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Abstract—In time hopping impulse radio, Nf pulses of duration
Tc are transmitted for each information symbol. This gives rise to
two types of processing gains: i) pulse combining gain, which is a
factor Nf , and (ii) pulse spreading gain, which is Nc = Tf /Tc ,
where Tf is the mean interval between two subsequent pulses. This
paper investigates the tradeoff between these two types of process-
ing gains in the presence of timing jitter. First, an additive white
Gaussian noise (AWGN) channel is considered, and approximate
closed-form expressions for bit error probability (BEP) are derived
for impulse radio systems with and without pulse-based polarity
randomization. Both symbol-synchronous and chip-synchronous
scenarios are considered. The effects of multiple-access interfer-
ence (MAI) and timing jitter on the selection of optimal system
parameters are explained through theoretical analysis. Finally, a
multipath scenario is considered, and the tradeoff between process-
ing gains of a synchronous impulse radio system with pulse-based
polarity randomization is analyzed. The effects of the timing jitter,
MAI, and interframe interference (IFI) are investigated. Simula-
tion studies support the theoretical results.

Index Terms—Impulse radio ultra wideband (IR-UWB), inter-
frame interference (IFI), multiple-access interference (MAI), Rake
receiver, timing jitter.

I. INTRODUCTION

R ECENTLY, communication systems that employ ultra
wideband (UWB) signals have drawn considerable atten-

tion. UWB systems occupy a bandwidth larger than 500 MHz,
and they can coexist with incumbent systems in the same fre-
quency range due to large spreading factors and low power
spectral densities. Recent Federal Communications Commis-
sion (FCC) rulings [1], [2] specify the regulations for UWB
systems in the United States.

Commonly, impulse radio (IR) systems, which transmit very
short pulses with a low duty cycle, are employed to implement
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UWB systems [3]–[5]. Although the short duration of UWB
pulses is advantageous for precise positioning applications [6],
it also presents practical difficulties such as synchronization,
which requires efficient search strategies [7]. In an IR system, a
train of pulses is sent and information is usually conveyed by the
positions or the amplitudes of the pulses, which correspond to
pulse position modulation (PPM) and pulse amplitude modula-
tion (PAM), respectively. Also, in order to prevent catastrophic
collisions among different users, and thus, provide robustness
against multiple access interference (MAI), each information
symbol is represented not by one pulse but by a sequence of
pulses, and the locations of the pulses within the sequence are de-
termined by a pseudorandom time-hopping (TH) sequence [3].

The number of pulses that are sent for each information sym-
bol is denoted by Nf . This first type of processing gain is called
the pulse combining gain. The second type of processing gain
Nc is the pulse spreading gain, and is defined as the ratio of
average time between the two consecutive transmissions (Tf )
and the actual transmission time (Tc); that is, Nc = Tf/Tc. The
total processing gain is defined as N = NcNf , and assumed to
be fixed and large [8]. The aim of this paper is to investigate
the tradeoff between the two types of processing gain Nc and
Nf , and to calculate the optimal Nc (Nf ) value such that bit
error probability (BEP) of the system is minimized.1 In other
words, the problem is to decide whether or not sending more
pulses each with less energy is more desirable in terms of BEP
performance than sending fewer pulses each with more energy
(Fig. 1).

This problem is originally investigated in [8]. Also, [9] ana-
lyzed the problem from an information theoretic point of view
for the single-user case. In [8], it is concluded that in mul-
tiuser flat fading channels, the system performance is indepen-
dent of the pulse combining gain for an IR system with pulse-
based polarity randomization, and it is in favor of small pulse
combining gain for an IR system without pulse-based polarity
randomization. However, the analysis is performed in the ab-
sence of any timing jitter. Due to the high time resolution of
UWB signals, effects of timing jitter are usually not negligi-
ble [10]–[12] in IR-UWB systems. As will be observed in this
paper, presence of timing jitter has an effect on the tradeoff be-
tween the processing gains, which can modify the dependency of
the BEP expressions on the processing gain parameters. In this

1The FCC regulations also impose restriction on peak-to-average ratio (PAR),
which is not considered in this paper [2].
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Fig. 1. Two different cases for a BPSK-modulated TH-IR system without pulse-based polarity randomization when N = 24. For the first case, Nc = 8, Nf = 3,
and the pulse energy is E/3. For the second case, Nc = 4, Nf = 6, and the pulse energy is E/6.

paper, the tradeoff between the two types of processing gain is
investigated in the presence of timing jitter for TH IR sys-
tems. First, transmission over an additive white Gaussian noise
(AWGN) channel is considered, and the tradeoff is investigated
for IR systems with and without pulse-based polarity randomiza-
tion. Both symbol-synchronous and chip-synchronous cases are
investigated. Also frequency-selective channels are considered,
and the performance of a downlink IR system with pulse-based
polarity randomization is analyzed.

The remainder of the paper is organized as follows. Section II
describes the signal model for an IR system. Section III inves-
tigates the tradeoff between processing gain parameters for IR
systems with and without pulse-based polarity randomization
over AWGN channels. In each case, the results for symbol-
synchronous and chip-synchronous systems are presented. Sec-
tion IV considers transmission over frequency-selective chan-
nels, and adopts a quite general Rake receiver structure at the
receiver. After the simulation studies in Section V, some con-
clusions are made in Section VI.

II. SIGNAL MODEL

Consider a binary phase shift keying (BPSK) random TH IR
system where the transmitted signal from user k in an Nu-user
setting is represented by the model

s
(k)
tx (t)=

√
Ek

Nf

∞∑
j=−∞

d
(k)
j b

(k)
�j/Nf �wtx

(
t−jTf − c

(k)
j Tc−ε

(k)
j

)
(1)

where wtx(t) is the transmitted UWB pulse, Ek is the bit energy
of user k, ε

(k)
j is the timing jitter at jth pulse of the kth user,

Tf is the average time between two consecutive pulses (also
called the “frame” time), Tc is the pulse interval, Nf is the
number of pulses representing one information symbol, which
is called the pulse combining gain, and b

(k)
�j/Nf � ∈ {+1,−1} is

the information symbol transmitted by user k. In order to allow
the channel to be shared by many users and avoid catastrophic
collisions, a random TH sequence {c(k)

j } is assigned to each

user, where c
(k)
j ∈ {0, 1, . . . , Nc − 1} with equal probability;

and c
(k)
j and c

(l)
i are independent for (k, j) �= (l, i). This TH

sequence provides an additional time shift of c
(k)
j Tc seconds

to the jth pulse of the kth user. Without loss of generality,
Tf = NcTc is assumed throughout the paper.

Two different IR systems are considered depending on d
(k)
j .

For IR systems with pulse-based polarity randomization [13],
[32] d

(k)
j are binary random variables taking values ±1 with

equal probability, and are independent for (k, j) �= (l, i). Com-
plying with the terminology established in [8], such systems
will be called “coded” throughout the paper. The systems with
d
(k)
j = 1,∀k, j are called “uncoded.” This second type of system

is the original proposal for transmission over UWB channels [3],
[14] while a version of the first type is proposed in [15].

The timing jitter ε
(k)
j in (1) mainly represents the inaccu-

racies of the local pulse generators at the transmitters, and
is modeled as independent and identically distributed (i.i.d.)
among the pulses of a given user [16], [17]. That is, ε

(k)
j

for j = . . . ,−1, 0, 1, . . . form an i.i.d. sequence. Also the jit-
ter is assumed to be smaller than the pulse duration Tc, i.e.,
maxj,k |ε(k)

j | < Tc, which is usually the case for practical
situations.

N = NcNf is defined to be the total processing gain of the
system. Assuming a large and constant N value [8], the aim is
to obtain the optimal Nc (Nf ) value that minimizes the BEP of
the system.

III. AWGN CHANNELS

The received signal over an AWGN channel in an Nu-user
system can be expressed as

r(t) =
Nu∑
k=1

√
Ek

Nf

∞∑
j=−∞

d
(k)
j b

(k)
�j/Nf �

× wrx

(
t − jTf − c

(k)
j Tc − ε

(k)
j − τ (k)

)
+ σnn(t) (2)

where wrx(t) is the received unit-energy UWB pulse, τ (k) is
the delay of user k, and n(t) is white Gaussian noise with zero
mean and unit spectral density.

Considering a correlator/matched filter (MF) receiver, the
template signal at the receiver for the ith information symbol
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can be expressed as

s
(1)
temp(t) =

(i+1)Nf −1∑
j=iNf

d
(1)
j wrx

(
t − jTf − c

(1)
j Tc − τ (1)

)
(3)

where, without loss of generality, user 1 is assumed to be the
user of interest. Also note that no timing jitter is considered for
the template signal, since the jitter model in the received signal
can be considered to account for that jitter as well, without loss
of generality.

From (2) and (3), the MF output for user 1 can be expressed
as2,3

y =
∫

r(t)s(1)
temp(t)dt ≈

√
E1

Nf
b
(1)
i

×
(i+1)Nf −1∑

j=iNf

φw

(
ε
(1)
j

)
+ a + n (4)

where the first term is the desired signal part of the output
with φw(x) =

∫∞
−∞ wrx(t)wrx(t − x)dt being the autocorrela-

tion function of the UWB pulse, a is the MAI due to other users,
and n is the output noise, which is approximately distributed as
n ∼ N (0, Nfσ2

n), where N (µ, σ2) denotes a Gaussian random
variable with mean µ and variance σ2.

The MAI term can be expressed as the sum of interference

terms from each user, i.e., a =
∑Nu

k=2

√
Ek

Nf
a(k), where each

interference term is in turn the summation of interference to one
pulse of the template signal

a(k) =
(i+1)Nf −1∑

m=iNf

a(k)
m (5)

where

a(k)
m = d(1)

m

∫
wrx

(
t − mTf − c(1)

m Tc − τ (1)
)

×
∞∑

j=−∞
d
(k)
j b

(k)
�j/Nf �

× wrx

(
t − jTf − c

(k)
j Tc − ε

(k)
j − τ (k)

)
dt. (6)

As can be seen from (6), a
(k)
m denotes the interference from

user k to the mth pulse of the template signal.
In this paper, we consider chip-synchronous and symbol-

synchronous situations for the simplicity of the expressions.
However, the current study can be extended to asynchronous sys-
tems as well [18]. We will see that for coded systems, the effect
of MAI is the same whether the users are symbol-synchronous
or chip-synchronous. However, for uncoded systems, the aver-

2The self-interference term due to timing jitter is ignored, since it be-
comes negligible for large Nc and/or small E{φ2

w (Tc − |ε(1)|)} values, where
φw (x) =

∫ ∞
−∞ wrx(t)wrx(t − x)dt. However, it will be considered for the

multipath case in Section IV.
3Subscripts for user and symbol indices are omitted for y, a, and n for

simplicity.

Fig. 2. Positions of the template signal and the signal of user k.

age power of the MAI is larger, hence, the BEP is higher when
the users are symbol-synchronous.

We assume, without loss of generality, that the delay of
the first user τ (1) is zero. Then, τ (k) = 0 ∀k for symbol-
synchronous systems. For chip-synchronous systems, τ (k) =
∆(k)

2 Tc, where ∆(k)
2 ∈ {0, 1, . . . , N − 1} with equal proba-

bility. Also let ∆(k)
1 be the offset between the frames of

user 1 and k. Then, ∆(k)
1 = mod{∆(k)

2 , Nc}, and obviously,

∆(k)
1 ∈ {0, 1, . . . , Nc − 1} with equal probability (Fig. 2).

A. Coded Systems

For symbol-synchronous and chip-synchronous coded sys-
tems, the following lemma approximates the probability distri-
bution of a(k) in (5).

Lemma 1: As N −→ ∞ and Nf

Nc
−→ c > 0, a(k) is asymp-

totically normally distributed as

a(k) ∼ N
(
0, γ

(k)
2 Nf/Nc

)
(7)

where γ
(k)
2 = E{φ2

w(ε(k))} + E{φ2
w(Tc − |ε(k)|)}.

Proof: See Appendix A.
From this lemma, it is observed that the distribution of MAI

is the same whether there is symbol-synchronization or chip-
synchronization among the users, which is due to the use of
random polarity codes in each frame.

From (4) and (7), the BEP of the coded IR system conditioned
on the timing jitter of user 1 can be approximated as

P
e|ε(1)

i

≈ Q



√

E1
Nf

∑(i+1)Nf −1
j=iNf

φw(ε(1)j )√
1

Nc

∑Nu

k=2 Ekγ
(k)
2 + Nfσ2

n


 (8)

where ε
(1)
i = [ε(1)iNf

. . . ε
(1)
(i+1)Nf −1].

For large values of Nf , it follows from the central

limit theorem (CLT) that (1/
√

Nf )
∑(i+1)Nf −1

j=iNf
[φw(ε(1)j ) −

E{φw(ε(1)j )}] is approximately Gaussian. Then, using the re-

lation E{Q(X)} = Q
(
µ̂/

√
1 + σ̂2

)
for X ∼ N (µ̂, σ̂2) [19],

the unconditional BEP can be expressed approximately as

Pe ≈ Q


 √

E1µ√
E1σ2

Nf
+ 1

N

∑Nu

k=2 Ekγ
(k)
2 + σ2

n


 (9)

where µ = E{φw(ε(1)j )} and σ2 = Var{φw(ε(1)j )}.
From (9), it is observed that the BEP decreases as Nf in-

creases, if the first term in the denominator is significant. In
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other words, the BEP gets smaller for larger number of pulses
per information symbol. We observe from (9) that the second
term in the denominator, which is due to the MAI, depends on
Nc and Nf only through their product N = NcNf . Therefore,
MAI has no effect on the tradeoff between processing gains for
a fixed total processing gain N . The only term that depends
on how to distribute N between Nc and Nf is the first term in
the denominator, which reflects the effect of timing jitter. This
effect is mitigated by choosing small Nc, or large Nf , which
means sending more pulses per information bit. Therefore, for a
coded system, keeping Nf large can help reduce the BEP. Also
note that in the absence of timing jitter, (9) reduces to

Pe ≈ Q


 √

E1√
1
N

∑Nu

k=2 Ek + σ2
n




in which case there is no effect of processing gain parameters
on BEP performance, as stated in [8].

B. Uncoded Systems

For coded systems, we have observed that the system
performance is the same for symbol-synchronous and chip-
synchronous scenarios. For an uncoded system, the effect of
MAI changes depending on the type of synchronism, as we
study in this section.

First consider a symbol-synchronous system; that is, τ (k) = 0
∀k in (2). In this case, the following lemma approximates the
probability distribution of a(k) in (5) for an uncoded system.

Lemma 2: As N −→ ∞ and (Nf/Nc) −→ c > 0, a(k) con-

ditioned on the information bit b
(k)
i is approximately distributed

as

a(k)
∣∣b(k)

i ∼ N
(

Nf

Nc
b
(k)
i γ

(k)
1 ,

Nf

Nc[
γ

(k)
2 − (γ(k)

1 )2

Nc
+

β
(k)
1

N2
c

+
β

(k)
2

N3
c

])
(10)

where

γ
(k)
1 = E{φw(ε(k))} + E{φw(Tc − |ε(k)|)},

γ
(k)
2 = E{φ2

w(ε(k))} + E{φ2
w(Tc − |ε(k)|)}

β
(k)
1 =2E{φw(Tc−|ε(k)|)φw(ε(k))}−2(E{φw(Tc − |ε(k)|)})2

+ 4
∫ 0

−∞
φw(Tc + ε(k))p(ε(k))dε(k)

×
∫ ∞

0

φw(Tc − ε(k))p(ε(k))dε(k)

β
(k)
2 = 2(E{φw(Tc − |ε(k)|)})2. (11)

Proof: See Appendix B.
Note that for systems with large Nc, the distribution of

a(k), given the information symbol b
(k)
i , can be approximately

expressed as a(k)|b(k)
i ∼ N (b(k)

i γ
(k)
1 Nf/Nc, (Nf/Nc)[γ

(k)
2 −

(γ(k)
1 )2/Nc]).

First consider a two-user system. For equiprobable informa-
tion symbols ±1, the BEP conditioned on timing jitter of the
first user can be shown to be

Pe|ε(1) ≈ 1
2

Q




√
E1

Nf

∑(i+1)Nf −1
j=iNf

φw(ε(1)j ) +
√

E2
Nc

γ
(2)
1√

E2
N [γ(2)

2 − (γ(2)
1 )2/Nc] + σ2

n




+
1
2

Q




√
E1

Nf

∑(i+1)Nf −1
j=iNf

φw(ε(1)j ) −
√

E2
Nc

γ
(2)
1√

E2
N [γ(2)

2 − (γ(2)
1 )2/Nc] + σ2

n


 .

(12)

Then, for large Nf values, we can again invoke the CLT

for (1/
√

Nf )
∑(i+1)Nf −1

j=iNf
[φw(ε(1)j ) − µ] and approximate the

unconditional BEP as

Pe ≈ 1
2
Q


 √

E1µ +
√

E2
Nc

γ
(2)
1√

E1σ2

N Nc + E2
N [γ(2)

2 − (γ(2)
1 )2/Nc] + σ2

n




+
1
2
Q


 √

E1µ −
√

E2
Nc

γ
(2)
1√

E1σ2

N Nc + E2
N [γ(2)

2 − (γ(2)
1 )2/Nc] + σ2

n


 .

(13)

For the multiuser case, assume that all the interfering users
have the same energy E, and probability distributions of the jit-
ters are i.i.d. for all of them. Then, the total MAI can be approxi-
mated by a zero mean Gaussian random variable for sufficiently
large number of users Nu, and after similar manipulations, the
BEP can be expressed approximately as

Pe ≈ Q




√
E1µ√

E1σ2

N Nc + (Nu − 1)E
(

γ2
N + γ2

1
N2

c
− γ2

1
NNc

)
+σ2

n




(14)
where the user index k is dropped from γ

(k)
1 and γ

(k)
2 , since they

are i.i.d. among interfering users.
From (14), it is observed that for relatively small Nc val-

ues, the second term in the denominator, which is the term
due to MAI, can become large and cause an increase in the
BEP. Similarly, when Nc is large, the first term in the denom-
inator can become significant, and the BEP can become high
again. Therefore, we expect to have an optimal Nc value for the
interference-limited case. Intuitively, for small Nc values, the
number of pulses per bit Nf is large. Therefore, we have high
BEP due to large amount of MAI. As Nc becomes large, the
MAI becomes more negligible. However, making Nc very large
can again cause an increase in BEP, since Nf becomes small, in
which case the effect of timing jitter becomes more significant.
The optimal Nc (Nf ) value can be approximated by using (14).

Now consider the chip-synchronous case. In this case, the
following lemma approximates the distribution of the overall
MAI for large number of equal energy interferers.

Lemma 3: Let N −→ ∞ and (Nc/Nf ) −→ c > 0. Assume
that all (Nu − 1) interfering users have the same bit energy E
and i.i.d. jitter statistics. Then, the overall MAI, a in (4), is
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approximately distributed, for large Nu, as

a ∼ N
(

0,
E(Nu − 1)

Nc

×
[
γ2 +

(Nf − 1)[2N2
c (Nf − 1) + 1]

3NN2
c

γ2
1

])
(15)

where γ1 and γ2 are as in (11).
Proof: The proof is omitted due to space limitations. It mainly

depends on some central limit arguments.
Comparing the variance in Lemma 3 with the variance of the

MAI term in the uncoded symbol-synchronous case for large
number of equal energy interferers with the same jitter statistics,
it can be shown that σ2

MAI, chip ≤ σ2
MAI, symb where

σ2
MAI, symb =

E(Nu − 1)
Nc

[
γ2 +

Nf − 1
Nc

γ2
1

]
(16)

σ2
MAI, chip =

E(Nu − 1)
Nc

×
[
γ2+

(Nf −1)[2N2
c (Nf −1)+1]

3NN2
c

γ2
1

]
(17)

where the equality is satisfied only for Nf = 1.
The reason behind this inequality can be explained as follows.

In the uncoded symbol-synchronous case, interference compo-
nents from a given user to the pulses of the template signal
has the same polarity, and therefore, they add coherently for
each user. However, in the chip-synchronous case, interference
to some pulses of the template is due to one information bit
whereas the interference to the remaining pulses is due to an-
other information bit because there is a misalignment between
symbol transmission instants (Fig. 2). Since information bits can
be ±1 with equal probability, the interference from a given user
to individual pulses of the template signal does not always add
coherently. Therefore, the average power of the MAI is smaller
in the chip-synchronous case. As the limiting case, consider the
coded case, where each individual pulse has a random polarity
code. In this case, the overall interference from a user, given
the information bit of that user, is zero mean due to the polar-
ity codes. Hence, the overall interference from all users has a
smaller average power, given by γ2E(Nu − 1)/Nc, for equal
energy interferers with i.i.d jitter statistics.

By Lemma 3 and the approximation to the distribution of the
signal part of the MF output, given the information bit in (4) by
a Gaussian random variable, we get (18), shown at the bottom
of the page, where µ = E{φw(ε(1)j )} and σ2 = Var{φw(ε(1)j )}.

Considering (18), we have similar observations as in the
symbol-synchronous case. Considering the interference-limited
case, for small Nc values, the second term in the denominator,
which is the term due to the MAI, becomes dominant and causes

a large BEP. When Nc is large, the MAI becomes less signif-
icant, since probability of overlaps between pulses decreases.
However, for very small Nc values, the effect of the timing jitter
can become more significant as can be seen from the first term in
the denominator, and the BEP can increase again. Therefore, in
this case, we again expect to see a tradeoff between processing
gain parameters.

IV. MULTIPATH CASE

In this section, the effects of the processing gain parameters
Nc and Nf on the BEP performance of a coded system are
investigated in a frequency-selective environment. The channel
model considered [20], [21] is

h(t) =
L−1∑
l=0

αlδ(t − τl) (19)

where αl and τl are the fading coefficient and the delay of the
(l + 1)th path, respectively. In fact, a multipath channel model
with pulse distortions can be incorporated into the analysis as
will be explained at the end of the section.

We consider a downlink scenario, where the transmitted sym-
bols are synchronized, and assume τ0 = 0 without loss of gen-
erality. Moreover, for the simplicity of the analysis, the delay
of the last path τL−1 is set to an integer multiple of the chip
interval Tc; that is, τL−1 = (M − 1)Tc where M is an integer.
Note that this does not cause a loss in generality, since we can
always think of a hypothetical path at Tc�τL−1/Tc
 with a fad-
ing coefficient of zero, with �x
 denoting the smallest integer
larger than or equal to x.

From (1) and (19), the received signal can be expressed as

r(t) =
Nu∑
k=1

√
Ek

Nf

∞∑
j=−∞

d
(k)
j b

(k)
�j/Nf �

× u
(
t − jTf − c

(k)
j Tc − ε

(k)
j

)
+ σnn(t) (20)

where n(t) is zero mean white Gaussian noise with unit spectral
density and u(t) =

∑L−1
l=0 αlwrx(t − τl), with wrx(t) denoting

the received unit energy UWB pulse. ε
(k)
j is the timing jitter at

the transmitted pulse in the jth frame of user k. We assume that
ε
(k)
j for j = . . . ,−1, 0, 1, . . . form an i.i.d. sequence for each

user and that maxj,k |ε(k)
j | < Tc.

Consider a generic Rake receiver that combines a number of
multipath components of the incoming signal. Rake receivers
are considered for UWB systems in order to collect sufficient
signal energy from incoming multipath components [22]–[27].
For the ith information symbol, the following signal represents
the template signal for such a receiver:

Pe ≈ Q




√
E1µ√

E1σ2

N Nc + (Nu − 1)E
[

γ2
N + (N−Nc )[2Nc (N−Nc )+1]

3N2N3
c

γ2
1

]
+ σ2

n


 (18)
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s
(1)
temp(t) =

(i+1)Nf −1∑
j=iNf

d
(1)
j vj(t − jTf − c

(1)
j Tc) (21)

where user 1 is considered as the user of interest with-
out loss of generality, vj(t) =

∑L−1
l=0 βlwrx(t − τl − ε̂j,l), with

β = [β0 · · ·βL−1] denoting the Rake combining coefficients and
ε̂j,l being the timing jitter at the lth finger in the jth frame
of the template signal. We assume that maxj,l |ε̂j,l| < Tc and

maxi,j,k,l |ε̂j,l − ε
(k)
i | < Tc, which, practically true most of the

time, makes sure that a pulse can only interfere with the neigh-
boring chip positions due to timing jitter.

Corresponding to different situations, we consider three dif-
ferent statistics for the jitter at the template signal.

Case 1: The jitter is assumed to be i.i.d. for all different finger
and frame indices; that is, ε̂j,l for (j, l) ∈ Z × L form
an i.i.d. sequence, where Z is the set of integers and
L = {0, 1, . . . , L − 1}.

Case 2: The same jitter value is assumed for all fingers, and
i.i.d. jitters are assumed among different frames. In
other words, ε̂j,l1 = ε̂j,l2 ∀l1, l2, and ε̂j,l for j ∈ Z
form an i.i.d. sequence.

Case 3: The same jitter value is assumed in all frames for a
given finger, and i.i.d. jitters are assumed among the
fingers. In other words, ε̂j1,l = ε̂j2,l ∀j1, j2, and ε̂j,l

for l ∈ L form an i.i.d. sequence.
We will consider only Case 1 and Case 2 in the following

analysis, and an extension of the results to Case 3 will be briefly
discussed at the end of the section.

Using (20) and (21), the correlation output for the ith symbol
can be expressed as (22).

y =
∫

r(t) s
(1)
temp(t) dt = b

(1)
i

√
E1

Nf

(i+1)Nf −1∑
m=iNf

φ(m)
uv (ε(1)m )

+â + a + n (22)

where the first term is the desired signal component with
φ

(m)
uv (∆) =

∫
u(t − ∆)vm(t)dt, a is the MAI, â is the inter-

frame interference (IFI), and n = σn

∑(i+1)Nf −1
j=iNf

d
(1)
j

∫
vj(t −

jTf − c
(1)
j Tc)n(t)dt is the output noise, which can be shown

to be distributed, approximately, as n ∼ N
(
0, σ2

nNf Ēv

)
, with

Ēv = (1/Nf )
∑(i+1)Nf −1

j=iNf

∫∞
−∞ v2

j (t)dt, for large Nf .4

The IFI is the self interference among the pulses of the user
of interest, user 1, which occurs when a pulse in a frame spills
over to adjacent frame(s) due to multipath and/or timing jitter
and interferes with a pulse in that frame. The overall IFI can
be considered as the sum of interference to each frame; that is,
â =

√
E1/Nf

∑(i+1)Nf −1
m=iNf

âm, where the interference to the
mth pulse can be expressed as

âm = d(1)
m

∫
vm

(
t − mTf − c(1)

m Tc

)

×
∞∑

j=−∞
j �=m

d
(1)
j b

(1)
�j/Nf �u

(
t − jTf − c

(1)
j Tc − ε

(1)
j

)
dt. (23)

4Ēv is approximately independent of Nf in most practical cases.

Assume that the delay spread of the channel is not larger than
the frame time. In other words, M ≤ Nc. In this case, (23) can
be expressed as

âm = d(1)
m

∑
i∈{−1,1}

d
(1)
m+ib

(1)
�(m+i)/Nf �

× φ(m)
uv

(
iTf + (c(1)

m+i − c(1)
m )Tc + ε

(1)
m+i

)
. (24)

Then, using the central limit argument in [28] for dependent
sequences, we can obtain the distribution of â as in Lemma 4.

Lemma 4: As N −→ ∞ and (Nf/Nc) −→ c > 0, the IFI â
is asymptotically normally distributed as

â ∼ N


0,

E1

N2
c

M∑
j=1

j E{[φ(m)
uv (jTc + ε

(1)
m+1)

+φ(m)
uv (−jTc + ε

(1)
m−1)]

2}


 . (25)

Proof: See Appendix C.
Note that the result is true for both Case 1 and Case 2. The

only difference between the two cases is the set of jitter variables
over which the expectation is taken.

The MAI term in (22) can be expressed as the sum of in-

terference from each user, a =
∑Nu

k=2

√
Ek

Nf
a(k), where each

a(k) can be considered as the sum of interference to each
frame of the template signal from the signal of user k. That
is, a(k) =

∑(i+1)Nf −1
m=iNf

a
(k)
m , where

a(k)
m = d(1)

m

∫
vm(t − mTf − c(1)

m Tc)

×
∞∑

j=−∞
d
(k)
j b

(k)
�j/Nf �u

(
t − jTf − c

(k)
j Tc − ε

(k)
j

)
dt.

(26)

Assuming M ≤ Nc, a
(k)
m can be expressed as

a(k)
m = d(1)

m

m+1∑
j=m−1

d
(k)
j b

(k)
�j/Nf �

× φ(m)
uv

(
(j−m)Tf +(c(k)

j −c(1)
m )Tc + ε

(k)
j

)
. (27)

Then, using the same central limit argument [28] as in Lemma
4.1, we obtain the result in Lemma 5.

Lemma 5: As N −→ ∞ and (Nf/Nc) −→ c > 0, the
MAI from user k, i.e., a(k), is asymptotically normally
distributed as

a(k) ∼ N


0,

Nf

Nc

M∑
j=−M

E{[φ(m)
uv (jTc + ε(k))]2}


 . (28)

Proof: See Appendix D.
Since we assume that the timing jitter variables at the trans-

mitted pulses in different frames form an i.i.d. sequence for a
given user, and the jitter at the template is i.i.d. among different
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frames, the first term in (22), given the information bit of user
1, converges to a Gaussian random variable for large Nf val-
ues. Using this observation and the results of the previous two
lemmas, we can express the BEP of the system as (29), shown
at the bottom of the page, where

σ2
IFI =

M∑
j=1

j E{[φ(m)
uv (jTc+ε

(1)
m+1)+φ(m)

uv (−jTc+ε
(1)
m−1)]

2}

(30)

and

σ2
MAI,k =

M∑
j=−M

E{[φ(m)
uv (jTc + ε(k))]2} (31)

are independent of the processing gain parameters.
From (29), a tradeoff between the effect of the timing jitter

and that of the IFI is observed. The first term in the denominator,
which is due to the effect of the timing jitter on the desired signal
part of the output in (22), can cause an increase in the BEP as
Nc increases. The second term in the denominator is due to the
IFI, which can cause a decrease in the BEP as Nc increases;
because, as Nc increases, the probability of a spill-over from
one frame to the next decreases. Hence, large Nc values mitigate
the effects of IFI. The term due to the MAI (the third term in
the denominator) does not depend on Nc (Nf ) for a given value
of total processing gain N . Therefore, it has no effect on the
tradeoff between processing gains. The optimal value of Nc

(Nf ) minimizes the BEP by optimally mitigating the opposing
effects of the timing jitter and the IFI.

Remark 1: The same conclusions hold for Case 3, in which the
timing jitter at the template signal is the same for all frames for a
given finger and i.i.d. among different fingers. In this case, con-
ditioning on the jitter values at different fingers (ε̂j,0 · · · ε̂j,L−1),
the conditional BEP (Pe|ε̂j,0 · · · ε̂j,L−1) can be shown to be as
in (29); hence, the same dependence structure on the processing
gain parameters is observed. The only difference in this case
is that the statistical averages are calculated only over the jitter
values at the transmitter.

Remark 2: For the case in which pulses are also distorted by
the channel; that is, pulse shapes in different multipath compo-
nents are different, the analysis is still valid. Since the results
(29)–(31) are in terms of the crosscorrelation φ

(j)
uv (·) of u(t) =∑L−1

l=0 αlwrx(t − τl) and vj(t) =
∑L−1

l=0 βlwrx(t − τl − ε̂j,l),
by replacing these expressions by u(t) =

∑L−1
l=0 αlw

(l)
rx (t − τl)

and vj(t) =
∑L−1

l=0 βlw
(l)
rx (t − τl − ε̂j,l), where w

(l)
rx (t) repre-

sents the received pulse from the (l + 1)th signal path, gener-
alizes the analysis to the case in which the channel introduces
pulse distortions.

Fig. 3. UWB pulse and the autocorrelation function for Tc = 0.25 ns.

V. SIMULATION RESULTS

In this section, BEP performances of coded and uncoded IR
systems are simulated for different values of processing gains,
and the results are compared with the theoretical analysis. The
UWB pulse5 and the normalized autocorrelation function used
in the simulations are [29]

w(t) =
(

1 − 4πt2

τ2

)
e−2πt2/τ2

,

R(∆t)=

[
1−4π

(
∆t

τ

)2

+
4π2

3

(
∆t

τ

)4
]

e−π(∆t
τ )2 (32)

where τ = 0.125 ns is used (Fig. 3).
For the first set of simulations, the timing jitter at the trans-

mitter is modeled by U [−25 ps, 25 ps], where U [x, y] denotes
the uniform distribution on [x, y] [10], [17], and Tc is chosen
to be 0.25 ns. The total processing gain N = NcNf is taken to
be 512. Also all 10 users (Nu = 10) are assumed to be sending
unit-energy bits (Ek = 1 ∀k) and σ2

n = 0.1.
Fig. 4 shows the BEP of the coded and the uncoded IR-UWB

systems for different Nf values in an AWGN environment. It
is observed that the simulation results match quite closely with
the theoretical values. For the coded system, the BEP decreases
as Nf increases. Since the effect of the MAI on the BEP is
asymptotically independent of Nf , the only effect to consider
is that of the timing jitter. Since the effect of the timing jitter
is reduced for large Nf , the plots for the coded system show a
decrease in BEP as Nf increases. As expected, the performance

5wrx(t) = w(t)/
√

Ep with Ep =
∫ ∞
−∞ w2(t)dt is used as the received

UWB pulse with unit energy.

Pe ≈ Q


 √

E1 E{φ(m)
uv (ε(1))}√

E1Nc

N Var{φ(m)
uv (ε(1))} + E1

Nc N σ2
IFI + 1

N

∑Nu

k=2 Ekσ2
MAI,k + Ēvσ2

n


 (29)
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Fig. 4. BEP versus log2 Nf for coded and uncoded IR-UWB systems for the
AWGN channel case.

Fig. 5. Theoretical BEP versus log2 Nf curves for coded and uncoded IR-
UWB systems for different SNR values.

is the same for the symbol-synchronous and chip-synchronous
coded systems. For the uncoded system, there is an optimal value
of the processing gain that minimizes the BEP of the system. In
this case, there are both the effects of the timing jitter and the
MAI. The effect of the timing jitter is mitigated using large Nf ,
while that of the MAI is reduced using small Nf . The optimal
value of the processing gains can be approximately calculated
using (14) or (18). As expected, the effect of the MAI is larger
for the symbol-synchronous system, which causes a larger BEP
for such systems compared to the chip-synchronous ones.

In Fig. 5, the BEPs of the coded and uncoded systems are
plotted for different signal-to-noise ratios (SNRs). As observed
from the figure, as the SNR increases, the tradeoff between the
processing gains become more significant. This is because, for
large SNR, the background noise gets small compared to the
noise due to jitter or MAI; hence, the change of processing gain

Fig. 6. Theoretical BEP versus log2 Nf curves for coded and uncoded IR-
UWB systems for uniform and Gaussian jitter statistics.

parameters causes significant changes in the BEP of the system
due to the effects of timing jitter (and MAI in the uncoded case).

In Fig. 6, the effects of jitter distribution on the system perfor-
mance are investigated. The BEPs of the coded and uncoded sys-
tems are plotted for zero mean uniform [17] and Gaussian [16]
timing jitters with the same variance (208.3 ps2). From the fig-
ure, it is observed that the Gaussian timing jitter increases the
BEP more than the uniform timing jitter; that is, as the timing
jitter becomes significant (for small Nf ), the BEP of the sys-
tem with Gaussian jitter gets larger than that of the system with
uniform jitter. The main reason for this difference is that the
Gaussian jitter can take significantly large values correspond-
ing to the tail of the distribution, which considerably affects the
average BEP of the system.

Now consider a multipath channel with L = 10
paths, where the fading coefficients are given by
[0.4653 0.5817 0.2327 − 0.4536 0.3490 0.2217 − 0.1163
0.0233 − 0.0116 − 0.0023], and the delays by τl = lTc for
l = 0, . . . , L − 1, where Tc = 0.25 ns. The Rake receiver
combines all the multipath components using maximal ratio
combining (MRC). The jitter is modeled as U [−20 ps, 20 ps],
the total processing gain N is equal to 512, and σ2

n = 0.01.
There are ten users in the system where the first user trans-
mits bits with unit energy (E1 = 1), while the others have
Ek = E = 5 ∀k.

Fig. 7 plots the BEP of a coded IR-UWB system for a down-
link scenario, in which user 1 is considered as the user of interest,
and the jitter at the template is as described in Case 1 and Case
2 in Section IV. Note that the theoretical and simulation results
get closer as the number of pulses per symbol Nf , increases, as
the Gaussian approximation becomes more and more accurate.
It is observed that the BEP decreases as Nf increases, since the
effect of timing jitter is reduced. However, the effect of IFI is
not observed, since it is negligible compared to the other noise
sources. Hence, no significant increase in BEP is observed for
larger Nf , although the IFI increases. Finally, it is observed that
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Fig. 7. BEP versus Nf for coded IR-UWB systems over the mul-
tipath channel [0.4653 0.5817 0.2327 − 0.4536 0.3490 0.2217 −
0.1163 0.0233 − 0.0116 − 0.0023].

the BEPs for Case 1 are smaller than those for Case 2. In other
words, the effects of timing jitter are smaller when the jitter is
i.i.d. among all the frames and fingers than when it is the same
for all the fingers in a given frame and i.i.d. among different
frames.

VI. CONCLUSION

The tradeoff between the processing gains of an IR system
has been investigated in the presence of timing jitter. It has
been concluded that in an AWGN channel, sending more pulses
per bit decreases the BEP of a coded system, since the effect
of the MAI on the BEP is independent of processing gains
for a given total processing gain, and the effect of the i.i.d.
timing jitter is reduced by sending more pulses. The system
performs the same whether the users are symbol-synchronous
or chip-synchronous. In an uncoded system, there is a tradeoff
between Nc and Nf , which reflects the effects of the timing
jitter and the MAI. Optimal processing gains can be found by
using the approximate closed-form expressions for the BEP.
It is also concluded that the effect of the MAI is mitigated
when the users are chip-synchronous. Therefore, the BEP of
a chip-synchronous uncoded system is smaller than that of a
symbol-synchronous uncoded system.

For frequency-selective environments, the MAI has no ef-
fect on the tradeoff between the processing gains of a symbol-
synchronous coded system. However, the IFI is mitigated for
larger values of Nc, hence, affects the tradeoff between the pro-
cessing gains. Again the effect of the timing jitter is mitigated
by increasing Nf . Therefore, there is a tradeoff between the
effects of the timing jitter and that of the IFI, and the optimal
Nf (Nc) value can be chosen by using the approximate BEP
expression.

Related to the tradeoff study in this paper, investigation of
the tradeoff between processing gain parameters of a transmit-
ted reference (TR) UWB system [30], [31], [33] remains as an

open research problem. Due to the autocorrelation receiver em-
ployed in TR UWB systems, the investigation of receiver output
statistics would be more challenging in that case.

APPENDIX A

PROOF OF LEMMA 1

Assuming a chip-synchronous system, a
(k)
m in (6) can be ex-

pressed as

a(k)
m = d(1)

m

∫
wrx

(
t − mTf − c(1)

m Tc

)

×
∞∑

j=−∞
d
(k)
j b

(k)
�j/Nf �

× wrx

(
t − jTf − c

(k)
j Tc − ε

(k)
j − ∆(k)

2 Tc

)
dt (33)

where ∆(k)
2 ∈ {0, 1, . . . , N − 1} with equal probability.

Due to random polarity codes d
(k)
j , the distribution of a

(k)
m

is the same for all ∆(k)
2 values having the same ∆(k)

1 =
mod{∆(k)

2 , Nc} value. Hence, it is sufficient to consider ∆(k)
2 =

∆(k)
1 ∈ {0, 1, . . . , Nc − 1}. Then, (33) can be expressed as

a(k)
m = d(1)

m

m+1∑
j=m−1

d
(k)
j b�j/Nf �φw

×
(
(j−m)Tf +(c(k)

j − c(1)
m )Tc + ε

(k)
j + ∆(k)

1 Tc

)
. (34)

From (34), it is observed that E{a(k)
m } = 0 due to the inde-

pendence of polarity codes for different frame and user indices.
Also considering the random TH sequences and the polarity
codes, it can be shown that

E{(a(k)
m )2|∆(k)

1 }=
1

Nc

[
E{φ2

w(ε(k))}+E{φ2
w(Tc − |ε(k)|)}

]
.

(35)
Note that E{(a(k)

m )2|∆(k)
1 } is independent of ∆(k)

1 , which means
that the result is true for both the symbol-synchronous and chip-
synchronous cases.

Note that a
(k)
iNf

, . . . , a
(k)
(i+1)Nf −1 are identically distributed

but not independent. However, they form a one-dependent
sequence [28]. Therefore, for large Nf values, (1/

√
Nf )∑(i+1)Nf −1

m=iNf
a
(k)
m converge to a zero mean Gaussian random

variable with variance E{(a(k)
iNf

)2} + 2E{a(k)
iNf

a
(k)
iNf +1} [28].

It is easy to show that the cross-correlation term is zero
using the independence of polarity codes for different in-
dices. Hence, for large Nf values, a(k) in (6) is approxi-

mately distributed as a(k) ∼ N (0, γ
(k)
2 Nf/Nc), where γ

(k)
2 =

E{φ2
w(ε(k))} + E{φ2

w(Tc − |ε(k)|)}.

APPENDIX B

PROOF OF LEMMA 2

Let p
(k)
m denote the position of the pulse of user k in the mth

frame (p(k)
m = 1, . . . , Nc). Note that p

(1)
m denotes the position
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of the pulse of the template signal in the mth frame, assuming
user 1 as the user of interest.

For p
(1)
m = 2, . . . , Nc − 1, there occurs interference from user

k to the mth pulse of the template signal if user k has its mth
pulse at the same position as the mth pulse of the template
signal, or it has its mth pulse at a neighboring position to mth
pulse of the template signal and there is a partial overlap due to
the effect of timing jitter. Then a

(k)
m in (6) can be expressed as

a(k)
m = b

(k)
i [φw(ε(k)

m ) I{p(1)
m =p

(k )
m }

+ φw(Tc − ε(k)
m ) I{p(1)

m −p
(k )
m =1}I{ε(k )

m >0}

+ φw(Tc + ε(k)
m ) I{p(k )

m −p
(1)
m =1}I{ε(k )

m <0}] (36)

where IA denotes an indicator function that is equal to one in A
and zero otherwise.

For p
(1)
m = 1, we also consider the interference from the pre-

vious frame of the signal received from user k given as

a(k)
m = b

(k)
i [φw(ε(k)

m )I{p(k )
m =1}

+ φw(Tc + ε(k)
m )I{p(k )

m =2}I{ε(k )
m <0}]

+ b
(k)
i φw(Tc − ε

(k)
m−1)I{p(k )

m −1=Nc }I{ε(k )
m −1>0} (37)

for m = iNf + 1, . . . , (i + 1)Nf − 1. Note that for m = iNf ,

we just need to replace b
(k)
i in the third term by b

(k)
i−1, since the

previous bit will be in effect in that case.
Similarly, for p

(1)
m = Nc, we have

a(k)
m = b

(k)
i [φw(ε(k)

m )I{p(k )
m =Nc }

+ φw(Tc − ε(k)
m )I{p(k )

m =Nc−1}I{ε(k )
m >0}]

+ b
(k)
i φw(Tc + ε

(k)
m+1)I{p(k )

m +1=1}I{ε(k )
m +1<0} (38)

for m = iNf , . . . , (i + 1)Nf − 2. For m = (i + 1)Nf − 1,

b
(k)
i in the third term is replaced by b

(k)
i+1.

As can be seen from the previous equations,
a
(k)
iNf

, . . . , a
(k)
(i+1)Nf −1 are not identically distributed due

to the possible small difference for the edge values a
(k)
iNf

and a
(k)
(i+1)Nf −1 as stated after (36) and (38). However,

those differences become negligible for large Nc and/or Nf .

Then, a
(k)
iNf

, . . . , a
(k)
(i+1)Nf −1 can be considered as identi-

cally distributed. The mean value can be calculated using
E{a(k)

m |b(k)
i } = E{E{a(k)

m |ε(k)
m−1, ε

(k)
m , ε

(k)
m+1, b

(k)
i }}. From

(36)–(38), we get

E{a(k)
m |ε(k)

m−1, ε
(k)
m , ε

(k)
m+1, b

(k)
i }

=
Nc − 2

N2
c

b
(k)
i [φw(ε(k)

m ) + φw(Tc − ε(k)
m ) I{ε(k )

m >0}

+ φw(Tc + ε(k)
m ) I{ε(k )

m <0}]

+
1

N2
c

b
(k)
i [φw(ε(k)

m ) + φw(Tc + ε(k)
m )I{ε(k )

m <0}

+ φw(Tc − ε
(k)
m−1)I{ε(k )

m −1>0}]

+
1

N2
c

b
(k)
i [φw(ε(k)

m ) + φw(Tc − ε(k)
m )I{ε(k )

m >0}

+ φw(Tc + ε
(k)
m+1)I{ε(k )

m +1<0}] (39)

for m = iNf , . . . , (i + 1)Nf − 1. Then, taking expectation
with respect to timing jitters, we get

E{a(k)
m |b(k)

i } = b
(k)
i γ

(k)
1 /Nc (40)

where γ
(k)
1 = E{φw(ε(k)

m )} + E{φw(Tc − |ε(k)
m |)}.

By similar calculations, it can be shown that

E{(a(k)
m )2|b(k)

i }=
γ

(k)
2

Nc
+

2
N3

c

E{φw(ε(k))}E{φw(Tc−|ε(k)|)}

+
4

N3
c

∫ 0

−∞
φw(Tc + ε(k))p(ε(k))dε(k)

×
∫ ∞

0

φw(Tc − ε(k))p(ε(k))dε(k) (41)

where p(ε(k)) is the probability density function of i.i.d. tim-
ing jitters for user k and γ

(k)
2 = E{φ2

w(ε(k)
m )} + E{φ2

w(Tc −
|ε(k)

m |)}. Note that frame indices are omitted in the last equation
since the results do not depend on them.

The crosscorrelations between consecutive values of the one-
dependent sequence a

(k)
iNf

, . . . , a
(k)
(i+1)Nf −1 can be obtained as

E{a(k)
m a

(k)
m+1|b

(k)
i }=(γ(k)

1 )2/N2
c −

1
N3

c

γ
(k)
1 E{φw(Tc−|ε(k)|)}

+
1

N3
c

E{φw(Tc − |ε(k)|)φw(ε(k))}

+
1

N4
c

(E{φw(Tc − |ε(k)|)})2. (42)

Then, invoking the theorem for one-dependent sequences [28]
and using (40)–(42), the sum of interferences to each pulse of
the template

∑(i+1)Nf −1
m=iNf

a
(k)
m |b(k)

i is approximately distributed

as in (10), where γ
(k)
1 , γ

(k)
2 , β

(k)
1 , and β

(k)
2 are as in (11).

APPENDIX C

PROOF OF LEMMA 3

In order to calculate the distribution of â =√
E1/Nf

∑(i+1)Nf −1
m=iNf

âm, consider âm given by (24).
From (24), it can be observed that E{âm} = 0 due to the
random polarity codes. To calculate E{â2

m}, we first condition
on the timing jitter values expressed as

E{â2
m|ε(1)m−1, ε

(1)
m+1, ε̂m}

=
1

N2
c

Nc−1∑
i=0

Nc−1∑
l=0

[
φ(m)

uv

(
(l − i − Nc)Tc + ε

(1)
m−1

)]2

+
1

N2
c

Nc−1∑
i=0

Nc−1∑
k=0

[
φ(m)

uv

(
(k − i + Nc)Tc + ε

(1)
m+1

)]2
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=
1

N2
c

M∑
j=1

j

{[
φ(m)

uv

(
jTc + ε

(1)
m+1

)]2

+
[
φ(m)

uv (−jTc + ε
(1)
m−1)

]2}
(43)

where we use the fact that the TH sequences are uniformly
distributed in {0, 1, . . . , Nc − 1}, and ε̂m = [ε̂m,0 · · · ε̂m,L−1].
Then, averaging over the distribution of the timing jitters, we
get

E{â2
m} =

1
N2

c

M∑
j=1

j
{

E{[φ(m)
uv (jTc + ε

(1)
m+1)]

2}

+E{[φ(m)
uv (−jTc + ε

(1)
m−1)]

2}
}

. (44)

From (24), it is observed that E{âmân} = 0 for |m − n| > 1
and E{âmâm+1} can be expressed as

E{âmâm+1} =
1

N2
c

M∑
j=1

j E

× {φ(m)
uv (jTc + ε(1)m )φ(m)

uv (−jTc + ε
(1)
m+1)}. (45)

Since (1/
√

Nf )
∑(i+1)Nf −1

m=iNf
âm converges to N (0, E{â2

m} +
2E{âmâm+1}) as Nf −→ ∞ [28], we can obtain (25) from
(44) and (45).

APPENDIX D

PROOF OF LEMMA 4

The aim is to calculate the asymptotic distribution of a(k) =∑(i+1)Nf −1
m=iNf

a
(k)
m , where a

(k)
m is given by (27).

From (27), it can be observed that E{a(k)
m } = 0 due to the

random polarity codes. In order to calculate the variance, we
first condition on the jitter values expressed as

E{(a(k)
m )2|ε(k)

m−1, ε
(k)
m , ε

(k)
m+1, ε̂m}

=
1

N2
c

Nc−1∑
i=0

{
Nc−1∑
j=0

[
φ(m)

uv

(
(j − i − Nc)Tc + ε

(k)
m−1

)]2

+
Nc−1∑
k=0

[
φ(m)

uv

(
(k − i)Tc + ε(k)

m

)]2

+
Nc−1∑
l=0

[
φ(m)

uv

(
(l − i + Nc)Tc + ε

(k)
m+1

)]2}
(46)

where the fact that the TH sequences are uniformly distributed
in {0, 1, . . . , Nc − 1} and ε̂m = [ε̂m,0 · · · ε̂m,L−1] is used.

Then, averaging over jitter statistics, we obtain, E{(a(k)
m )2} =

(1/Nc)
∑M

j=−M E{[φ(m)
uv (jTc + ε(k))]2}.

Also it can be observed that E{a(k)
m a

(k)
n } = 0 for m �= n due

to the independence of polarity codes.

All in all, (1/
√

Nf )
∑(i+1)Nf −1

m=iNf
a
(k)
m converges to

(1/Nc)
∑M

j=−M E{[φ(m)
uv (jTc + ε(k))]2} as Nf −→ ∞ [28],

from which the result of Lemma 5 follows.
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