text{(3)}

where \(R_n \) is an operator such that \(\text{ord } R_n = \text{ord } L \).

This symmetry relation allows us to find \(R_n \), hence \(L_{t_{n+1}} \), in terms of \(L \) and \(L_{t_n} \).

In [1,2] this method was applied to construct recursion operators for Lax equations with different classes of scalar and shift operators, corresponding to field and lattice systems, respectively. In [3] the method was applied to...
dispersionless Lax equations on a Poisson algebra of Laurent series

\[\Lambda = \left\{ \sum_{i=-\infty}^{\infty} u_i p^i : u_i - \text{smooth functions} \right\}, \quad (4) \]

with a polynomial Lax function. The present work is a continuation of [3]. Here we consider a dispersionless Lax equation on the Poisson algebra \(\Lambda \) with a rational Lax function. Such equations one can find in context of topological field theories (see [4,5]).

We have a Lax function

\[L = \frac{\Delta_1}{\Delta_2}, \quad (5) \]

where \(\Delta_1, \Delta_2 \) are polynomials of degree \(N \) and \(M \), respectively, and \(N > M \). The dispersionless Lax equation is

\[\frac{\partial L}{\partial t_n} = \left\{ \left(\left(L^{n-n} \right)_{n \geq 0}, L \right), n = 0, 1, 2, \ldots \right\}, \quad (6) \]

where the Poisson bracket is given by

\[\{ f, g \} = p \left(\frac{\partial f}{\partial p} \frac{\partial g}{\partial x} - \frac{\partial f}{\partial x} \frac{\partial g}{\partial p} \right). \]

Eq. (6) is of hydrodynamic type. There are several methods for construction of a recursion operator for some equations of hydrodynamic type (see [6–8]). Also a recursion operator can be found with the help of two compatible Hamiltonian formulations of a given equation. For Hamiltonian formulations of equations of hydrodynamic type see Refs. [9,10] and for Hamiltonian formulations of the equations admitting a dispersionless Lax representation see Refs. [11–15].

We construct a recursion operator for a hierarchy of symmetries (6), using a dispersionless Lax representation. First we study the symmetry relation (3) for the rational Lax function. Then we give some examples of calculation of a recursion operator. In particular, we find a recursion operator \(\mathcal{R} \) for Eq. (6) with the Lax function

\[L = p + S + \frac{P}{p + Q}, \quad (7) \]

which leads to the system [11]

\[S_t = P_x, \quad P_t = PS_x - QP_x - P Q_x, \quad Q_t = QS_x - Q Q_x. \quad (8) \]

The recursion operator is given by

\[\mathcal{R} = \begin{pmatrix} S & 1 & PQ^{-1} + P_x D_x^{-1} \cdot Q \\ 2P & S - Q & -2P + (PS_x - (P Q_x) D_x^{-1} \cdot Q \end{pmatrix}, \quad (9) \]

In [11] bi-Hamiltonian representation of this equation was constructed with Hamiltonian operators

\[\mathcal{D}_1 = \begin{pmatrix} 0 & P & Q \\ P & -2P Q & -Q^2 \\ Q & -Q^2 & 0 \end{pmatrix} D_x + \begin{pmatrix} 0 & P_x \\ 0 & -(P Q_x) \\ 0 & -(Q Q_x) \end{pmatrix}, \quad (10) \]

and

\[\mathcal{D}_2 = \begin{pmatrix} 2P & P(S - 3Q) & Q(S - Q) \\ P(S - Q) & 2P - 2SQ + 4Q^2 & Q(2P - SQ + Q^2) \\ Q(S - Q) & Q(2P - SQ + Q^2) & 2Q^2 \end{pmatrix} D_x. \]
These Hamiltonian operators are degenerate, so, one cannot use them to find a recursion operator. But it turns out that they are related to the recursion operator \mathcal{R}. One can easily check that the following equality holds

$$\mathcal{R}D_1 = D_2.$$ \hfill (12)

We observe that the degeneracy in the bi-Hamiltonian operators is due to the following fact. Let $p' = p + F$ then the Lax function becomes

$$L = p' + G + \frac{P}{p'}.$$ \hfill (13)

This means that we have two independent variables P and G, where $G = S - F$. The equation corresponding to the Lax function (13) has been studied in [3].

To remove degeneracy one can take the Lax function as

$$L = p + S + \frac{P}{p} + \sum_{i=1}^{m} \frac{Q_i}{p + F_i}.$$ \hfill (14)

As an example we shall consider the Eq. (6) with the Lax function

$$L = p + S + \frac{P}{p} + \frac{Q}{p + F}.$$ \hfill (15)

2. Symmetry relation for rational dispersionless Lax representation

Following [1] we consider the hierarchy of symmetries for the dispersionless Lax equation (6) with the Lax function (5)

$$\frac{\partial L}{\partial t_n} = \left\{ \left(\frac{L}{L_1 N - M} + n \right)_{\geq 0}, L \right\}, \quad n = 0, 1, 2, \ldots.$$ \hfill (16)

Lemma 1. For any $n = 0, 1, 2, \ldots$,

$$\frac{\partial L}{\partial t_n} = L \frac{\partial L}{\partial t_{n-1}} + [R_n, L].$$ \hfill (17)

Function R_n has a form

$$R_n = A + \frac{B}{\Delta z},$$ \hfill (18)

where A is a polynomial of degree $(N - M)$ and B is a polynomial of degree $(M - 1)$.

Proof. We have

$$L_{N-M+n} \geq 0 = \left[L \left(L_{N-M+(n-1)} \geq 0 \right) + L \left(L_{N-M+(n-1)} \leq 0 \right) \right]_{\geq 0}.$$

So,

$$L_{N-M+n} \geq 0 = L \left(L_{N-M+(n-1)} \geq 0 \right) \geq 0 + \left[L \left(L_{N-M+(n-1)} \leq 0 \right) \geq 0 - \left(L \left(L_{N-M+(n-1)} \leq 0 \right) \geq 0 \right) \right].$$
If we take
\[R_n = \left(L \left(L \frac{1}{n-M} + (n-1) \right) < 0 \right) \geq 0 - \left(L \left(L \frac{1}{n-M} + (n-1) \right) \geq 0 \right) < 0, \] (19)
then
\[\left(L \frac{1}{n-M} + n \right) \geq 0 = L \left(L \frac{1}{n-M} + (n-1) \right) \geq 0 + R_n. \]
Hence,
\[\partial L \partial t_n = \left\{ \left(L \frac{1}{n-M} + n \right) \geq 0 \right\} L \left(L \frac{1}{n-M} + (n-1) \right) \geq 0 + R_n, \]
and (17) is satisfied. The remainder \(R_n \) has form (18). Indeed in (19) we set
\[A = \left(L \left(L \frac{1}{n-M} + (n-1) \right) < 0 \right) \geq 0, \] and
\[B = \Delta_2 \left(L \left(L \frac{1}{n-M} + (n-1) \right) \geq 0 \right) < 0. \]
Then \(A \) is a polynomial of degree \((N - M - 1)\) and \(B \) is a polynomial of degree \((M - 1)\). \(\square \)

Now we can apply the Lemma 1 to find recursion operators.

3. Examples

Example 2. Let us consider the Eq. (8) given in introduction.

Lemma 3. A recursion operator for (8) is given by (9).

Proof. Using (18) for \(R_n \), we have \(R_n = A + \frac{B}{p+Q} \). So, the symmetry relation (17) is
\[\partial L \partial t_n = \left\{ \left(L \frac{1}{n-M} + n \right) \geq 0 \right\} \left(L \left(L \frac{1}{n-M} + (n-1) \right) \geq 0 + R_n, L \right) = L \frac{\partial L}{\partial t_n} + \{ R_n, L \}, \]
and (17) is satisfied. The remainder \(R_n \) has form (18). Indeed in (19) we set
\[A = \left(L \left(L \frac{1}{n-M} + (n-1) \right) < 0 \right) \geq 0, \]
and
\[B = \Delta_2 \left(L \left(L \frac{1}{n-M} + (n-1) \right) \geq 0 \right) < 0. \]
Then \(A \) is a polynomial of degree \((N - M - 1)\) and \(B \) is a polynomial of degree \((M - 1)\). \(\square \)

Now we can apply the Lemma 1 to find recursion operators.

Example 4. The dispersionless Lax equation (6) with the Lax function (15), for \(n = 1 \), gives the following system
\[S_t = P_x + Q_x, \quad P_t = PS_x, \quad Q_t = QS_x - FQ_x - QF_x, \quad F_t = FS_x - FF_x. \] (20)
Lemma 5. A recursion operator for (20) is given by

\[
\begin{pmatrix}
S & 2 + P_x D_x^{-1} \cdot P^{-1} & 1 \\
2P & S + QF^{-1} + PS_x D_x^{-1} \cdot P^{-1} & PF^{-1} \\
2Q & -QF^{-1} \quad -PF^{-1}(Q_x - QF^{-1}F_x)D_x^{-1} \cdot P^{-1} & S - F - PF^{-1} \\
F & 1 + (P_x - PF^{-1}F_x)D_x^{-1} \cdot P^{-1} & -1 \\
\end{pmatrix}
\begin{pmatrix}
QF^{-1} + Q_x D_x^{-1} \cdot F^{-1} \\
-2PQF^{-2} \\
-2PQF^{-2} - 2Q \\
-PF^{-1}F_x \\
\end{pmatrix}.
\]

(21)

Proof. Using (18) for \(R_n \), we have \(R_n = C + \frac{A}{p} + \frac{B}{p + F} \). So, the symmetry relation (17) is

\[
\frac{\partial S}{\partial t_n} + \frac{\partial P}{\partial t_n} \cdot \frac{1}{p} + \frac{\partial Q}{\partial t_n} \cdot \frac{1}{p} + \frac{\partial F}{\partial t_n} \cdot \frac{-Q}{(p + F)^2} = \left(p + S + \frac{Q}{p + F} \right) \left(\frac{\partial S}{\partial t_{n-1}} + \frac{\partial P}{\partial t_{n-1}} \cdot \frac{1}{p} + \frac{\partial Q}{\partial t_{n-1}} \cdot \frac{1}{p + F} + \frac{\partial F}{\partial t_{n-1}} \cdot \frac{-Q}{(p + F)^2} \right)
\]

\[
+ p \left(\frac{B}{p^2} + \frac{-C}{(p + F)^2} \right) \left(S_x + \frac{P_x}{p} + \frac{Q_x}{(p + F)} + \frac{-QF_x}{(p + F)^2} \right)
\]

\[
- p \left(A_x + \frac{B_x}{p} + \frac{C_x}{(p + F) + \frac{-C}{(p + F)^2}} \right) \left(1 + \frac{P}{p} + \frac{-Q}{(p + F)^2} \right).
\]

Therefore, the coefficients of \(p, p^{-2} \) and \((p + F)^{-3} \) must be zero, it gives recursion relations to find \(A, B \) and \(C \). Then the coefficients of \(p^0, p^{-1}, (p + F)^{-1}\) and \((p + F)^{-2} \), give expressions for \(\frac{\partial S}{\partial t_n}, \frac{\partial P}{\partial t_n}, \frac{\partial Q}{\partial t_n} \) and \(\frac{\partial F}{\partial t_n} \). \(\square \)

Acknowledgements

I thank Professors Metin Gürses, Atalay Karasu and Maxim Pavlov for several discussions. This work is partially supported by the Scientific and Technical Research Council of Turkey.

References