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Two-Step Lagrange Interpolation Method for the
Multilevel Fast Multipole Algorithm

Ozgﬁr Ergiil, Student Member, IEEE, Idesbald van den Bosch, and Levent Giirel, Fellow, IEEE

Abstract—We present a two-step Lagrange interpolation method
for the efficient solution of large-scale electromagnetics problems
with the multilevel fast multipole algorithm (MLFMA). Local
interpolations are required during aggregation and disaggregation
stages of MLFMA in order to match the different sampling rates
for the radiated and incoming fields in consecutive levels. The
conventional one-step method is decomposed into two one-di-
mensional interpolations, applied successively. As it provides a
significant acceleration in processing time, the proposed two-step
method is especially useful for problems involving large-scale
objects discretized with millions of unknowns.

Index Terms—Lagrange interpolation, large-scale problems,
multilevel fast multipole algorithm (MLFMA).

I. INTRODUCTION

T HAS BEEN more than 15 years since the fast multipole

method (FMM) was developed for the efficient solution of
radiation and scattering problems in electromagnetics [1], [2].
Discretizations of integral equations lead to N x N dense ma-
trix equations, which can be solved iteratively via a Krylov-sub-
space algorithm. FMM provides the matrix-vector multiplica-
tions (MVMs) required by the iterative algorithms in O(N3/2)
time using O(N?3/2) memory. By reducing the computational
complexity from O(N?) to O(N3/?), FMM enabled the so-
lution of large-scale problems on relatively inexpensive com-
puting platforms. A few years later, the idea behind FMM was
extended and applied in a recursive manner, leading to the mul-
tilevel fast multipole algorithm (MLFMA) [3], which provides
the solution of larger problems by reducing the complexity of
MVMs to O(N log® N) [4] or O(N log N)[5].

Elements of matrices obtained by discretizating inte-
gral-equation formulations can be interpreted as electromag-
netic interactions between pairs of discretization elements, i.e.,
basis and testing functions. In MLFMA, far-field interactions
between distant basis and testing functions are calculated
efficiently in a group-by-group manner. A multilevel tree
structure is constructed by placing the object in a cubic box
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and recursively dividing the computational domain into subdo-
mains until the size of the boxes is about 0.25). In each MVM,
three stages of MLFMA-—namely, aggregation, translation,
and disaggregation—are performed on the tree structure. The
aggregation stage involves computating radiated fields for each
nonempty box (cluster), from the lowest level to the top of the
tree structure. In the lowest level, radiated fields are obtained
by combining radiation patterns of the basis functions that
are multiplied with the coefficients provided by the iterative
algorithm. Following the aggregation stage, radiated fields are
converted into incoming fields with the help of translations.
Finally, during the disaggregation stage, total incoming fields
propagating toward the centers of clusters are calculated from
the highest level to the lowest level, where the incoming fields
are finally received by the testing functions. In addition to the
far-field interactions, there are also O(N) near-field interac-
tions, which are calculated directly and stored in memory.

In MLFMA, radiated and incoming fields are sampled on the
unit sphere as a function of spherical coordinates § and ¢. The
number of samples required for each cluster is proportional to
the size of the cluster as measured by the wavelength. There-
fore, to match the different sampling rates of consecutive levels,
interpolation and transpose interpolation (anterpolation) [6] are
required during aggregation and disaggregation stages, respec-
tively. There are two major ways of implementing interpolations
(and anterpolations), namely, through global and local interpo-
lation methods. Global interpolations are usually based on the
fast Fourier transform (FFT) along the ¢ direction and the Le-
gendre transform along the # direction, performed via one-di-
mensional FMM [4], [7]. Using uniform sampling, FFT can
also be used along the € direction [8]. A resulting MLFMA im-
plementation has O(N log? N) time complexity, while interpo-
lations are performed without error, provided that the Nyquist
criterion is applied for the sampling rate. On the other hand,
local interpolation methods introduce errors [9], but they lead
to more efficient MLFMA implementations with O(N log N)
complexity [5].

In general, interpolations and anterpolations constitute the
major computational bulk of MLFMA. Therefore, to obtain an
efficient solver, it is extremely important to optimize the interpo-
lation/anterpolation routines in MLFMA. In this letter, we con-
sider local Lagrange interpolation, which is preferable due to its
favorable computing cost and controllable error [5]. We present
a two-step Lagrange interpolation method, which is more ef-
ficient than the conventional one-step method. Our method is
based on performing the required two-dimensional interpolation
as a sequence of two one-dimensional interpolations. By also
applying the two-step method for anterpolations, efficiency of
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MLFMA is improved significantly. The decrease in computa-
tion time, i.e., the speedup, provided by the proposed two-step
method is demonstrated on scattering problems involving mil-
lions of unknowns. The two-step method is easy to implement
and is especially useful for problems involving large-scale ob-
jects.

II. LAGRANGE INTERPOLATION

Let f(A,¢) be a scalar function representing a radiated or
incoming field in MLFMA. Using a two-dimensional Lagrange
interpolation, the value of the function at a target point (6, ¢) in
the fine grid is obtained by using 2p X 2p samples in the coarse
grid, i.e.,

s+p t+p
0,9~ > wile) >, wil®)fBi;) (D)
Jj=s+1-—p i=t+1—p

where w;(¢) and v;(6) represent interpolation weights derived
as

s+p

(:b - ¢m
wie)= [[ —F ©)
m=s+1—p (;bj - (;bm
m#j
for the ¢ direction, and
t+p
0—4,
w)= [ 57— 3)
n=t+1—p v n

for the 6 direction, respectively. We note that reference indices
s and ¢ in (1)—(3) are determined by the location of the target
point (6, ¢), with respect to the samples in the coarse grid.

In MLFMA, it is common to choose samples uniformly in the
¢ direction while using Gauss-Legendre points in the 6 direction
[2]. Forlevel I = 1, 2,...,lpax, the number of samples is

T = (Ll + 1) and P, = Z(Ll + 1) 4)
along the 6 and ¢ directions, respectively, where 1; is the trunca-
tion number determined by the excess bandwidth formula [10],
ie.,

Ly ~ 1.73ka; + 2.16(do) > (kay)'/3. (5)

In (5), a; is the box size at level [, and dj is the desired digits of
accuracy. Interpolation of a function at 7T; x P, points requires
@'cime

one-step

= 4p’TiP, = 8p(L; + 1)? (6)

operations. If interpolation weights in the # and ¢ directions are
combined, interpolation in (1) can be expressed as a MVM, i.e.,

FxIg-F (7)

where F and F are one-dimensional arrays of samples in the
fine and coarse grids, respectively, and T g Tepresents an SxS
sparse interpolation matrix. For interpolations from level (I —1)
tol, S = 2(L; + 1)%, S = 2(Li—1 + 1)?, and there are 4p>
nonzero elements per row in I &g- The matrix representation in
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(7) is preferred due to its simplicity, and it is very useful for an
easy implementation of anterpolations in MLFMA. However,
the amount of memory required for the interpolation matrix is
proportional to

Omatrin. = 4p° TPy = 8p*(Ly +1)? ®)
which can be significant for large problems. Considering the
original form in (1), it is possible to store the interpolation
weights along the € and ¢ directions separately, in two arrays
of sizes 2p(L;+ 1) and 4p(L; + 1), respectively. Then, the total
memory used for interpolations from level (I — 1) to [ becomes

Oarray = (2p +4p)(Li + 1) = 6p(L; + 1) ®

without any change in the number of operations and processing
time. The reduction in memory by using the array representation
instead of the matrix representation is

Ohtay ™ 6p(Li+1) 3 (10)
Omatrn. SPA(Li+1)2  dp(Li +1)

which is especially significant for higher levels.

III. TWO-STAGE LAGRANGE INTERPOLATION

The number of operations required for the conventional (one-
step) interpolation method from level (I—1) to l is 8p?(L;+1)2.
This is because there are (L; + 1) x 2(L; + 1) points in the
fine grid (samples for level /) and each of these points has 4p?
contributions from the coarse grid. On the other hand, locations
of sampling points in the § and ¢ directions are independent of
each other. Therefore, interpolations along the two directions
can be performed consecutively, as follows:

* Perform an interpolation along the 6 direction as

t+p

F0,0:)~ > vi0)f(bi,¢;)

i=t+1—p

(1)

which requires 2p7; P,_1 operations.
e Perform an interpolation along the ¢ direction using the
result of the first step, i.e.,

s+p

FO.0)~ Y wi(d)f0. ).

Jj=s+1-—p

12)

This step requires 2p7T; P, operations.
Consequently, using the two-step method, the processing time
required to interpolate the function at 7} X P; points is

@time
two-step

=2pT1(Pi—1 + P)

=4p(Li+ 1) (L, + L1 + 2). (13)

Comparing processing times required for the one-step and two-
step interpolation methods,

Otwesstep  Ap(Ly + 1)(Ly + Li—1 +2)
oume fp 8p? (L +1)2
Sp(Li+1)(Li+1) 1
8p2(Li+1)2 p

(14)
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TABLE I
PROCESSING TIME REQUIRED FOR AN AGGREGATION STAGE AND FOR AN MVM WHEN INTERPOLATION/ANTERPOLATION OPERATIONS ARE PERFORMED
BY USING ONE-STEP AND TWO-STEP INTERPOLATION METHODS

SPHERE PROBLEMS AGGREGATION MATRIX-VECTOR MULTIPLICATION
Radius (A) | Mesh (mm) | Unknowns | One-Step (s) | Two-Step (s) | Reduction | One-Step (s) | Two-Step (s) | Reduction
6 5 132,000 0.646 0.360 44% 1.98 1.47 26%
7.5 4 206,499 0.844 0.470 44% 2.52 1.86 26%
10 3 367,821 2.18 1.19 45% 6.21 4.46 28%
15 2 829,881 3.86 2.14 45% 11.1 8.00 28%
20 1.5 1,462,854 9.47 5.28 44% 27.0 19.6 27%
30 1 3,319,524 17.1 9.43 45% 47.0 334 29%
40 0.75 5,851,416 40.7 22.3 45% 112 79.2 29%
48 0.625 8,447,808 54.7 30.8 44% 152 109 28%

since L;_1 < L;. Therefore, the two-step method is always
faster than the one-step method. To store the intermediate array
of size Py = 2(L;_1 + 1) between the steps, the two-step
method requires a bit more memory than is used in the one-step
method, i.e.,

®$i$ﬁ¥wo-stcp _ Gp(Ll + 1) + 2(L1_1 + 1)
62;(:2;’04?0,116—%(3]) 6p(Ll + 1)
6p + 2 1
=1+ —. 15
< op + 3 (15)

Nevertheless, the speedup in the two-step method more than
compensates for the small increase in memory.

IV. RESULTS

To demonstrate the acceleration provided by the two-step
interpolation method, we present the solution of scattering
problems involving perfectly conducting spheres of various
radii from 6 to 48X illuminated by a plane wave. Problems
are formulated with the combined-field integral equation and
discretized with Rao-Wilton-Glisson (RWG) [11] basis func-
tions. Triangulations with A/10 mesh size lead to large matrix
equations involving 132,003 to 8,447,808 unknowns. Problems
are solved iteratively, with MVMs performed efficiently by
MLFMA. Solutions are parallelized into 16 processes on a
cluster of AMD Opteron 870 processors. The hierarchical
partitioning strategy is used for the efficient parallelization
of MLFMA [12]. Far-field interactions are calculated with
two digits of accuracy and the interpolation/anterpolation
operations are performed using 6 X 6 stencils (p = 3). Table I
lists the processing time required for the aggregation stage, in
addition to the speedup offered by the two-step interpolation
method. Compared to the conventional one-step method, the
two-step method reduces the processing time of the aggregation
stage by about 45%. To demonstrate the overall improvement,
Table I also presents the processing times required for MVMs,
which are reduced by 25-30% with the two-step interpolation

method. For the largest problem, MVM time is reduced from
152 to 109 seconds.

V. CONCLUSION

We present a two-step Lagrange interpolation method to
accelerate the solution of electromagnetics problems with
MLFMA. This method is easily implemented by decomposing
the conventional one-step method into two successive parts.
Acceleration provided by the two-step method is significant,
and it is especially useful for large problems.
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