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Abstract
Conventional molecular and genetic methods for studying cancer are limited to the analysis of one locus at a time.
A cluster of genes that are regulated together can be identified by DNAmicroarray, and the functional relationships
can uncover new aspects of cancer biology. Breast cancer can be used to provide a model to demonstrate the
current approaches to the molecular analysis of cancer. Meta-analysis is an important tool for the identification and
validation of differentially expressed genes to increase power in clinical and biological studies across different sets of
data. Recently, meta-analysis approaches have been applied to large collections of microarray datasets to investigate
molecular commonalities of multiple cancer types not only to find the common molecular pathways in tumour
development but also to compare the individual datasets to other cancer datasets to identify new sets of genes.
Several investigators agree that microarray results should be validated.One commonly used method is quantitative
reverse transcription PCR (qRT-PCR) to validate the expression profiles of the target genes obtained through
microarray experiments. qRT-PCR is attractive for clinical use, since it can be automated and performed on fresh
or archived formalin-fixed, paraffin-embedded tissue samples. The outcome of these analyses might accelerate the
application of basic research findings into daily clinical practice through translational research and may have an
impact on foreseeing the clinical outcome, predicting tumour response to specific therapy, identification of new
prognostic biomarkers, discovering targets for the development of novel therapies and providing further insights
into tumour biology.
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INTRODUCTION
Components and behaviours of biological systems

can be studied using the many tools of genomics,

such as SNPs [1, 2], CGH [3], SSH [4], SAGE [5, 6],

proteomics [7] and siRNA technology [8]. It is

widely believed that functional genomics will trans-

form our understanding of the mechanisms under-

lying cellular function, and in combination with

bioinformatics promises to accelerate the application

of basic discoveries into clinical practice despite the

natural cautions associated with the implementation

of new technologies in the clinical arena.

The human genome sequence is now available

and we have started to understand genomic com-

plexity at the DNA and gene expression levels. The

development of new technologies for the large-scale

analysis of the genome, transcriptome, proteome and

metabolome has enabled functional genomics to

have a profound impact on clinical medicine [9, 10].

An astounding amount of molecular data resulting

from rapid usage of these techniques have accumu-

lated and a multitude of sophisticated methods and

algorithms have been developed for comprehensive

analysis of these data [11].

The application of genomics technologies to the

study of cancer is rapidly shifting toward the analysis

of clinically relevant samples derived from patients

to discover new biomarkers for early detection of

cancers. Since characteristic patterns of gene expres-

sion can be measured in parallel by using microarrays,

gene expression profiling with DNA microarrays

has emerged as a powerful approach to study the

transcriptome of individual cancers. Molecular biol-

ogists work with clinicians and pathologists to obtain
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samples from patients with a known medical history,

so that the molecular characteristics of samples can

be correlated with the clinical presentation. This

approach provides an insight into molecular mechan-

isms of the different cancer types, and also helps to

find novel cancer biomarkers.

There are several published studies that highlight

the remarkable impact of DNAmicroarrays on cancer

research [12–18]. For example, gene expression sig-

natures for the major cancer types and the correlation

with various tumour characteristics that determine

tumour grade or differentiation,metastasis and survival

have been identified through these studies [19–22].

MOLECULAR PROFILING
OF BREASTCANCER
Breast cancer is a major problem in developed coun-

tries and the different classifications of this disease

are mostly based on clinical and pathological factors,

which unfortunately fail to reflect the heterogeneity

of the tumours. There are some histological markers

available to decide on the prognosis and treatment

of breast cancer. Estrogen receptor (ER) status, as

ER-positive or ER-negative, helps to categorize

breast cancers into two major classes. ERBB2

(Her-2/Neu) is also routinely used to classify breast

cancer into HER-2 amplified or non-amplified

categories. There are other single gene markers

such as TP53, and cell proliferation markers such

as Ki-67, and cyclin D1 that have emerged from

detailed molecular analysis [23].

While conventional methods were restricted to

studying a single locus, current high-throughput

techniques have allowed monitoring gene expression

or copy number levels of almost all known genes in a

single experiment. Molecular profiling has been

shown to be well-suited to phenotypic characteriza-

tion of breast cancer and potentially to discover new

molecular classes among cancers with similar histo-

pathological appearance [24–29]. Several landmark

microarray studies have demonstrated that one can

build a molecular taxonomy of breast tumours using

this technology and can provide a more sophisticated

molecular picture together with individualized recur-

rence risks.

Distinguishing tumours on the basis of
their gene expression profiles: impact
on the future of breast cancer research
Gene expression profiling using DNA microarrays

has provided an opportunity to perform more

detailed and individualized breast tumour character-

ization leading to classification of breast cancer

into distinct new molecular subgroups [30]. The

potential advantages of improving tumour classifica-

tion by expression profiling has been central to

several large-scale breast cancer studies over the

past few years that have reported identification of

signature gene lists with potential for prediction

of clinical outcome [24, 25, 29, 31, 32].

One of the first comprehensive studies classifying

sporadic breast tumours into subtypes distinguished

by differences in their expression profiles was

performed by Perou et al. [33]. Using 40 tumours

and 20 matched pairs of samples they identified an

‘intrinsic gene set’ of 476 cDNAs and then used this

to cluster and segregate the tumours into four major

subgroups: a ‘luminal-like cells’ group expressing

ER; a ‘basal-like cells’ group expressing cytokeratins

5 and 17, integrin 4 and laminin, but lacking ER

expression; an ‘ERBB2-positive’ group, and a

‘normal like’ epithelial group [33]. Subsequent

studies confirmed that there are large-scale gene

expression differences between ER-positive (mostly

luminal-like) and ER-negative (mostly basal-like)

cancers and suggested that further molecular subsets

also exist [28, 34, 35]. The prognosis and chemo-

therapy sensitivity of the different subgroups are

different. The luminal type cancers tend to have the

most favourable long-term survival, whereas basal-

like and ERBB2-positive tumours are more sensitive

to chemotherapy [24, 36].

van’t Veer et al. have used DNA microarray

analysis on the primary breast tumours of 78 lymph

node-negative young patients and compared the

expression profiles of 34 patients who developed

distant metastasis within 5 years and 44 patients who

remained disease-free for at least 5 years [25]. Their

analysis led to the identification of a 70-gene

expression signature that was developed to classify

tumours into the good and poor prognosis groups.

The results were later confirmed in a larger set

of tumours [26, 37]. The genes significantly

up-regulated in the poor prognosis signature

included those involved in cell cycle, invasion and

metastasis, angiogenesis and signal transduction. This

70-gene marker set is now commercially available on

the MammaPrint array (Agendia BV, Amsterdam,

The Netherlands) and the prospective MINDACT

clinical trial is underway to evaluate whether use

of the 70-gene classifier is associated with clinical

benefit.
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Wang et al. reported a promising study showing

the use of DNA microarray data for improving risk

assessment for patients with lymph node-negative

breast cancer. The investigators identified a diag-

nostic test based on expression values from a set of

76 genes. They specified 76 genes (60 genes for

ER-positive, 16 for ER-negative breast tumours)

that distinguished lymph node-negative patients

who developed distant metastasis within 5 years

[38]. The genes included in this prognostic signature

belong to many functional classes, including tran-

scriptional regulation, immune response, cell death,

cell cycle, growth and proliferation, suggesting

that different pathways can influence disease pro-

gression [38].

Paik et al. [39] used a different approach to show

the clinical utility of the OncotypeDx classifier of

prognosis for node-negative, ER-positive patients

who received tamoxifen following local therapy

for primary breast cancer. It analyses the expression

of a panel of 21 genes, including ER mRNA,

downstream ER-regulated genes, HER2 and

proliferation-related gene expression levels, which

can help in the diagnosis of ER-positive breast

cancer that can be treated with tamoxifen [39].

These studies show that the molecular classifica-

tion of breast cancer may have an impact on the

prognosis and prediction, and provide further

insights into tumour biology, providing information

to both clinicians and scientists. The molecular

signatures that define particular groups may lead to

the discovery of new therapeutic targets and

treatments that are effective in particular molecular

subsets.

The power of joint analysis of
microarray datasets: meta-analysis
The extensive use of DNA microarray technology in

the characterization of the cell transcriptome is

leading to an ever-increasing amount of microarray

data from cancer studies. Different datasets for the

same type of cancers are available from different

microarray studies and this allows the researchers to

carry out a more comprehensive analysis of their

existing dataset. Besides individual microarrays,

meta-analysis can be used to gather and process the

datasets from multiple cancer types to investigate

common molecular pathways [40–42].

Microarray datasets can be obtained from various

public gene expression data repositories including

the Stanford Microarray Database (SMD) [43],

the National Cancer Institute’s Gene Expression

Omnibus (GEO) [44] and Oncomine [45]. These

databases enable researchers to retrieve and perform

analyses on various microarray experiments from

different laboratories.

Since all cancer cells share some common

characteristics such as loss of growth control, invasion

and metastasis, it is very important to identify

universal cancer type-independent signatures to

better understand cancer pathogenesis and ultimately

to improve therapeutic options. Rhodes et al. applied
the meta-analysis approach to 21 published cancer

microarray datasets, spanning 12 distinct cancer types

and identified a set of 67 genes that are universally

activated relative to corresponding normal tissues in

most cancer types [40].

Collection of independent microarray datasets

generated with the common objective of identifying

differentially expressed genes in a certain type

of cancer has also been performed for breast cancer

[46–48]. These types of studies have resulted in the

identification of gene sets with a high diagnostic

value. In a microarray study with invasive ductal

carcinoma samples, a reliable set of 10 genes were

identified that can be used as a diagnostic tool for

accurate determination of ER status and to make a

decision regarding the endocrine therapeutic strate-

gies for breast cancer. The robustness and reliability

of these classifiers was confirmed after further testing

on three independent microarray gene expression

datasets [49].

Meta-analysis approach can provide novel

candidates not present in the existing literature

allowing reports of multiple genes when neither

dataset can report them when analysed individually

[50, 51].

Large-scale real-time quantitative
reverse transcription PCR (qRT-PCR)
Microarray studies allow high-throughput analysis of

expression for thousands of genes and add valuable

data to tumour studies. However, once cancer target

genes have been identified through this technology,

validation of existing microarray data becomes

inevitable.

qRT-PCR, also known as real-time PCR, plays

an increasingly important role in high-throughput

testing of existing microarray data [52]. qRT-PCR is

an accurate and sensitive method quantifying

mRNA transcripts that uses the quantitative relation-

ship between the amount of starting target sample
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and the amount of PCR product at any given PCR

cycle number. The method allows the detection of

amplicon accumulation since it is performed using

sensitive fluorogenic Taq-Man Probes, molecular

beacons, and scorpions or more sensitive but less

specific intercalating dyes like SYBR Green I which

only fluoresce intensely when associated with

double-stranded DNA [53]. The amount of fluo-

rescence produced from the fluorogenic probes is

measured at each amplification cycle. qRT-PCR has

the advantages of requiring smaller quantities of

sample and producing fast, accurate and easily

reproducible quantitative results with little manip-

ulation of the samples [54].

qRT-PCR is attractive for clinical use since it can

be automated and performed on fresh or archived

formalin-fixed, paraffin-embedded (FFPE) tissue

samples [55, 56]. The biological classification

formed using microarray data has been validated

with freshly frozen breast tissues from multiple

patient cohorts by qRT-PCR. Sorlie et al. [57]

validated and characterized two previously defined

clinically relevant subtypes of early stage breast

carcinomas, luminal A and basal-like, by using

three different microarray platforms. The set of 54

predictor genes identified in this study were validated

by qRT-PCR using the RNA isolated from the

same fresh frozen breast tumour samples that were

used in microarray platforms. These genes were

defined as potential prognostic molecular markers

for these subtypes of breast cancer [57]. Perreard

et al. [58] used the power of qRT-PCR to make

the clinical distinction between ER-positive and

ER-negative breast tumours and identified additional

subtypes of breast tumours that have prognostic

value. In another study, the results obtained with a

70-gene expression profile described previously in

breast cancer [25] were reproduced with qRT-PCR

by using a different set of frozen breast cancer

samples [59]. Urban et al. [60] used two different

microarray platforms and qRT-PCR in their study

and identified the uPA gene associated with distant

metastasis-free survival in ErbB2-positive breast

tumours that can be used as a powerful prognostic

indicator.

Recently, an exhaustive analysis of popular

microarray platforms by the multi-centre consor-

tium, the MicroArray Quality Control (MAQC)

consortium, delivered reassuringly impressive results

for the accuracy and reproducibility of commonly

used microarray platforms [61]. The focus on their

study has been the identification of common

transcripts that are mutually represented among the

various microarray platforms included in the analysis.

Based on the MAQC dataset, Canales et al. [55] used
three different RT-PCR methods to profile the

same RNA samples to determine the concordance

between the microarray-based measurements and

RT-PCR results. They found that the correlation

coefficients were very high for several hundred genes

examined with both methods.

FFPE tissue samples are well-suited for qRT-

PCR expression studies [62]. It has been shown that

it is feasible to extract and purify RNA from FFPE

tissue and to perform gene expression experiments

although fragmentation of RNA can occur during

the fixation process [56]. Retrospective clinical

studies generally use FFPE tissue, as it is the most

widely available material. These tissues have been

used extensively and provide a major resource for

understanding disease mechanisms and using

the power of differentially expressed genes to

evaluate possible new diagnostic or therapeutic

approaches.

A diagnostic assay, OncotypeDXTM (Genomic

Health Inc., Redwood City, CA, USA), has been

developed as an RT-PCR-based assay performed

with FFPE tumour tissue. It analyses the expression

of a panel of 21 genes, which can help in the

diagnosis of ER-positive breast cancer [39]. The

genes identifying molecular subtypes of breast cancer

with prognostic significance obtained from micro-

arrays with fresh-frozen tissues were also used to

diagnose biological subtypes of breast cancer in FFPE

tissues by qRT-PCR. The subtype classifications of

the breast tumour with the diagnostic gene set were

highly comparable between FF and FFPE tissue

samples [63]. Collectively, these studies show the

reproducibility of microarray data with the qRT-

PCR technique.

Although limited to quantification of mRNA

transcripts, the sensitivity, reproducibility, expand-

ability and cost-effectiveness of qRT-PCR make

it a benchmark technology for integration with

microarray technology.

CONCLUDING REMARKS
Recent advances in genomics and genomic technol-

ogies have made it possible to study cancer in many

novel ways. Microarray technology has been used

to study all aspects of cancer biology that help
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to uncover the molecular mechanism of cancer

development and has an impact on diagnosis,

prognosis, drug responses and new therapeutic

approaches in cancer. Another important aspect in

cancer studies is establishing the epigenetic profile of

a cancer type, since modification of proteins

associated with chromatin and methylation of CpG

sites in the DNA has a profound effect on gene

expression. Such studies defining methylation

signature could not only help staging of cancer

cases but also help to identify the potential mole-

cular markers for early cancer detection, assess

cancer risk and improve monitoring of cancer

prognosis. New genome-wide, high-throughput

tools, such as Chromatin-immunoprecipitation

(ChIP)-on-microarray (or ChIP–Chip) are also

becoming very useful for studying epigenetic

modifications in cells. ChIP combined with high-

resolution microarray analysis allows the examination

of genome-wide nucleosome occupancy and histone

modification status [64]. Genome-wide chromatin

status can then be compared with global gene

expression patterns to reveal connections between

specific patterns of histone modifications and the

resulting gene expression in the normal or malignant

phenotype of a cell. Genomic studies exami-

ning tumour sets with multiple complementary

technologies, including comparative genomic hybri-

dization (CGH), single nucleotide polymorphisms

(SNPs), serial analysis of gene expression (SAGE),

ChIP–chip data, proteomics and gene expression

array can provide a multitude of opportunities for

cancer research. The large amount of discoveries

by these high-throughput techniques could then be

integrated with emerging bioinformatics to increase

our knowledge in cancer development. Combining

the results of these multidisiplinary approaches will

contribute to a better biological understanding of,

and, therefore, to the improvement of the clinical

management of cancer.
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