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Abstract—Automatic mapping and monitoring of agricultural
landscapes using remotely sensed imagery has been an important
research problem. This paper describes our work on developing
automatic methods for the detection of target landscape features
in very high spatial resolution images. The target objects of in-
terest consist of linear strips of woody vegetation that include
hedgerows and riparian vegetation that are important elements of
the landscape ecology and biodiversity. The proposed framework
exploits the spectral, textural, and shape properties of objects
using hierarchical feature extraction and decision-making steps.
First, a multifeature and multiscale strategy is used to be able
to cover different characteristics of these objects in a wide range
of landscapes. Discriminant functions trained on combinations of
spectral and textural features are used to select the pixels that may
belong to candidate objects. Then, a shape analysis step employs
morphological top-hat transforms to locate the woody vegetation
areas that fall within the width limits of an acceptable object,
and a skeletonization and iterative least-squares fitting procedure
quantifies the linearity of the objects using the uniformity of the
estimated radii along the skeleton points. Extensive experiments
using QuickBird imagery from three European Union member
states show that the proposed algorithms provide good localization
of the target objects in a wide range of landscapes with very
different characteristics.

Index Terms—Linear object detection, multiscale texture
analysis, object-based performance evaluation, shape analysis.

I. INTRODUCTION

AMONG all economic sectors, agriculture is by far the
largest land user and is increasingly being seen as a

potential major steward of our global ecosystem, which adds
an important dimension to its traditional production goals.
The European Union (EU), upon gradually transforming its
Common Agricultural Policy (CAP) toward a more liberalized
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system, has built into the CAP a number of environmental
safeguards aiming at avoiding negative impacts of deregulation,
as well as reducing the current environmental impact of the
sector. The detailed definition of these safeguards, so-called
Good Agricultural and Environmental Conditions (GAECs),
part of cross-compliance standards to be respected by farmers
claiming subsidies, are set by the EU member states. Some
member states have defined rules obliging farmers to play
an active role in landscape and habitat maintenance, like the
maintenance of hedgerows and riparian vegetation belonging
to the farm property that constitute an important element of
the landscape’s ecological infrastructure. Adoption of such
standards and regulations at regional, national, and international
levels require active monitoring of their enforcement.

Remote sensing has long been acknowledged as an important
tool for planning and monitoring of land cover/use. Develop-
ment of automatic and robust methods has become an important
research problem when the analysis goes beyond local sites
to cover a wide range of landscapes in national and even
international levels. Such methods are also paramount when
monitoring change over time. In order for remote sensing to
allow for the efficient enforcement monitoring of the aforemen-
tioned regulations, the goal of this paper is to develop automatic
methods for detailed mapping of target landscape features in
very high spatial resolution images.

The target objects of interest in this paper are linear strips
of woody vegetation separating agricultural fields with exam-
ples shown in Fig. 1. These objects include hedges/hedgerows
defined as a row of bushes or trees planted closely to form
a boundary between pieces of land or at the sides of a road,
and riparian vegetation defined as a narrow zone with woody
plant communities along river or stream margins, bordered
on the other side by agricultural land [2]. They are impor-
tant biological and ecological components of the environment
where they serve many functions including providing field
boundaries, animal habitats, windbreaks, erosion control, and
contributing to landscape ecology and biodiversity [3], [4]. In
the EU, several member states have, as of 2007, explicitly
included the maintenance of such landscape features among
their GAEC standards. These include Cyprus, Czech Republic,
France, Germany, Luxembourg, and the U.K. (see [5] for the
U.K.). However, none of the corresponding control authorities
dispose as yet of an efficient monitoring tool.

Classification of land cover has traditionally been performed
using pixel-level processing with mainly statistical tools in a
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Fig. 1. Example QuickBird images (pan-sharpened visible bands) containing
linear strips of woody vegetation marked with a yellow boundary by an
expert. Linearity of their shape and woodiness of their texture distinguish these
structures from the rest of the image. Linearity is defined here as a piecewise
elongation along the major axis while having an approximately constant width,
not necessarily in the strict sense of a perfectly straight line. Woody vegetation
consists of trees and bushes. Note that other linear but nonwoody structures
and woody vegetation areas that are not linear are not marked. (Raster images
in this paper are 1000 × 1000 pixels in size corresponding to 600 × 600 m.)
(a) Germany. (b) Czech Republic. (c) Cyprus. (d) Germany. (e) Czech Republic.
(f) Cyprus.

multiclass setting. These multiclass classifiers need example
patterns for each class to estimate decision boundaries in the
feature space during training. However, in real world classifi-
cation problems, sampling a sufficient number of training data
from each of the classes is not always possible. Since these
classifiers require complete descriptions of all classes, they
may not generalize well with a sufficiently high accuracy for
a large number of classes, particularly when some of them
have large variations in appearance. Therefore, delineation of
individual trees or tree groups is not necessarily very accurate
when the goal is to classify the whole land cover. Generic
object-based classification is also not suitable here because a
holistic analysis requires an image-wide prior segmentation, but
accurate segmentation of very high spatial resolution images
is still a very hard problem [6]. Furthermore, detailed a priori
information about the shapes of the objects of interest cannot be
easily incorporated into the classification process in a multiclass
setting.

Alternatively, one can set up the problem as the detection
of single predefined objects where the methods concentrate on
specific properties of these objects. An example for such detec-
tion is the identification of vegetation by thresholding specific
spectral features such as the normalized difference vegetation
index (NDVI), soil-adjusted vegetation index, or atmospheric
resistant vegetation index [7], [8]. However, these indices con-
sider only the spectral properties of individual pixels, and do
not take into account spatial and contextual information.

Another method that is widely used for detecting predefined
objects is template matching. Templates are often defined man-
ually or are learned from examples provided by the user, and
detection is performed by moving the template over the image
and evaluating the match at each location using a similarity

measure such as correlation [9]. However, these templates are
often fixed in terms of size, shape, and intensity, and cause the
detection algorithm to have problems regarding invariance to
scale, rotation, and illumination.

Quackenbush [9] published a review of techniques for linear
feature detection in images. Popular techniques include math-
ematical morphology, Hough transform, multiresolution edge
detection, template matching, dynamic programming for edge
linking, and rule-based classification. Such techniques have
been applied to the extraction of roads [10], buildings [11], and
water channels [12]. However, they are not directly applicable
to the detection of linear strips of woody vegetation because
they assume the existence of collinear and parallel line seg-
ments that constitute pairs of edges forming object boundaries,
whereas the textured agricultural regions often produce many
small line segments both within and along the boundaries, and
edges that can be detected along the boundaries of vegetation
regions also show many irregularities. Furthermore, rural linear
features such as hedgerows and riparian vegetation often exhibit
directional variation according to whether they follow natural
boundaries such as streams and rivers or human-made linear
objects such as roads, or they have been planted as separators
between agricultural fields [13].

Several studies for the analysis of hedgerows have been pub-
lished in the literature. Most of these studies concentrate on the
functional categorization of hedgerows and their development
in time where the mapping is already known or is done by man-
ual photointerpretation [3], [14]. As an example for automatic
detection, Lennon et al. [15] used a fuzzy combination of a
vegetation index, a linearity feature based on image gradient,
and cooccurrence texture features for data obtained from an
airborne hyperspectral sensor. However, no experiments were
presented so the accuracy of the aforementioned method is
unknown. Thornton et al. [4] used a resolution enhancement
algorithm for subpixel mapping of linear thin structures such
as hedgerows with 1–3-m width in 10-m Spot images. The
technique was illustrated on a small image that contained a
single hedgerow. More recently, Vannier and Hubert-Moy [16]
compared the usefulness of an orthophotoplan, a Spot 5 image,
an Aster image, and a Landsat image for detecting hedgerows.
The eCognition software was used for segmenting each image
by adjusting the parameters such as object size, color homo-
geneity, shape, smoothness, and compactness individually so
that segmentations were obtained at three scales corresponding
to tree, hedge, and field levels. Different spectral features and
fuzzy membership functions were used to classify the resulting
objects. Tansey et al. used a similar approach in [17]. However,
the need for individually adjusting many different parameter
values for multiscale segmentation and classification for each
image may limit the general applicability of this method.

The detailed content of very high resolution imagery and the
large spatial coverage of such data sets require the develop-
ment of new techniques for detection of individual predefined
objects. Our main contributions toward the detection of linear
strips of woody vegetation (called hedges in the rest of this
paper) as the target objects of interest are twofold. The first
is a framework that exploits the spectral, textural, and object
shape information using hierarchical feature extraction and
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decision-making steps. First, pixel-based spectral and multi-
scale textural features are extracted from the input panchro-
matic and multispectral data. Then, discriminant functions
trained on combinations of these features are used to select
the pixels that may belong to targets of interest, and con-
nected components analysis on these pixels is used to obtain
the candidate objects (woody vegetation). A multifeature and
multiscale strategy was used to be able to cover different
textural characteristics generated by individual trees and their
different groupings and appearances in a wide range of sites.
Shackelford and Davis [18] also showed the effectiveness
of a multifeature hierarchical strategy in the classification of
high-resolution images where the spectral bands were initially
used to split the data into grass-tree, road-building, water-
shadow, and bare soil classes, and then the entropy texture
feature was used for further separation of grass-tree whereas
the length–width feature was used for road-building and water-
shadow classes.

Our second main contribution is a novel algorithm that can
identify the linear structures within the candidate areas, and
can even separate the target objects of interest from other
tree groups. This algorithm involves morphological top-hat
transforms to locate the woody vegetation areas that fall within
the width limits of an acceptable hedge, and a skeletonization
and iterative least-squares fitting procedure that quantifies the
linearity of the objects using the uniformity of the estimated
radii along the skeleton points. The width and length criteria
of structures can easily be adjusted according to landscape
characteristics thereby also allowing for the separate detection
of different object classes or class instances. The parts of the
candidate objects that pass these tests are labeled as detected
targets (hedges). This shape model is generic enough such that
it can be adapted to the detection of other linear object classes
with natural boundaries instead of strictly straight boundaries
(e.g., rivers, roads, and paths that are bordering natural land
cover classes). Extensive experiments using QuickBird imagery
from three European sites with different characteristics show
that the proposed algorithms provide good localization of the
target objects in different landscapes.

The rest of this paper is organized as follows. The study
sites and the corresponding data are described in Section II.
Pixel-based spectral and textural feature extraction is presented
in Section III. Identification of woody vegetation areas as
candidate objects is discussed in Section IV. Object-based
shape feature extraction for the quantification of the linearity of
these objects and the final decision for target detection based
on the extracted shape features are described in Section V.
Experiments using ground truth data and the details of the
object-based quantitative performance measures are presented
in Section VI. Finally, conclusions are given in Section VII.

II. STUDY SITES AND DATA

The annual control with remote sensing (CWRS) program of
the EU CAP is among the world’s largest civil programs where
remote sensing data are employed on a regular basis. It is note-
worthy that, to date, very high spatial resolution (VHR) imagery
accounts for more than half of the CWRS budget for remote

sensing data acquisition. IKONOS and QuickBird are by far the
most used VHR sensors in the CWRS program. Panchromatic
and pan-sharpened QuickBird-2 sensor data with 60-cm spatial
resolution were employed in this paper, considered to better
represent characteristics of near future VHR satellite imagery.
The data used were from three EU member states with a hedge
conservation GAEC standard.

Performance evaluation was done using 33 subscenes, each
with size 1000 × 1000 pixels, cut from three QuickBird images
of Baden-Württemberg, Germany; Decin, Czech Republic; and
Paphos, Cyprus (11 subscenes were used from each image).
These sites were chosen to collect a diverse sample of hedges
with different characteristics. The Baden-Württemberg site is
a rolling agricultural landscape typical of large parts of the
temperate EU, with large clumps of variably sized agricul-
tural parcels intersticed with medium and large forest patches.
Hedges are nearly exclusively parcel separations. Pasture domi-
nated Decin site hedges are much larger on average and riparian
vegetation is more frequent. Paphos site represents a rather
extreme situation of thin hedges in a very fragmented environ-
ment containing many other small linear features. Examples are
shown in Fig. 1. The sites are referred to as Baden, Decin, and
Paphos, respectively, in the rest of this paper.

III. FEATURE EXTRACTION

Spectral features can be used to distinguish green vegetation
from the rest of the image. Texture features are useful for iden-
tifying areas that have similar spectral responses but different
spatial structures. An important consideration in this paper was
that the desired features not only could describe image windows
but were also able to localize the structures of interest within
these windows. Even though features that are based on first-
order statistics (e.g., mean, variance, skewness) and second-
order statistics (e.g., cooccurrence features) of spectral values
have been shown to be effective in characterizing texture in rec-
tangular image windows, they were not suitable for the problem
in this paper because they could not necessarily localize specific
structures within these windows.

We observed that two different types of textural char-
acteristics were important: the arrangements of individual
trees and the appearance of linear structures with respect to
their surroundings. Therefore, multiscale texture features were
considered.

A. NDVI

The NDVI [8] is a simple but powerful measure for iden-
tifying photosynthetically active vegetation. NDVI, computed
from the pan-sharpened multispectral data, was used to separate
green vegetation from the rest of the land cover. We observed
that, although it might not distinguish hedges from other types
of vegetation, it was useful for eliminating linear human-made
structures that could cause false alarms in the decision process.

B. Gabor Features

Gabor features have been very popular in the texture analy-
sis literature due to their good localization abilities in both
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Fig. 2. Example features for some of the images shown in Fig. 1. Each row shows the features for one image. Feature values are scaled for better
visualization. (a), (g), (m) Multispectral. (b), (h), (n) NDVI. (c), (i), (o) Gabor—scale 1. (d), (j), (p) Gabor—scale 6. (e), (k), (q) Granulometry—closing 1.
(f), (l), (r) Granulometry—opening 5.

spatial and frequency domains with flexibility for multiscale
and multiorientation tunability. Gabor features were extracted
by applying a bank of scale and orientation selective filters
[19] to the panchromatic band. In particular, six scales and six
orientations were used with a resulting set of 36 bands. The
scales used were designed to include both the fine texture of
individual trees within a hedge and the coarse texture of hedges
among agricultural fields. To obtain rotation invariance, the
responses for all filters with different orientations at a given
scale were combined using the pixelwise “max” operator.

C. Granulometry Features

The concept of granulometry is based on the notion of
sieving a sample with increasing sieve sizes so that increasing
number of grains fall through the sieve. The measured mass for
each sieve size creates a size distribution, also called the pattern
spectrum because its peaks indicate the prevailing sizes of the
structures [20].

The concept of granulometry can be transposed to image
data by morphological opening and closing of the image with
a family of structuring elements with increasing sizes [20].
A granulometry by opening produces information con-
cerning image structures brighter than their neighborhood.
Similarly, granulometry by closing gives information about the
arrangement of structures that appear darker than their neigh-
borhood. Local granulometries can be computed by summing
the pixel values within sliding windows after every opening and
closing operation to represent the size distribution. We com-
puted morphological granulometry features from the panchro-

matic band using opening and closing with disk structuring
elements with radii from 1 to 9 pixels in steps of two. This
resulted in a set of ten features. The scales (structuring element
sizes) were selected by visual examination of the feature results.

Overall, NDVI was extracted from the pan-sharpened mul-
tispectral data as the spectral feature, and Gabor and granu-
lometry features were extracted from the panchromatic data for
modeling texture. Examples are shown in Fig. 2.

IV. IDENTIFICATION OF CANDIDATE OBJECTS

After the features are extracted, the next step is to find the
image areas that give high responses to these features so that
they can be considered as candidate objects. We used a two-
step decision process. First, a threshold on NDVI was used to
separate green vegetation from the rest of the land cover. The
threshold was selected so that there was no omission of any
hedge structure. However, we observed that such thresholding
could not distinguish hedges from other types of vegetation and
kept many fields, large groups of trees, and other vegetated ar-
eas in the output. On the other hand, the thresholding eliminated
some linear human-made structures that gave high responses to
the texture features.

Given the obtained vegetation mask, the next step is to iden-
tify candidate objects according to their texture characteristics.
Pixel-based texture modeling was not sufficient for detecting
the linearity of a structure but was capable of modeling its
woodiness. Therefore, we concentrated on the separation of
woody vegetation from the rest of the areas that appeared in
the vegetation mask.
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TABLE I
ACCURACY OF PIXEL-LEVEL CLASSIFICATION FOR WOODY VERSUS

NONWOODY VEGETATION USING DIFFERENT FEATURE COMBINATIONS.
TP: PERCENTAGE OF TRUE POSITIVES. TN: PERCENTAGE OF TRUE

NEGATIVES. AVG: AVERAGE ACCURACY

A. Woody Versus Nonwoody Vegetation Classification

Manual labeling of image areas as woody versus nonwoody
vegetation was used to generate the ground truth for train-
ing and evaluation. A randomly selected subset consisting of
750 000 pixels was used for training and another independent
subset consisting of 375 000 pixels was used for validation.

Different combinations of features were studied, and several
classifiers such as Gaussian maximum likelihood classifier,
mixture of Gaussian classifier, naive Bayes classifier, and linear
Fisher classifier were compared. These classifiers were selected
because of their simplicity as the goal was to use models that
were as simple as possible so that they could be trained with
as few examples as possible. More complex classifiers such
as neural networks or support vector machines were not used
because of the ambiguities in parameter selection and high
computational complexity for large data sets.

We observed that there was no significant difference in the
accuracies of different classifiers, and the Gaussian classifier
performed as good as any other classifier, so the quadratic
Gaussian maximum likelihood classifier was used in the rest
of this paper.

B. Performance Evaluation

We performed an exhaustive study to evaluate the effective-
ness of different feature combinations. The features considered
included four multispectral values, six Gabor features, and ten
granulometry features, resulting in a total of 20 features for each
pixel. Table I shows the classification rates for different com-
binations. Among the features, combining multispectral bands
with texture features performed better than using each type of
features individually. However, comparing the combinations of
a particular set of texture features with multispectral bands did
not show any significant difference among different combina-
tions. In general, we observed that some features performed
better than others but using all features together did not provide
any significant improvement. This suggested that there were
correlation and redundancy among the features and using all
of them did not provide any additional information. Therefore,
we decided to perform feature selection to obtain a good subset
of features.

We used the sequential backward selection algorithm [21]
that is an iterative algorithm that starts with all features and
shrinks down the feature set by, at each iteration, removing
the single worst feature from the set of features obtained in

TABLE II
AVERAGE ACCURACY OF WOODY VERSUS NONWOODY CLASSIFICATION

FOR INDIVIDUAL SITES. THE ROWS CORRESPOND TO TRAINING DATA

SOURCES. THE COLUMNS CORRESPOND TO VALIDATION

DATA SOURCES

the previous iteration. The results showed that feature selection
actually improved the classification accuracy. The best result
(94.83%) was obtained when the original set of 20 features
were reduced to nine features. These features consisted of
all four multispectral values (blue, green, red, near infrared),
two Gabor scales (4 and 6), and three granulometry scales
(closing 1, opening 1, opening 5). The selection process favored
both texture features and multispectral values. Even though the
multispectral values were not sufficient for identifying woody
vegetation on their own, they helped with localization, partic-
ularly at texture boundaries when larger texture scales (larger
filter windows) were used, and helped producing more accurate
boundaries along the objects of interest. We also evaluated
feature reduction using principal components analysis, but this
method did not give good results, as expected, because the
resulting features were not optimal for discrimination.

We also compared the accuracy of woody versus nonwoody
vegetation classification within individual sites. The results
in Table I used the classifier trained with samples collected
from all sites and validated with samples also collected from
all sites. Therefore, these results were a good indicator of
the cross-landscape performance of the classifier on sites with
very different characteristics. We considered six experiments
for four training scenarios for performance on individual
sites:

1) training using samples from all sites and validating using
samples from individual sites;

2) training using samples only from individual sites and
validating using samples only from individual sites (three
scenarios).

The results in Table II showed that site-specific classifiers
could improve the accuracy even further. The most significant
improvement was observed for the Paphos data set. This was
due to the fact that the woody vegetation in the Paphos sites
showed much different scale and texture characteristics than
the vegetation in the Baden and Decin sites, and the classifier
that could capture these characteristics from the site-specific
training data could result in a higher accuracy. The object detec-
tion experiments in Section VI use both the woody vegetation
classifier trained using samples from all sites and the classifiers
trained using site-specific samples.

After the discriminant function identified the pixels that
could belong to targets of interest, connected components la-
beling of these pixels was used to obtain the candidate ob-
jects. Morphological opening and closing operations were used
to eliminate small noise components and to fill small holes.
Example results are shown in Fig. 3.
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Fig. 3. Example results for woody versus nonwoody vegetation classification
after morphological cleaning of the connected components obtained from
the pixel-level classification results. The image areas identified as woody
vegetation are marked as green on the panchromatic image. Note that woody
vegetation can have very different appearances in different sites.

V. DETECTION OF TARGET OBJECTS

After the candidate objects are found, object shape informa-
tion was used so that the objects can be labeled as target or
are rejected. An important observation was that the results of
the connected components labeling in the previous step were
not directly suitable for computing object-level features. The
reasons were twofold: hedges were often connected to other
larger groups of trees, and they often followed natural bound-
aries where they did not necessarily exhibit a perfectly straight
structure. Therefore, commonly used shape features such as
eccentricity, major/minor axes, orientation, and moments were
not good indicators of the linearity of the shapes of these
objects. Hence, an important step was the separation of hedges
from other tree groups and piecewise linearization of the object
regions before extracting the shape features.

The object-based feature extraction process used skeletoniza-
tion as a structural representation of the object shapes, and
morphological filtering and iterative least-squares fitting-based
segment selection to extract the parts of this representation
that might correspond to a hedge. First, the skeleton of the
binary classification map of candidate objects was computed.
The output of this step was the set of points on the skeleton,
and, for each point, the radius of the maximal disk that was
centered at that point and was contained within the binary
shape. However, skeletonization is known to be sensitive to
small intrusions and extrusions so a pruning is often necessary
before further processing. Therefore, we pruned the initial
skeleton by recursively removing all branches that were shorter
than a length threshold until no such branch remained. Example
skeletons are shown in Fig. 4(a) and (d).

Further pruning of the candidate objects was done using
morphological filtering to find the objects that fall within the
shape limits of an acceptable hedge. Given two thresholds
that specified the maximum and minimum acceptable width
of a hedge, first, a disk structuring element Smax -width with
diameter slightly larger than the first threshold and another disk

Fig. 4. Example results for object-based feature extraction. The first column
shows initial skeletons overlayed on the woody classification maps. The second
column shows the parts that remained after morphological top-hat filtering.
The third column shows the objects corresponding to the final set of segments
selected as linear using the least-squares fitting procedure.

structuring element Smin -width with diameter slightly smaller
than the second threshold were constructed. Then, potential
hedges were extracted from the set of candidate objects using
consecutive application of top-hat transforms and conditional
dilations. The morphological top-hat transform was computed
as the difference between the candidate object image I and its
opening with a particular structuring element S as

TH(I, S ) = I − (I ◦ S). (1)

Hence, it removed the image structures that could contain
the structuring element used. In particular, the first top-hat
transform was computed using the larger structuring element
and identified the structures that satisfied the maximum width
requirement. The second top-hat transform was computed using
the smaller structuring element and identified the structures that
were narrower than an acceptable hedge. The structures that
were in the result of the first top-hat but not in the result of
the second top-hat were extracted as

I new = TH(I, Smax -width) − TH(I, Smin -width) (2)

as potential hedges, and only the parts of the skeleton that
corresponded to these objects were kept for further analy-
sis. Example results for morphological filtering are shown in
Fig. 4(b) and (e).

The morphological filtering step eliminated the structures
that were too wide or too narrow. This also decreased the com-
putation time by excluding the structures that were not within
the shape limits of an acceptable hedge from further processing.
However, it did not guarantee that the remaining structures
were linear. The next step used iterative least-squares fitting-
based segment selection. First, lists of skeleton points that were
connected to each other and were separated by junctions were
found. The output of this step was a set of linked point lists
representing the objects or segments of objects on the skeleton.
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We assumed that the linearity of a segment could be modeled
by the uniformity of the radii along the skeleton points that
corresponded to the uniformity of the width perpendicular to
the medial axis. This assumption was implemented using a line
fitting procedure that was applied to the radii values as opposed
to the classical application of line fitting to position values. To
quantify linearity, we assumed that each segment could be in
one of three types: increasing in radii, decreasing in radii, or
uniform in radii. The segments whose points had uniform radii
corresponded to linear objects.

For each segment, an incremental line fitting algorithm was
applied. Given a set of n points and their radii r t, t = 1, . . . , n, a
straight line was modeled with the function r = at + b, where a
and bwere the line parameters. The measure of how well a line
fitted a set of n points was computed using the least-squares
error (LSE) criterion

LSE =
n∑

t=1

(at + b− r t)2 (3)

where at + b− r t was the algebraic distance between the t th
point and the line. The line parameters a and b that minimized
(3) were found by taking partial derivatives and solving for the
unknowns as

[
a
b

]
=




n∑
t=1

t2
n∑

t=1
t

n∑
t=1

t
n∑

t=1
1



−1 


n∑

t=1
tr t

n∑
t=1

r t


 . (4)

The incremental line fitting algorithm initialized a subseg-
ment with the first two points in the segment. The algorithm
walked along the segment and fitted a line to runs of points
along this segment. Given a subsegment, a line was fitted to the
points on the subsegment and the next point on the segment.
This point was added to the subsegment if the LSE was less
than a threshold. Otherwise, a new subsegment was started
like the initial subsegment. The subsegment was selected as
corresponding to a linear structure (i.e., having uniform radii)
if the corresponding slope (line parameter a) was close to zero
(i.e., having an absolute value less than a threshold). After
the linear subsegments of the skeleton were obtained, the next
problem was to extract the image objects that corresponded
to these subsegments. This problem was solved by iteratively
thickening each subsegment by constraining the result with
the thickening of the rest of the skeleton and the original
candidate object areas. The resulting area for each subsegment
was recorded as an accepted candidate object. The segment
selection process is shown in Fig. 5.

The final set of shape features consisted of the aspect
(length/width) ratio for each resulting object. The length was
calculated as the number of points on the skeleton of the
corresponding subsegment, and the width was calculated as
the average diameter for the points on the skeleton of the
subsegment. The final decision for accepting a segment as
a target object was done using a threshold on aspect ratio.
Example detection results are shown in Fig. 4(c) and (f).

Fig. 5. Illustration of the iterative least-squares line fitting-based segment
selection process. The first column shows woody classification maps with
one of the skeleton segments overlayed. The second column shows plots of
radii of the points on these segments. The x-axis shows the points (t) and
the y-axis shows the corresponding radii (rt, t = 1, . . . , n). The subsegments
corresponding to the lines found are shown with different colors. The red
subsegments are accepted as linear objects as their slopes are close to zero (i.e.,
having uniform radii).

VI. PERFORMANCE EVALUATION

The overall algorithm for the detection of linear strips of
woody vegetation is summarized in Algorithm 1. Performance
evaluation of woody versus nonwoody classification for the
identification of candidate objects was presented in Section IV.
In this section, we describe the object-based quantitative perfor-
mance measures used for evaluating the accuracy of target de-
tection with respect to different parameter settings, and present
quantitative and qualitative results.

Algorithm 1 Hedge Detection
Perform pixel-level feature extraction
Threshold NDVI {parameter: threshold}
Classify remaining pixels as woody or nonwoody
Eliminate small noise components and compute candidate
object map
Compute skeleton and corresponding radii for candidate
objects
Prune skeleton by removing branches shorter than a
threshold {parameter: length threshold}
Perform top-hat transform and eliminate structures wider
or narrower than an acceptable hedge {parameters:
max-width and min-width values corresponding to
diameters of disk structuring elements}
Find linked point lists (segments) identified by junctions
and end points
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for all skeleton segments do
Perform line fitting and find subsegments that are
linear enough {parameters: least-squares fitting error
threshold and slope threshold}

end for
Find objects corresponding to selected subsegments
for all objects do

Compute aspect (length/width) ratio
Threshold based on aspect ratio {parameter: aspect
threshold}

end for

A. Object-Based Performance Measures

Quantitative evaluation of thematic classification accuracy
has been well studied in the literature using measures such
as error rates computed from confusion matrices or the Kappa
coefficient. However, such measures alone are not always suf-
ficient indicators of the geometric accuracy of object detection
[22]. Methods for assessing the geometric accuracy of image
segmentation algorithms [23] are also available in the literature.
However, the measures that are based on matches between
two complete partitionings of the whole image are not directly
applicable to the problem studied in this paper where the goal
is to detect particular objects, not to partition the whole land
cover. Furthermore, due to the absence of a rigorous definition
of a hedge object and the fact that the delimitation of the
ground truth remains approximate because of the limitations
of the computer-aided photo interpretation (CAPI)-based hedge
detection, some geometric error measures such as the border
(edge) error or the shape error (e.g., eccentricity) [22] are not
always suitable indicators of the performance for this problem.

The object-based performance criteria used in this paper
were adapted from the work of Hoover et al. [24] on the evalua-
tion of range image segmentation algorithms. Hoover et al. [24]
classified every pair of reference and output objects as correct
detections, overdetections, underdetections, missed detections,
or false alarms with respect to a threshold on the amount of
overlap, in terms of the number of pixels, between these objects.
Due to the approximations in the ground truth in this paper, we
performed the evaluation using skeletons. Since the skeleton is
a good indicator of the geometric properties and the shape of
a linear object, the match between a reference object and an
output object was measured in terms of the overlap between
their skeletons where a small dilation of each skeleton was used
as a buffer for computing the overlap. Note that the criteria
below are defined in terms of the overlap between two skeletons
but can as well be computed using overlaps between objects to
evaluate any object detection algorithm.

The input to the evaluation procedure includes:

1) objects in the ground truth: OGT
i , i = 1, . . . , M ;

2) length of the skeletons of OGT
i : LGT

i , i = 1, . . . , M ;
3) objects in the algorithm output: OAO

j , j = 1, . . . , N ;
4) length of the skeletons of OAO

j : LAO
j , j = 1, . . . , N .

First, we construct an M × N table where each entry Cij

corresponds to the length of the overlap between the skeletons
of objects OGT

i and OAO
j . If there is no overlap between the

skeletons of the two objects, Cij = 0. If they share the same
skeleton, Cij = LGT

i = LAO
j . Then, given a threshold T , the

results can be classified into five types of detections.

1) Correct detection: A pair of objects OGT
i and OAO

j is
classified as an instance of correct detection if:
a) Cij ≥ T × LAO

j (at least T percent of the skeleton
of OAO

j overlaps with the skeleton of OGT
i with an

overlap score of f 1 = Cij /L AO
j );

b) Cij ≥ T × LGT
i (at least T percent of the skeleton

of OGT
i overlaps with the skeleton of OAO

j with an
overlap score of f 2 = Cij /L GT

i ).
2) Overdetection: An object OGT

i and a set of objects
OAO

j1
, . . . , OAO

jn
, 2 ≤ n ≤ N , are classified as an instance

of overdetection if:
a) Cijk

≥ T × LAO
jk

, ∀k ∈ {1, . . . , n} (at least T per-
cent of the skeleton of each OAO

jk
overlaps with the

skeleton of OGT
i with a total overlap score of f 1 =∑n

k=1 Cijk
/
∑n

k=1 LAO
jk

);
b)

∑n
k=1 Cijk

≥ T × LGT
i (at least T percent of the

skeleton of OGT
i overlaps with the union of the skele-

tons of OAO
j1

, . . . , OAO
jn

with a total overlap score of
f 2 =

∑n
k=1 Cijk

/L GT
i ).

3) Underdetection: A set of objects OGT
i1

, . . . , OGT
im

, 2 ≤
m ≤ M , and an object OAO

j are classified as an instance
of underdetection if:
a)

∑m
k=1 Cikj ≥ T × LAO

j (at least T percent of the
skeleton of OAO

j overlaps with the union of the skele-
tons of OGT

i1
, . . . , OGT

im
with a total overlap score of

f 1 =
∑m

k=1 Cikj /L AO
j );

b) Cikj ≥ T × LGT
ik

, ∀k ∈ {1, . . . , m} (at least T per-
cent of the skeleton of each OGT

ik
overlaps with the

skeleton of OAO
j with a total overlap score of f 2 =∑m

k=1 Cikj /
∑m

k=1 LGT
ik

).
4) Missed detection: An object OGT

i that is not in any
instance of correct detection, overdetection, or underde-
tection is classified as missed detection.

5) False alarm: An object OAO
j that is not in any instance

of correct detection, overdetection, or underdetection is
classified as false alarm.

Although these definitions result in a classification for every
object in the ground truth and the algorithm output, these
classifications may not be unique for T < 1.0 as discussed in
[24]. However, for 0.5 < T < 1.0, any object can contribute to
at most three classifications (at most one correct detection, one
overdetection, and one underdetection). If an object is included
only in a single classification instance (of correct detection,
overdetection, or underdetection), that instance is used as its
unique classification. When an object participates in two or
three classification instances, the instance with the highest
score is selected for that object. The score for a classification
instance is computed as the average of the two overlap scores
((f 1 + f 2)/ 2) in the corresponding definition. For equal scores,
we bias toward selecting correct detection, then overdetection,
and finally underdetection. An overlap threshold of T = 0.6
was used in the experiments in this paper.
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Precision and recall have been commonly used in the lit-
erature to measure how well the detected objects correspond
to the ground truth objects [6]. Recall can be interpreted as
the number of true positive objects detected by the algorithm,
while precision evaluates the tendency of the algorithm for false
positives. Once all reference and output objects are classified
into instances of correct detections, overdetections, underdetec-
tions, missed detections, or false alarms, precision and recall are
computed as

precision =
# of correctly detected objects

# of all detected objects

=
N − F A

N
(5)

recall =
# of correctly detected objects

# of all objects in the ground truth

=
M − MD

M
(6)

where FA and MD are the number of false alarms and missed
detections, respectively. Finally, the Fβ measure that provides
a way of combining precision and recall into a single measure
that falls between the two is computed as

Fβ =
(� 2 + 1) × precision × recall

� 2 × precision + recall
. (7)

The Fβ measure attaches � times as much importance to recall
as precision. The F2 measure (� = 2) was used in the exper-
iments below to rank the performances of different parameter
settings.

B. Results and Discussion

The object-based performance criteria described above were
used to evaluate the cross-landscape and site-specific perfor-
mances of the woody vegetation classifier and the shape-based
target detection algorithm with respect to different parameter
settings. Similar to Section IV, four training scenarios were
considered:

1) training the woody vegetation classifier and parameter
selection for the shape-based target detection algorithm
using samples from all sites;

2) training the woody vegetation classifier and parame-
ter selection for the shape-based target detection algo-
rithm using samples only from individual sites (three
scenarios).

The woody vegetation classifiers used were the ones described
in Section IV and evaluated in Tables I and II. Note that the
shape-based target detection step did not need any training, and
was the same for all scenarios.

We considered three different values for each of the length
threshold for pruning the skeleton, the max-width parameter for
the top-hat transform, the least-squares fitting error threshold,
the slope threshold, and the aspect threshold. These values are
shown in Table III. These settings corresponded to 4 × 35 =
972 parameter combinations for four scenarios. The NDVI
threshold was fixed at 0.3 and the min-width parameter for the

TABLE III
PARAMETER SETTINGS USED IN THE TARGET DETECTION EXPERIMENTS.
THE PARAMETERS ARE DESCRIBED IN ALGORITHM 1 AND IN THE TEXT

top-hat transform was fixed at 5 pixels (corresponding to 3 m at
60-cm spatial resolution).

Table IV summarizes the parameter settings that obtained the
best performance among all combinations. When all parameter
combinations were considered, the following conclusions can
be derived.

1) The site-specific training and parameter selection resulted
in higher overall accuracies than the case where samples
from all sites were used together. The former achieved an
overall precision of 0.3523 and an overall recall of 0.5869
(the average of the last three rows in Table IV) compared
to the 0.3212 precision and 0.5812 recall of the latter
(the first row of Table IV). This was an expected result
as site-specific training of the woody vegetation classifier
also performed better in the experiments in Section IV.
However, the cross-landscape performance of the latter
can also be considered acceptable, given the complexity
of the targets of interest in different landscapes.

2) When the performances for individual sites were consid-
ered, site-specific training and parameter selection signif-
icantly improved the accuracy for Paphos sites (15.47%
increase in the F2 measure) but caused a slight decrease
in the accuracies for Baden and Decin sites (1.26% and
3.75% decrease, respectively, in the F2 measure). The
improved accuracy for Paphos can be attributed to better
training and parameter selection for this data set’s hedges
with much different characteristics than the hedges in
other data sets. On the other hand, the hedges in the Baden
and Decin sites were more similar to each other so they
benefited from joint training when samples from all sites
were used together. For all settings, the Baden and Decin
sites received higher accuracies than the Paphos sites.
This was also expected as the Paphos sites represent a
rather extreme situation of thin hedges in a very frag-
mented environment containing many other small linear
features.

3) The length threshold for pruning the skeleton was se-
lected as 25 for Baden and 50 for Decin and Paphos
when samples from individual sites were used. Since the
boundaries of Baden hedges were typically smoother than
the boundaries of hedges in Decin and Paphos sites, a
length threshold of 25 was sufficient for pruning for the
former. The hedges in Decin sites were typically much
wider than the hedges in other sites so a larger threshold
of 50 was needed for pruning the skeletons and reducing
the false alarms. The Paphos hedges were the most curly
among all so a threshold of 50 was selected for pruning
and smoothing. Furthermore, the Paphos sites contained
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TABLE IV
PARAMETER SETTINGS THAT OBTAINED THE BEST PERFORMANCE AMONG ALL 972 COMBINATIONS. THE TRAINING COLUMN CORRESPONDS TO THE

FOUR TRAINING AND PARAMETER SELECTION SCENARIOS DESCRIBED IN THE TEXT. THE VALIDATION COLUMN CORRESPONDS TO THE SOURCE OF

THE HEDGE OBJECT SAMPLES USED TO COMPUTE THE PERFORMANCE MEASURES IN EACH ROW. TD: TOTAL NUMBER OF OBJECTS IN THE

ALGORITHM OUTPUT. GT: TOTAL NUMBER OF GROUND TRUTH HEDGE OBJECTS IN THE VALIDATION SITES.
THE PARAMETERS AND THE PERFORMANCE MEASURES ARE DEFINED IN THE TEXT

many small and thin structures in the woody vegetation
map so the selected length threshold also helped elimi-
nating some of these false alarms. The length threshold
was selected as 40 as a tradeoff when samples from all
sites were used.

4) The best performing max-width threshold varied among
different sites. The selection of 50, 80, and 100 as the best
parameters for Paphos, Baden, and Decin, respectively,
using samples from individual sites reflected the relative
sizes and the expected width of acceptable hedges speci-
fied by the experts in these sites very well. These values
corresponded to maximum expected width of 30, 48, and
60 m, respectively, at 60-cm spatial resolution. The max-
width value of 80 was selected as a tradeoff when samples
from all sites were used.

5) The best LSE parameter also varied among different sites.
A value of 0.3 was selected for Decin as the hedges in
these sites were the least curly whereas a larger value of
0.5 was needed for Paphos hedges as these hedges had
the most curly boundaries producing a larger variance in
the corresponding width.

6) The best performing slope parameter was selected as 0.2
for all scenarios except the site-specific Paphos case. A
smaller value of 0.1 was needed for the latter to eliminate
the false alarms caused by small segments with highly
curly boundaries.

7) The aspect threshold was selected as 2 for the Decin
hedges and 3 for the Baden and Paphos hedges because
the hedges in the Decin sites were much wider than
the hedges in the others. The aspect threshold of 3 was
preferred for Baden and Paphos to eliminate false alarms
from small segments. The parameter was selected as 2,
which was the least restrictive setting, when samples from
all sites were used.

Example detections are shown in Fig. 6. The visual interpre-
tation of the results showed that recall was actually higher than
what was reported in Table IV. For example, many ground truth
hedges had corresponding detected skeleton segments shown
in Fig. 6(e)–(h). However, some of these were not counted
as correct detections because of the limitations of the 60%
overlap requirement (T = 0.6) between the skeletons. This
requirement could not always be satisfied due to some shifts
in the skeletons because the algorithm output was affected by
the shadows within and on the sides of the woody vegetation

but the ground truth did not include these shadows. Similarly,
precision was also observed to be higher than the values in
Table IV. Due to the absence of a rigorous definition of a hedge
object and the fact that the delimitation of the ground truth
remains approximate because of the limitations of the CAPI-
based hedge detection, the images contained several linear
structures that could be interpreted as woody vegetation but
were not included in the ground truth. This was a particular
problem for the Paphos sites as several objects that appeared in
the algorithm output and could be considered as linear woody
vegetation were counted as false alarms [Fig. 6(g) and (h)].

When the overall detections were considered, the following
sources of error were identified. Some of the missed detections
were caused by the errors during the identification of candidate
objects. The pixel-based classification of woody vegetation
sometimes could not isolate the hedges from the nearby vegeta-
tion, and this caused the following shape-based target detection
step to fail to extract correct shape and structure information
for these hedge objects. Some of the false alarms were caused
by groups of individual but nearby trees in orchards. This was
observed to be a problem in Paphos data when samples from
all sites were used for training, but significantly decreased with
site-specific training as smaller scale texture features gained
more weight in the classifier for these images. Some other
false alarms were caused by groups of trees in residential areas
[Fig. 6(e) and (f)]. We believe that these errors can be reduced
by incorporating a contextual decision step, for example, by re-
quiring a detected object to be neighboring an agricultural field.
Yet, another source of false alarm was the linear vegetation
that did not look woody enough and was not included in the
ground truth. Such linear vegetation structures sometimes gave
high responses to the texture features, and appeared among the
candidate objects that were tested for linearity [Fig. 6(g) and
(h)]. Finally, the difficulty in defining a hedge object and the
associated vagueness in the connectedness of trees in a hedge
structure led to missed detection of several small segments that
could be considered as part of a hedge structure but were not
fully connected to that structure. Using the same thresholds for
all segments rejected some of these short segments. A possible
solution to this problem may be the use of hysteresis threshold-
ing like commonly done in edge detection for not eliminating
short linear segments if they are near long linear segments.
Given the difficulty in the definition of hedge objects and the
large amount of variation in their appearance in different sites,
we can conclude that the proposed framework that exploited
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Fig. 6. Example results for hedge detection. The first row shows the object-level ground truth. The second row shows the segment classification according to
the object-based performance measures. The ground truth objects that are (red) correctly detected, (green) overdetected, (blue) underdetected, and (gray) missed
are shown as regions. The algorithm outputs that correspond to (red) correct detections, (green) overdetections, (blue) underdetections, and (gray) false alarms are
shown as overlayed skeleton segments. The third row shows the detected objects overlayed on the visible bands.

the spectral, textural, and shape information using hierarchical
feature extraction and decision-making steps was successful in
the detection of such objects in a wide range of landscapes.

VII. CONCLUSION

We described a framework for automatic detection of linear
strips of woody vegetation in agricultural landscapes. The
detection of these objects was considered important because
they belong to the farm property that constituted an element
of the landscape’s ecological infrastructure, and the monitoring
of such structures is important for evaluating the environmental
impact of the agriculture sector.

Detection of such specific target objects (hedges) necessi-
tated a multiscale and multifeature strategy as no single fea-
ture could achieve good localization performance individually.
Multiscale texture features could characterize the fine texture
of individual trees as well as the coarse texture of their dif-
ferent groupings. Feature selection experiments showed that
a Gaussian classifier that used a combination of spectral and
textural features could identify the woody vegetation areas as
candidate objects. An important step was a novel modeling

of shape information as the objects of interest were often
connected to other larger groups of trees, and often followed
natural boundaries that did not necessarily exhibit a perfectly
straight structure. The model involved morphological top-hat
transforms to locate the woody vegetation areas that fell within
the width limits of an acceptable hedge, and a skeletonization
and iterative least-squares procedure that quantified the linear-
ity of the objects. The proposed solution was generic enough
for adaption to the detection of other linear object classes
(e.g., rivers, roads, paths) with natural boundaries. Extensive
experiments using QuickBird imagery from three EU member
states showed that the proposed algorithms provided good lo-
calization of the target objects in landscapes with very different
characteristics.
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