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Abstract
We examine particle entanglement, characterized by pseudo-spin squeezing, of spin-1 bosonic
atoms with coupled ground states in a one-dimensional optical lattice. Both the superfluid and
Mott-insulator phases are investigated separately for ferromagnetic and antiferromagnetic
interactions. Mode entanglement is also discussed in the Mott-insulating phase. The role of a
small but nonzero angle between the polarization vectors of counter-propagating lasers
forming the optical lattice on quantum correlations is investigated as well.

1. Introduction

The investigation of atomic bosons with short-range repulsive
interactions in a periodic potential using the Bose–Hubbard
model has revealed a quantum phase transition between two
distinct phases: a superfluid and a Mott insulator, that exists at
sufficiently low temperatures [1]. The formalism of the Bose–
Hubbard model was successfully mapped onto a system of
cold bosonic atoms in an optical lattice [2]. The superfluid to
Mott-insulator phase transition was experimentally realized
[3] and further examined and theoretically digested [4].
Continued progress has focused on systems of multi-
component Bose–Einstein condensates (BECs) in an optical
lattice [5], where diverse topics such as quantum phase
transitions of spin-2 bosons [6], two-component condensates
[7], and spin-1 bosons with coupled ground states [8] have been
studied.

An interesting feature characterizing a variety of lattice
models mapped onto atomic gases is quantum entanglement.
Additionally, cold-atom-based lattice models have been
identified as ideal candidates for universal quantum emulation
of strongly interacting many-body systems. While a complete
understanding of quantum entanglement and correlations in
an atomic lattice model remains a significant challenge even
in theoretical terms [18], much has been understood for an
important type of correlation, the so-called spin squeezing,
or pseudo-spin squeezing. For those systems that undergo

quantum phase transitions, the presence and the measure
of entanglement are important not only at the transition
point, but also for the different phases of the system.
These systems show various behaviours, entanglement and
disentanglement, coherent and squeezed spin states, mode
and particle entanglement for different phases that can be
controlled by interaction types and strengths as well as lattice
configurations.

Squeezed spin states are states whose spin fluctuation in
one of the transverse spin components is below the standard
quantum limit. It was shown in [19] a spin-s squeezed spin
state is a correlated state consisting of 2s spin-1/2 particles.
This implies a potential connection between spin squeezing
and entanglement, due to the existence of correlations affecting
the separability of a system with many spin-1/2 particles [20].
Spin squeezing can occur in many models with a variety
of atom–atom interactions [21, 22], for atomic condensates
inside external traps [20], and for atoms inside optical
lattices [23].

In this work, we are interested in the possibility and the
condition for spin squeezing in the pseudo-spin of coupled
ground states in an optical lattice model with spin-1 bosons.
We hope to explore spin squeezing properties of the system
carefully studied in [8]. This paper is organized as follows.
In section 2, we review the model system [8, 24] and describe
the mapped Bose–Hubbard Hamiltonian in the mean-field
approximation. The measure of spin squeezing and quantum
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entanglement that we employ is introduced in section 3. The
results of spin squeezing for different interaction regimes are
presented in section 4. Finally, we conclude in section 5.

2. Model system

The system we study consists of neutral bosonic atoms with
hyperfine spin F = 1 in an optical lattice. The optical lattice
results from the ac Stark shifts of standing wave laser fields,
which are dipole coupled to atomic electronic transitions. The
off-resonant coupling induces virtual transitions to electronic
excited states, which upon adiabatic elimination give rise to
level shifts (ac Stark shifts) in the ground-state manifold.
These shifts are proportional to the intensity distribution of the
laser light. Additionally two-photon Raman-like transitions
can couple any two Zeeman states within the spin-1 ground-
state manifold, subject to appropriate polarization selections.
In a lattice of ac Stark shifts from standing waves, the periodic
level shift gives rise to band structures. When the lasers
are linearly polarized, the Zeeman ground-state manifold of
(MF = −1, 0, +1) remains degenerate in the lattice. For more
general cases of coupling referred to as the � or V scheme
with suitable polarizations, two alternate ground states become
coupled and will be denoted as the electronic modes with
σ = 0 and σ = � [8].

We assume that atoms will remain in the lowest Bloch
bands as a result of the relatively large band gap in comparison
with their kinetic energies. Within this approximation,
the atomic field operator can be expanded in terms of the
site localized Wannier basis. As carefully presented in [8], we
arrive at the model Hamiltonian defined on a 1D optical lattice
as given below,

ĤBH = −
∑

σ=0,�

|Jσ |
∑
〈i,j〉

â
†
σ i âσj

+
∑

σ=0,�

Uσ

2

∑
i

n̂σ i(n̂σ i − 1) + K
∑

i

n̂0i n̂�i

− |P |
2

∑
i

(
â
†
0i â

†
0i â�i â�i + â

†
�iâ

†
�iâ0i â0i

)
− δ

∑
i

n̂0i − μ
∑

σ=0,�

∑
i

n̂σ i , (1)

where Jσ is the tunnelling parameter, Uσ ,K and P are
parameters from the repulsive density–density interaction
of condensed atoms and the spin-exchange interaction. δ

parameterizes the energy difference between the electronic
internal states σ = 0 and σ = �. μ is the chemical potential,
â
†
σ i and âσ i are respectively creation and annihilation operators

of an atom in mode σ at lattice site i and n̂σ i = â
†
σ i âσ i .

As discussed in [8], the various parameters of the above
Hamiltonian (1) can be given in terms of Wannier spinors,
and thus they depend on θ , the angle between the polarization
vectors of the two counter-propagating linearly polarized laser
beams in the lin-θ -lin configuration of an optical lattice.

In the mean-field approximation [25] with ψσ = 〈âσj 〉
assumed real [8], we substitute

â
†
σ i âσj ≈ ψσ

(
âσj + â

†
σ i

) − ψ2
σ , (2)

into the Hamiltonian (1), and arrive at

Ĥ MF
BH = −2

∑
σ=0,�

Jσ

[(
âσ + â†

σ

)
ψσ − ψ2

σ

]

+
∑

σ=0,�

Uσ

2
n̂σ (n̂σ − 1)

+ Kn̂0n̂� − |P |
2

(
â
†
0â

†
0â�â� + â

†
�â

†
�â0â0

)
− δn̂0 − μ

∑
σ=0,�

n̂σ , (3)

a system of many independent sites. In the above, we have
omitted the site index i so that effectively, the optical lattice
model is reduced to a collection of single site problems.

The basic idea of mean-field theory (MFT) is to replace
the fluctuating exchange field by an effective average field
in an interacting many-body system. MFT has been found
not quite reliable to describe critical phenomena especially
at low dimensions [9]. In MFT, one ignores the long-range
fluctuations of the order parameter which causes serious errors
at the critical points where the fluctuations dominate the
mean value [10]. Despite these facts, optical lattices have
extensively been studied under an MFT approach [2, 11]. The
interaction term in the Bose–Hubbard model for the optical
lattices, e.g. the interaction terms in (1), is due to atom–atom
collisions which can happen only locally, so that it is an on-site
interaction. The sole non-local interaction is the hopping term,
due to tunnelling of the atom between the sites. As in the case
of our spin-1 model, MFT treats the spin–spin interactions
exactly while the kinetic coupling is treated approximately.

MFT, as it is used here, based upon the Bogoluibov
symmetry breaking background field theory. Bogoluibov
theory is extended to describe Mott transition by a specific
decorrelation approximation in a consistent MFT [12]. It
can be systematically improved by considering bigger clusters
(two sites or more) to employ MFT [13]. Away from phase
boundaries such an improvement is not essential for us. The
fluctuations are due to collective excitations of the system.
Focusing at zero temperature, and staying away from the phase
boundaries, one can expect that the predicted MFT ground
states are well established, since the collective excitations and
associated fluctuations would be weaker in comparison to the
mean-field order parameter. In our investigations we assume
that the reported ground states [8] describe the system in deep
quantum phases away from the phase boundaries.

A similar approach, as is done here, to determine the
ground states has been employed in a more general system
that includes external magnetic field as well [14]. MFT cannot
be used to examine spin–spin correlations among different
sites for which effective models can be used [15]. On site
spin fluctuations however can be examined in MFT to reveal
any particle entanglement associated with the reported ground
states [8]. The question we address here is how the type
and amount of the entanglement among the particles in a
single lattice site would change when the whole lattice system
undergoes quantum phase transitions and the use of MFT is
sufficient for this question.

Beyond zero-temperature, a generalization of the method
is given in [16]. At non-zero temperatures it is more crucial to
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test predictions of MFT for low-dimensional systems against
numerical tests. For spin-1 systems, detailed numerical studies
became only very recently available [17]; but they have
ensured that similar level of agreement between the MFT
predictions and numerical studies as in spinless systems do
occur for the case of spin-1 systems.

In order to test the validity of MFT that we use in our
model, we studied a simple lattice model having two sites. We
used the Bose–Hubbard Hamiltonian in (1) and i runs from 1 to
2 with the periodic boundary conditions. The purpose of this
calculation is to investigate the effect of inter-site interaction
on the single-site state. The exact ground-state calculations
were done by using those parameter values corresponding to
n = 1 and n = 2 Mott phases in the phase diagrams both for
the ferromagnetic and antiferromagnetic regimes in the case of
θ = 0 and for a small θ value. Once the exact two-site ground
state is determined, we calculate the one-site density matrix by
tracing out the other site. Following this procedure, the overlap
of ground states from MFT and exact two-site model can be
computed. Our results show that most of these overlap values
are above 0.95, confirming the success of MFT in calculating
one-site ground states and the use of it to quantify correlations
among particles in a single site.

In general, many-body wavefunctions are too complicated
to express explicitly, but MFT allows for writing analytical
wavefunctions of the ground states and hence one can
gain valuable insights into the quantum correlations in such
complex many-body systems such as spinor condensates in
optical lattices. This insight should serve as a guide even
for comprehending quantum correlations among the lattice
sites which require beyond MFT calculations, but can still be
performed through perturbative examinations of mean-field
ground states. We hope to investigate this in the near future.

A general spin-1 system is described by the symmetry
group SU(3). In the model considered here, a reduced
two-mode description for the two coupled ground states is
represented by a pseudo-spin-1/2 algebra, effectively the
isospin subgroup of SU(3) [8]. The corresponding generators
of the SU(2) isospin algebra are given by [8]

T̂1 = 1

2

(
â
†
�â0 + â

†
0â�

)
,

T̂2 = i

2

(
â
†
�â0 − â

†
0â�

)
, (4)

T̂3 = 1

2

(
â
†
0â0 − â

†
�â�

)
,

in terms of which the mean-field Hamiltonian (3) can be
expressed as

Ĥ MF
BH = −2

∑
σ=0,�

Jσ

[(
âσ + â†

σ

)
ψσ − ψ2

σ

]

+
U�

2
T̂ 2

3 + (K − |P |)T̂ 2
1 + (K + |P |)T̂ 2

2

+
U�

8
n̂2 −

(
K

2
+ μ +

U�

4
+

δ

2

)
n̂

−
(

�U

2
+ δ

)
T̂3 +

�U

2
n̂T̂3, (5)

where �U = U0 − U�,U� = U0 + U� and n̂ = n̂0 + n̂�.
Spin-dependent interaction terms in this Hamiltonian emulates
that of the generalized Lipkin–Meshkov–Glick (LMG) model
[26, 27], or its special case of the two-axis twisting model
[19]. Such models are capable of generating spin squeezing
[19] and multiparticle entanglement [21, 26]. Our model
above includes tunnelling and collision effects in addition to
the generalized LMG interaction terms.

When the lattice parameter θ = 0, the two modes have the
same energy and J0 = J� = J,U0 = U� = U,K = U + P

and δ = 0 [8]. The simplified Hamiltonian (3) takes the
following form

Ĥaf(f) = −2J
∑

σ=0,�

[(
â†

σ + âσ

)
ψσ − ψ2

σ

]
+ 2

(
UT̂ 2 + P T̂ 2

2(1)

)
+ αn̂, (6)

for both antiferromagnetic (P > 0) and ferromagnetic (P <

0) interactions [24], where we have used T̂ 2 = n̂2/4 + n̂/2 for
the collision interaction in terms of the total isospin operator
T̂ 2 with α = −3U/2 − P/2 − μ. The spin interaction now
reduces to that of a single-axis twisting type [19].

The above considerations show that our model allows
for the investigation of effects due to tunnelling and collision
on spin squeezing induced by either the two-axis twisting
interaction as in the generalized LMG model or the single-
axis twisting interaction in the simplified case. In the general
case of the LMG model, particle entanglement thus exists
for atoms in the non-degenerate ground-state modes, which
become degenerate for the special case of a lattice with θ = 0.

3. Spin squeezing and quantum entanglement

Squeezed spin states defined by Kitagawa and Ueda [19] are
widely used in atomic physics, especially in the context of
particle correlation and entanglement. A criterion was found
recently connecting many-atom entanglement and correlation
originally from atoms in a Bose–Einstein condensate (BEC)
[20]. If the squeezing parameter

ξ 2
α = N(�Jα)2

〈Jβ〉2 + 〈Jγ 〉2
, (7)

is smaller than 1, the two-mode bosonic many-atom state under
consideration is spin squeezed along the direction of α. �J is
the total pseudo-spin operator, while α, β and γ denote three
orthogonal axes. The condition for ξ 2

α < 1 coincides with
the non-separability criterion of a density matrix for N two-
state boson [20]. Thus ξ 2

α can be used to measure quantum
entanglement in the two-state atomic system discussed above.
In our study outlined below, we examine spin squeezing for
the on-site isospin algebra by calculating the variance and
expectation values of the corresponding generators Ti defined
in (4). Our results show clearly the existence of quantum
correlations between atoms on the same lattice site.

To identify pairwise entanglement in our many-body
system, we can make use of a direct relationship between
concurrence [28], which is well-known and represents a
widely accepted measure of bipartite entanglement, and spin
squeezing criterion [29]. Thus, we take (7) as an indicator for
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two-particle entanglement. We will in addition also calculate
the concurrence and compare the results with the squeezing
parameter (7).

In view of the significant difficulties of measuring spin
squeezing along any arbitrary direction α, our investigation
will focus on the simplest case of a single orthogonal
configuration with three fixed axes. Other orthogonal axes
configurations may be sequentially searched for if the optimal
squeezing is to be found. For this aim we only need to rotate
the coordinate system about each of the axes by an angle φ.
For example if the rotation is about the axis-3, ξ 2

3 remains the
same, while the squeezing parameters for the new axis-1 and
axis-2 become

ξ 2
1′ = N

�T 2
1 cos2 φ + �T 2

2 sin2 φ − sin φ cos φ〈T1, T2〉
〈T3〉2 + (〈T1〉 sin φ + 〈T2〉 cos φ)2

,

(8)

ξ 2
2′ = N

�T 2
1 sin2 φ + �T 2

2 cos2 φ + sin φ cos φ〈T1, T2〉
〈T3〉2 + (〈T1〉 cos φ − 〈T2〉 sin φ)2

,

where 〈Ti, Tj 〉 = 〈TiTj + TjTi〉 − 2〈Ti〉〈Tj 〉.

4. Results

4.1. Numerical method

The mean-field Bose–Hubbard Hamiltonian in (3) has been
used to examine the phase transition between the superfluid
and Mott-insulator phases [8], with ψσ denoting the order
parameter for the σ mode. The superfluid phase for the σ

component is identified with ψσ �= 0. In the superfluid state
the tunnelling term Jσ is large and dominates the Hamiltonian.
As a result the ground state corresponds to the single-particle
wavefunction of all σ -type atoms extended over the whole
lattice, with each site being a coherent superposition of Fock
number states [3]. In the Mott phase, on the other hand, the
interaction term dominates so that the ground state exhibits
minimal number fluctuation and corresponds to a product of
atom Fock number states at each lattice site, which in turn
gives ψσ = 0 [3].

We have performed numerical diagonalization of the
mean-field Hamiltonian (3) by using a set of states expanded
in terms of the product of individual atom number states

|�〉 =
N∑

n0=0

N∑
n�=0

cn0n�
|n0〉|n�〉. (9)

While performing this diagonalization, two different regimes
with respect to the same parameter P must be carried out. One
is for a positive antisymmetric coupling, with a corresponding
antiferromagnetic ground state, where individual spins are
anti-aligned due to spin-exchange interaction. The other case
is ferromagnetic for a negative spin exchange interaction. In
addition, we explore the dependence of our results on the
small, but non-vanishing lattice parameter θ , which introduces
a spin-dependent lattice potential.

We study the parameter regions corresponding to those
considered in [8]. The values of the parameters in Hamiltonian
(3), which are needed for numerical computation, are thus
read from figure 1 of [8], with J/U chosen to ensure the
system has full access to the n = 2 Mott regime, but barely

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

μ/U

ψ
Λ
,ψ

0

Figure 1. The dependence of the order parameters on the value of
μ/U for θ = 0, J/U = 0.455 × 10−1 and P/U = −0.926 × 10−2

in the ferromagnetic regime. The vanishing of the order parameters
matches closely with the appearance of Mott-insulator phases for
the corresponding component.

enters the n = 3 Mott phase. θ is taken to be small and
δ values used are for the range of 0 � θ � 1. We study
the degenerate (θ = 0) and non-degenerate cases (θ �= 0)

separately. From the initial values of the order parameters ψ0

and ψ� we compute the diagonal basis and the corresponding
ground state. This ground state then allows us to calculate
the new order parameters and to compare with the initial
values. This procedure is iterated to reach a self-consistent
solution, with which it becomes straightforward to calculate
the expectation values and the second moments of the operators
in (4).

To conveniently calculate the squeezing parameter ξ 2 (7),
we use the average total occupation number 〈n̂〉 for each type of
interactions to label the different phases instead of relying on
the total number of atoms N (per site). This implicitly assumes
that the squeezing parameter (7) remains a valid criterion
of quantum entanglement even for non-integer occupation
numbers such as in the superfluid phase. This assumption
does not introduce any inconvenience in a Mott phase since
the ground state consists of Fock states with equal total number
of particles, i.e., definite spin and thus 〈n̂〉 becomes an integer.
In the superfluid phase, we justify the use of a non-integer
〈n̂〉 in the following manner. In this section, we calculate the
squeezing parameter in two different ways for each case. The
first method uses 〈n̂〉 directly for the entanglement measure.
The second method is analogous in form, but only uses integer
values of 〈n̂〉. For the superfluid phase, instead of talking about
separability for states with different total number of particles,
we focus on the subspace n0 + n� = n block and investigate
its correlation. This becomes a meaningful measure when the
block we use is the one with the nearest integer total number
of particles to 〈n̂〉. This method has a similar nature as the
superselection rules mentioned in [18] and in [30] since the
projection of the Hilbert space onto a subspace of fixed particle
number is considered. Both methods are found to give similar
behaviours for the superfluid and the Mott-insulator phases.
We provide results from the first method in our discussion
because they respect the collective nature of the superfluid
state and emphasize particle number fluctuations.
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There also exist states for which spin squeezing parameter
cannot be readily used to characterize their correlation
properties. An example is the maximally entangled states
(MES) in [31], which are not squeezed spin states according
to the criterion in (7). In this case, it is inadequate to talk
about squeezing, since the uncertainty in the perpendicular
components to the mean isospin vector are meaningless as
the denominator for the squeezing measure (7) vanishes for
all axes. In addition, there exist other states, although whose
averaged mean isospin are nonzero, the expectation values for
the two components in the denominator might vanish, also
making the spin squeezing parameter ξ 2

i not well defined. In
our studies, we find that these states happen only in certain
Mott phases, where exact wavefunctions are available either
analytically in the spin [24] or Fock basis [8]. As such, their
quantum entanglement properties can be discussed directly
using other criteria.

In order to quantify the pairwise quantum correlations
both in the superfluid and Mott-insulator regimes, in addition
to the squeezing parameter, we use the well-known criterion
called concurrence [28]. For a given two-party state ρ, this
measure is equal to

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (10)

where λi’s are the square roots of the eigenvalues of ρρ̃ in
decreasing order where

ρ̃ = (σy ⊗ σy)ρ
∗(σy ⊗ σy). (11)

For the n = 1 Mott-insulator phase, this measure is trivial
since there is only one particle present. When it comes to
the n = 2 Mott phase, concurrence clearly quantifies pairwise
correlations between the two atoms at the same lattice site.
In the superfluid phase, the ground state is a superposition of
Fock states with different number of atoms or isospin states
with different isospins, we again focus on the subspace with
the nearest integer total number of particles n0 + n� = n. If
the nearest integer is smaller than 2, then concurrence is zero.
If it is equal to 2, the concurrence is simply calculated. When
it is equal to 3, the three-particle ground state is symmetrized
in the first quantization picture and we use reduced two-body
density matrix to calculate concurrence.

We report below our investigation of quantum
entanglement in our model system for the two regimes:
antiferromagnetic and ferromagnetic interactions.

4.2. Ferromagnetic regime

For ferromagnetic interaction with P < 0, for θ = 0, and
a fixed J/U value, the dependence of the order parameters
ψ0 and ψ� on the quantity μ/U is shown in figure 1. We
determine the phase of the system for any μ/U value by
looking at the order parameter of each component.

Quantum correlations on a single lattice site is evidenced
by evaluating the squeezing parameter (7). In the superfluid
regime, numerical calculations, taking into account the
minimization with respect to coordinate rotations, yield ξ 2

i >

1. So there is no particle entanglement in the superfluid
phase of a ferromagnetically interacting system when θ = 0.
However, this situation deserves to be more carefully analysed

for those values of μ/U that correspond to Mott-insulator
phases.

The spin squeezing parameter is not defined for the
zero particle (n = 0) ground state |0, 0〉, the trivial case
of no particle entanglement without any particles. When
θ = 0, the single particle (n = 1) ground states |10〉
and |01〉 are degenerate [8] and can be written as |g〉 =
cos x|01〉 + sin x exp (iy)|10〉, where x, y ∈ [0, 2π ] are
arbitrary angles, parameterizing the manifold of the ground-
state family. We find 〈T1〉 = (1/2) sin 2x cos y, 〈T2〉 =
(−1/2) sin 2x sin y, and 〈T3〉 = (−1/2) cos 2x. The spin
fluctuations are

〈
�T 2

1

〉 = (1/4)(1 − sin2 2x cos2 y),
〈
�T 2

2

〉 =
(1/4)(1 − sin2 2x sin2 y) and

〈
�T 2

3

〉 = (1/4)(sin2 2x). Thus
we obtain ξ 2

i = 1 in any direction i = 1, 2, 3, for any
member of the ground-state manifold. The ground state,
expressed in the spin representation [24], could be written
as an arbitrary superposition of |T = 1/2, T1 = ±1/2〉
spin states. We write |g〉 = |x, y〉 = cos (x/2)|1/2, 1/2〉 +
sin (x/2) exp (iy)|1/2,−1/2〉 for the ground state in spin
representation. Projection of the total spin onto the (x, y)

direction gives the spin component Sx,y = sin x cos yT2 +
sin x sin yT3 + cos xT1, whose eigenstate is |x, y〉 with
eigenvalue 1/2, such that Sx,y |x, y〉 = (1/2)|x, y〉. Such a
state is called a coherent spin state (CSS) [19]. The ground
state |g〉 is identified as a pure state of a spin-1/2 system, and as
such is a CSS. There exists no other spin to be correlated with,
so that |g〉 cannot be a squeezed spin state (SSS). Particles
in a CSS are correlated as all spin-1/2 constituents atoms
are pointing along the same direction; although they remain
separable, i.e., they are not entangled.

On the other hand, the n = 1 Mott state could become
mode entangled [32] for some α and β. Mode entanglement
is a different concept from particle entanglement considered
here and could be useful for different applications [32].
It corresponds to entanglement in the second quantization
picture, while particle entanglement is associated with the
inseparability of the wavefunction, or density matrix, in the
first quantization.

Similarly, the ground states for the n = 2 Mott phase
are also degenerate for θ = 0. As such they form a
manifold represented by |g〉 = cos x|11〉 + sin x exp (iy)|b〉,
where |b〉 = (|02〉 + |20〉)/√2. In this case, 〈T1〉 =
sin 2x cos y and 〈T2,3〉 = 0. The variances are calculated
to be

〈
�T 2

1

〉 = 1 − sin2 2x cos2 y,
〈
�T 2

2

〉 = cos2 x, and〈
�T 2

3

〉 = sin2 x. ξ 2
1 becomes either undetermined (a 0/0

form) or ∞ due to vanishing denominators. If we calculate
ξ 2

1 after a coordinate rotation by φ about the axis-3, we find
ξ 2

1′ . Minimizing it with respect to φ, we finally get (ξ 2
1′)min =

1/(2 sin2 x cos2 y) with its minimum value at φ = ±π/2. We
find ξ 2

3 = 1/(2 cos2 x cos2 y) and ξ 2
2 = 1/(2 sin2 x cos2 y).

For some values of x and y, ξ 2
2,3 < 1 is satisfied. Hence,

particle entanglement exists for some members of the ground-
state manifold. This is consistent with the fact that each
degenerate ground state |11〉 and |b〉 is particle entangled. For
parameters x and y specifying a dominant contribution from a
particular degenerate component in |g〉, particle entanglement
is expected. In the spin representation, the ground state is an
arbitrary superposition of |T = 1, T1 = ±1, 0〉. In contrast to

5
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Figure 2. The dependence of order parameters for the two modes
versus μ/U for a small nonzero θ in the ferromagnetic regime with
J/U = 0.625 × 10−1, P/U = −0.926 × 10−2 and
δ/U = 0.327 × 10−2. The solid line denotes ψ� while the dashed
line refers to ψ0.

the spin-1/2 case of the n = 1 Mott phase, now squeezed spin
state (SSS), where all particles are entangled, can be found in
the ground-state family.

When we analyse ferromagnetic regime by calculating
the concurrence in light of the discussion in section 4.1, it
is found to be zero for all μ/U values except those for the
n = 2 Mott phase. In this case, the ground state is an arbitrary
superposition of two degenerate maximally entangled states,
with the concurrence for each state being equal to one. But the
concurrence for the ground-state manifold mentioned above
becomes C(|g〉) = [1 − (1/2) sin2(2x) cos(2y)]1/2, which is
larger than zero for some values of x and y. And this indicates
the possibility of pairwise entanglement for certain ground
states.

Now we look at the situation when θ takes a small but
nonzero value. In this case the relations J0 ≈ J� = J,U0 ≈
U� = U and K = U + P remain valid. However, the
parameter δ becomes nonzero, due to the splitting between
the two ground-state modes: σ = 0 and σ = �. This causes
the dependence of the order parameters on μ/U to change as
illustrated in figure 2. Note the difference between the order
parameters for the two modes.

For the general case with θ �= 0, performing minimization
over the axis rotations shows that the optimal squeezing occurs
for the unrotated coordinate axes. By examining the spin
squeezing parameter as a function of μ/U numerically, we
find that particles are not entangled in the superfluid regime.
We thus look for particle entanglement in the Mott phases.

With a small θ , the degeneracy in the ground states in the
Mott phase is removed. In the n = 1 Mott phase, the ground
state becomes |g〉 = |n0 = 1, nλ = 0〉. For this state, the mean
spin is along the direction of the axis-3 with 〈T3〉 = 1/2 and
T1,2 = 0. The spin fluctuations are given by

〈
�T 2

1,2

〉 = 1/4
and

〈
�T 2

3

〉 = 0. Employing a rotation by φ about the axis-3,
we find that ξ 2

1′,2′ = 1, i.e., the ground state is a CSS.
For the n = 2 Mott phase, we have a non-degenerate

ground state of the form |g〉 = a|02〉 + b|20〉 [8] with

0 0.5 1 1.5 2 2.5 3
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Figure 3. The dependence of the order parameters on the values of
μ/U for θ = 0 in the antiferromagnetic regime with
J/U = 0.455 × 10−1 and P/U = 0.926 × 10−2. The nonzero
valued order parameters indicate superfluid phases for the
corresponding components.

a =
{

1

2

[
1 − �U − 2δ√

(�U − 2δ)2 + 4P 2

]}1/2

, (12)

b =
{

1

2

[
1 +

�U − 2δ√
(�U − 2δ)2 + 4P 2

]}1/2

. (13)

For such a state, as in the n = 1 Mott phase, the mean spin is
pointed along the axis-3 with 〈T1,2〉 = 0 and 〈T3〉 = b2 − a2.
Their corresponding fluctuations are found to be

〈
�T 2

1

〉 =
(a+b)2/2,

〈
�T 2

2

〉 = (a−b)2/2, and
〈
�T 2

3

〉 = 1−(b2−a2)2. To
determine the optimum noise reduction and spin squeezing, we
minimize over rotations about the mean spin (axis-3) direction
by an angle φ. It is sufficient to consider either one of the
rotated 1′ or 2′ axes so that a single rotation angle-dependent
spin squeezing parameter ξ 2

φ can be found as

ξ 2
φ = 1 + 2ab cos 2φ

(b2 − a2)2
. (14)

Its minimum occurs at φ = ±π/2 such that ξ 2
±π/2 =

(1 − 2ab)/(b2 − a2)2. Assuming a small δ/P , we find
ξ 2
±π/2 ∼ 1/2 + O((δ/P )2), in agreement with numerical

calculation reported in figure 2. Thus, the ground state is
particle entangled and spin squeezed.

We again calculate the concurrence values for the phases
under consideration. It becomes zero everywhere except n = 2
Mott phase. In this situation C(|g〉) = 2|ab| and for small
δ/P values C(|g〉) ∼ 1 − O((δ/P )2). So that the results are
in complete agreement with those of the squeezing parameter.

4.3. Antiferromagnetic regime

In this case, the atomic interaction parameter P is positive. In
figure 3, the order parameters are plotted as a function of μ/U

at θ = 0.
Similar to the ferromagnetic regime, we first test the

existence of spin squeezing for θ = 0. The corresponding
minimum squeezing parameter, ξ 2

2 for the fixed axes is shown

6



J. Phys. B: At. Mol. Opt. Phys. 42 (2009) 145505 B Öztop et al
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Figure 4. The minimum squeezing parameter ξ 2
2 for the fixed axes

configuration in the antiferromagnetic regime with θ = 0, J/U =
0.455 × 10−1 and P/U = 0.926 × 10−2. ξ 2

2 < 1 denotes spin
squeezing for the axis-2.

in figure 4. In contrast to the ferromagnetic case, squeezing
is observed for the superfluid phase as well. In numerical
calculations, we also rotate the coordinate system to see
whether correlations can be enhanced for some angles. The
optimum squeezing is found to occur for the fixed axes
configurations.

In the n = 1 Mott phase, the ground state is a coherent
superposition of |10〉 and |01〉, which identifies a manifold
of any pure state for spin-1/2. The only difference is the
quantization axis; it lies along the axis-2, instead of axis-
1. Hence our conclusions for the ferromagnetic case remain
applicable. The ground-state family is a general CSS and
exhibits no squeezing, although mode entanglement can be
present.

The n = 2 Mott-insulator state in the antiferromagnetic
case, however, is significantly different from the ferromagnetic
case considered earlier. It is no longer degenerate as before,
and becomes uniquely determined as

|g〉 = 1√
2
(|20〉 + |02〉), (15)

instead. For this special superposition state, the mean isospin
vector becomes zero, with 〈T1,2,3〉 = 0. Spin fluctuations
are found to be

〈
�T 2

1,3

〉 = 1 and
〈
�T 2

2

〉 = 0. Given in
the second quantization form and in the occupation number
representation, the mean number of particles in each mode
(0,�) is 1 and the state is mode entangled. In the first
quantization, denoting single-particle wavefunctions as �iσ

for particles i = 1, 2 in modes σ = 0,�, |g〉 is found to
become |g〉 = (1/

√
2)(�10�20 + �1��2�). This state has

maximum quantum correlation among the particles and can be
identified as a MES [31].

In order to compare the results measured in terms of the
calculated concurrence, we show in figure 5 the dependence
of concurrence as a function of μ/U .

The presence of particle entanglement in the superfluid
phase is reflected by the nonzero values of concurrence for
the corresponding μ/U values as shown in figure 5. Having
a concurrence of one in the n = 2 Mott phase corresponds to
the presence of a maximally entangled ground state.
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Figure 5. Concurrence versus μ/U in the antiferromagnetic regime
with θ = 0. The presence of pairwise entanglement is assured if the
value of concurrence becomes larger than zero.
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Figure 6. The order parameter ψ0 for the antiferromagnetic regime
at a small θ with J/U = 0.455 × 10−1, P/U = 0.926 × 10−2 and
δ/U = 0.327 × 10−2. ψ� = 0 for these values of interaction
parameters.

As was done previously for the ferromagnetic case, a
small nonzero θ value can be introduced and the system
parameters are changed accordingly. The corresponding graph
for the order parameters as functions of μ/U are shown in
figure 6.

Following the earlier procedure, the minimum squeezing
parameter ξ 2

2 is also plotted against μ/U , with the optimized
values, corresponding to the fixed coordinate system shown in
figure 7.

As in the case of θ = 0, spin squeezing is found to exist
for the superfluid phase almost with the same strength. On the
other hand, although spin squeezing is detected in the n = 2
Mott phase, it is reduced with a nonzero θ . The corresponding
ground state for the n = 2 Mott phase is the same as in the
ferromagnetic case. The MES of the θ = 0 case for the
antiferromagnetic interaction becomes a partially entangled
state when a small nonzero θ is introduced.

The results from the calculated concurrence as shown
in figure 8 are in complete agreement with those from the
squeezing parameter. Squeezing is present in the superfluid
phase and the maximal entanglement in the n = 2 Mott phase
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Figure 7. The minimum squeezing parameter ξ 2
2 in the

antiferromagnetic regime at a small θ in the fixed coordinate system
with J/U = 0.455 × 10−1, P/U = 0.926 × 10−2 and
δ/U = 0.327 × 10−2.
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Figure 8. Concurrence at a small but nonzero θ in the
antiferromagnetic regime. It is seen that part of the superfluid phase
contains entangled particles.

becomes partially entangled with the introduction of a small
but nonzero θ .

5. Conclusion

In summary, we have investigated quantum correlations
between spin-1 bosons with coupled ground states in
optical lattices. Both ferromagnetic and antiferromagnetic
interactions are considered based on a model, initially
developed in [8], that we believe can readily be adopted to
current experimental systems. In addition to characterizing
quantum correlations in various quantum phases in terms of
coherent and squeezed spin states, and addressing both particle
and mode entanglement, the role of lattice parameter in the
familiar lin-θ -lin configuration is examined.

We have shown that for ferromagnetic interactions isospin
squeezing (or multi-particle entanglement) is absent in the
lattice model of spin-1 bosons in the superfluid phase. The
one-particle Mott phase is in fact in a CSS, which is not particle

entangled, although it displays significant mode entanglement.
The two-particle Mott state may contain SSS and entangled
particles, if one of the degenerate components in the ground
state manifold is made to dominant. It can be steered into a
particle entangled state by introducing a nonzero θ to lift the
degeneracy, while the CSS of the n = 1 Mott phase or the
superfluid phase remains unentangled. The path to quantum
entanglement is through the well-known single-axis twisting-
type nonlinear interaction [19] for the degenerate (θ = 0)

case. With a nonzero θ , quantum entanglement is generated
from a generalized LMG interaction, which includes a two-
axis twisting type of spin–spin nonlinear interaction.

For antiferromagnetic interactions, spin squeezing and
particle entanglement are found in both the n = 2 Mott and
superfluid phases. In the n = 2 Mott state we find maximally
entangled particles. Introducing a nonzero θ reduces this
to a partially entangled state, and thus decreases particle
correlations.

We compared the results of the squeezing parameter (7)
with those of the concurrence (10) for each type of interaction
and lattice configuration. They are in complete agreement in
demonstrating the presence or absence of entanglement for the
different phases.

For the system under consideration, we have
investigated the potential ground states and the corresponding
quantum correlations via examining entanglement/squeezing
properties. Depending on the interaction parameters of
the system, abrupt changes may occur if one considers the
behaviour of entanglement properties. One can introduce
symmetry-breaking perturbations to the Hamiltonian (5) to
remove the degeneracy present in the various ground states.
This can be done via including magnetic fields and Raman
pulses with which adjustments to the ground-state populations
in any particular spin components can be made [33]. As
a specific example, generation of a coherent superposition of
degenerate states (in this case Zeeman sublevels MF = ±1) by
stimulated Raman adiabatic passage scheme is demonstrated
experimentally in [34].
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