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The ratchet regime of unbiased double quantum dots driven out of equilibrium by an independently biased
nearby detector has been theoretically studied using the nonequilibrium Keldysh formalism and the random-
phase approximation for the Coulomb effects. When the detector is suitably biased the energy exchange
between the two systems removes the Coulomb blockade on the double dot via inelastic interdot tunneling. The
energy detuning determines whether the current flows in the same direction as the driving current �positive
flow� or in the opposite direction �electronic counterflow�. In both cases the intradot transitions lead to
negative-differential conductance. Besides the ratchet contribution to the current we also single out a Coulomb
drag component.
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I. INTRODUCTION

Experimental schemes allowing the detection and count-
ing of electrons tunneling through quantum dot systems have
rapidly evolved once their importance to the solid-state spin-
tronics was recognized.1 The inherent charge sensing
effect2,3 allows one to resolve tunneling processes through a
quantum dot by monitoring the current characteristics of a
nearby quantum point contact �QPC�. Besides the “reading”
operation, the Coulomb interaction between the detector and
the measured quantum system mediates more subtle pro-
cesses which together contribute to the so-called “detector
backaction.” For example, a large bias applied on the detec-
tor may induce transitions between the states of the measured
system and alter therefore just the state one tries to “read.”4

The direct �Heisenberg� backaction5 is due to the electron-
electron scattering while the indirect backaction is attributed
to the cross-talk of the two systems via their common
bosonic environment. In two recent experiments Gustavsson
et al.6 and Gasser et al.7 investigated the electronic transi-
tions induced in a double quantum dot by the absorption of
photons or acoustic phonons from the environment whose
properties are changed by currents passing through nearby
QPCs. In a rather similar system Harbusch et al.8 also found
a phonon-mediated QPC backaction. It was pointed out that
the charge fluctuation in the detector are not entirely trans-
mitted to the leads but also directly to the double-dot
system.9

On the other hand the inelastic transitions induced by a
biased detector remove the Coulomb blockade in the system
to which it is coupled. In this case the detector acts rather as
a current amplifier. Such an example is the double-dot quan-
tum �DQD� ratchet considered in the experiment of Khrapai
et al.10 The experiment revealed that a strongly biased QPC
induces a current in the DQD having an internal asymmetry,
even if the elastic tunneling is suppressed. The spatial asym-
metry is due to the detuning of the two QDs which is con-
trolled by gate potentials applied to each dot. It was argued
that a finite current passes the double quantum dot when the
energy absorbed from the detector matches the detuning en-
ergy. Another type of semiconductor ratchet was realized

some time ago by Linke et al.11 �for a review on classical and
quantum ratchets see Ref. 12�.

The electronic transitions induced in quantum-dot systems
by nearby biased detectors were previously studied within
the master-equation approach and mostly in the context of
continuous measurement of a closed qubit by a QPC.13–15

Snyman and Nazarov16 used instead the extended Keldysh
formalism and calculated the qubit transition rate. In a recent
paper the master-equation approach was employed by Ouy-
ang et al.17 in order to compute the detector backaction on
open double quantum dots. The calculation presented in this
work accounts for the interaction effects on interdot transi-
tion absorption and emission rates. However, in the imple-
mented master equation the tunneling rates between the dots
and the leads are noninteracting quantities.18 The model also
assumes single-level quantum dots and therefore the intradot
transitions or Coulomb repulsion are not included.

The aim of this paper is to provide a more involved the-
oretical description of Coulomb-mediated transport in a
double-dot ratchet coupled to a charge detector. In our ap-
proach the various electron-electron interactions are treated
on equal footing and therefore all the tunneling processes are
affected by Coulomb interactions. Following the setup of
Ref. 10 we calculate the current through the double dot for
different detuning configurations over a large range for the
bias applied to the detector.

Our method relies on the random-phase approximation
�RPA� for the Coulomb interaction and on the nonequilib-
rium Keldysh formalism for interacting transport. It was es-
tablished in a previous work19 and used in the study of the
Coulomb drag effect in parallel quantum dots.20

The rest of this paper is organized as follows. We describe
the model and give the relevant equations of transport theory
in Sec. II. The numerical results are discussed in Sec. III
which are followed by concluding remarks in Sec. IV.

II. MODEL AND THEORY

In the present work we use the partitioning approach to
mesoscopic transport.21 The Hamiltonian splits in a part de-
scribing noninteracting and disconnected systems �i.e., DQD,
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detector �D�, leads �L�� and a second term which includes the
coupling to the leads and the Coulomb interaction,

H�t� = HDQD + HD + HL + ��t��HT
DQD + HT

D + HI� . �1�

The switching function ��t� vanishes in the remote past and
reaches a constant value in the long-time limit. The currents
are calculated in the steady-state regime when all transients
and initial correlations are safely neglected. In view of nu-
merical calculations a lattice Hamiltonian will be used. We
shall consider that each quantum dot contains up to two elec-
trons. Although this is still a simple model it captures the
effect of inelastic transitions between the two dots on the
transport properties. The creation/annihilation operators on
the site n of the DQD are denoted by cn

† /cn. By convention
the sites i=1,2 belong to QD1 and i=3,4 to QD2. HDQD then
reads �� , � denotes nearest-neighbor summation�,

HDQD = �
i

�
n�QDi

��n + Vi�cn
†cn + �

�m,n�
�tmncm

† cn + H.c.� ,

�2�

where Vi is a constant added to the onsite energies �n simu-
lating a gate potential applied on QDi and tmn are hopping
constants. The four semi-infinite one-dimensional leads are
characterized by the same hopping constant tL �for simplicity
the on-site energy of the leads, double dot, and detector are
considered to be zero�,

HL = tL�
�

�
j=0

�

�dj�
† dj+1 + H.c.�, � = L,R,l,r , �3�

where dj�
† creates an electron on the jth site of the lead �.

The double dot is connected to the leads L ,R �left, right� and
the detector to l ,r. Each lead is characterized by its chemical
potential, the two biases applied on the DQD and detector
being given by VDQD=�L−�R and VD=�l−�r. The tunnel-
ing Hamiltonian between the leads and the double dot has
the standard form,

HT
DQD = vLc1

†d0L
+ vRc4

†d0R
+ H.c., �4�

where vL,R are hopping constants between the dots and the
nearest sites 0L ,0R of the leads.

The detector is also described as a four-site one-
dimensional chain, its creation and annihilation operators be-
ing denoted by ak

† and ak,

HD = �
�k,k��

�tkk�ak
†ak� + H.c.� . �5�

The tunneling Hamiltonian HT
D is quite similar to HT

DQD given
in Eq. �4� and we therefore omit to write it here. The last
term HI describes the various Coulomb interactions between
electrons localized on different sites from the double dot and
detector,

HI =
1

2 �
m,n�DQD

W0,nmcn
†cncm

† cm + �
n,k=1

4

W0,nkcn
†cnak

†ak

+
1

2 �
k,k��D

4

W0,kk�ak
†akak�

† ak�, �6�

where, for example, W0,nm=U / �rn−rm� is the bare interaction
potential depending on the strength parameter U and on the
positions of the sites n ,m in the double dot.

The currents through the double dot and detector are cal-
culated using contour-ordered Green’s function. After stan-
dard manipulations the current entering the double dot from
the left lead is given by a closed formula,

JDQD =
e

h
	

−2tL

2tL

dE Tr
�LGR�RGA�fL − fR�

− �LGR Im��I
� + 2fL�I

R�GA� , �7�

where the trace stands for the sum over the sites belonging
to the double dot and �L,R are matrices whose single non-
vanishing element is the one associated to the contact sites,
i.e., �mn

L =2	vL
2
�E��m1�n1, �mn

R =2	vR
2
�E��m4�n4. Here


�E�=���E�−2tL��4tL
2 −E2 /2tL is the density of states at the

contact site of the lead. The sign convention for the current is
such that JDQD is positive if electrons flow from the left lead
toward the double dot. The retarded �I

R and lesser �I
� self-

energies are calculated within a random-phase approximation
scheme adapted for nonequilibrium Green’s function �the de-
tails are given in our previous works, Refs. 19 and 20�. It
must be mentioned that the Green’s function and interaction
self-energies are finite rank matrices restricted to sites from
the double dot and detector; they depend on both biases
VDQD and VD. In particular, the imaginary part of the inter-
acting self-energy contains the inelastic Coulomb scattering
processes. The retarded Green’s function is obtained from
the Dyson equation. The occupation numbers for each dot
are derived from the corresponding density of states, the lat-
ter being in turn given by the imaginary part of the lesser
Green’s function,

Ni =
1

2	
�

m�QDi

	
−2tL

2tL

dE Im Gmm
� = 	

−2tL

2tL

dE
i�E� . �8�

We implement numerically the RPA scheme and compute the
interacting self-energies and the Green’s function. These
quantities are subsequently used in Eqs. �7� and �8�.

III. RESULTS

In this section we present numerical simulations of the
electronic transport in our double-dot system. The relevant
parameters to be varied are the bias VD on the detector, the
interdot tunneling which we denote by 
 �i.e., t23= t32=
�,
and the two gate potentials V1,2 applied to each dot. These
potentials are used to control the charge configuration in the
double dot, that is the number of electrons in each dot. Also,
by varying V1,2 one also changes the energy detuning, de-
fined as �see Ref. 10� �=Em+1,n−Em,n+1, where Em,n is the
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ground-state configuration with m electrons in QD1 and n
electrons in QD2. The intradot hopping parameter is denoted
by tD, and the current is given in units of etD /�. The four
intersite hopping parameters in the detector equal tD as well.
The bias VDQD applied on the DQD is very small and fixed,
i.e., �L=0.01, �R=−0.01. The temperature kT=0.001. Also,
for simplicity we consider identical quantum dots.

In Fig. 1�a� we show a set of curves for JDQD simulating
the outcome of a measurement which is easy to perform in
common experimental setup. The gate potential V2 is fixed
such that as long as VD=0 QD2 contains almost two elec-
trons �i.e., the two levels of QD2 are below the chemical
potentials of the leads�. Also, QD1 accommodates one elec-
tron.

The bias on the detector VD is then varied over a large
range for different values of the gate potential V1 applied on
QD1 �V1 varies in the range �0.4,0.8� with an increase step of
0.025�. One can easily identify three transport regimes in
Fig. 1�a�. �i� In the first regime �see the solid line curves� the

bias VD induces a positive current in the double dot. JDQD
first increases with VD then decreases and saturates at larger
values. One notices that a current appears in the DQD only
around VD
0.65. At this value the energy provided by the
detector induces inelastic tunneling of electrons from both
dots to the right lead. Indeed, both occupation numbers de-
crease in this regime �see Figs. 2�b� and 2�c��. Notice that in
the bias range �2.75:3.25�, JDQD decreases when the bias in-
creases. This negative-differential conductance regime ap-
pears when the absorbed energy is spent on intradot transi-
tions. If the energy absorbed from the detector matches the
gaps between the levels of a quantum dot, electrons are ex-
cited on higher levels rather than to the leads or to the nearest
dot. Indeed, one can easily convince himself that both occu-
pation numbers increase in this case. As we have shown in
our previous work on Coulomb drag,20 these intradot transi-
tions compete with the interdot tunneling.

�ii� By further increasing V1 �see the long-dashed curves�
the current enhancement in the double dot reduces and the
sign of JDQD changes over the selected bias range. �iii� Fi-
nally, JDQD takes only negative values �dashed curves�, i.e., it
flows against the driving current.

The mechanism behind each regime is revealed by the
behavior of the occupation numbers N1 ,N2 as functions of V1
and VD shown in Figs. 1�b� and 1�c�. Due to the weak inter-

(a)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0 1 2 3 4 5 6

C
ur

re
nt

(b)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

N
1

(c)

1.4

1.5

1.6

1.7

1.8

1.9

2

0 1 2 3 4 5 6

N
2

Bias

FIG. 1. �Color online� �a� The current through the double dot as
a function of the bias applied on the detector for different values of
V1. There are three transport regimes: positive current—solid line,
mixed—i.e., the sign of JDQD changes long-dashed line, and nega-
tive current—dashed line. ��b� and �c�� The occupation numbers of
the two dots for the same parameters as in �a�. In Fig. 1�c� the
values of V1 are 0.4, 0.6, and 0.8. Other parameters: U=0.15, 

=0.1, vL=vR=0.35, and V2=−1.55.
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FIG. 2. �Color online� �a� The current through the double dot as
a function of the bias applied on the detector for different values of
V2. ��b� and �c�� The occupation numbers of the two dots for the
same parameters as in �a�. Other parameters: U=0.15, 
=0.1, vL

=vR=0.35, and V1=−1.55.
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dot coupling the charge in the second dot is less sensitive to
the variation in V1 �one cannot actually discern the different
transport regimes just by looking at N2�. It however drops
from 1.9 to 1.38 over the bias range. It should be noted that
N1 has a similar behavior as long as it is larger than 0.5 �see
the first four curves in Fig. 1�b� from top to bottom�. As the
potential V1 increases the occupation number of QD1 exhib-
its both qualitative and quantitative changes. While the levels
of QD2 do not essentially depend on V1 the levels of QD1 are
pushed upwards, so the detuning between the dots increases.
We see that in the third regime only a small amount of
charge is localized on QD1 at VD=0, which means that its
lowest level is now above the chemical potential of the leads.
This also means that the detuning E1,1−E0,2 is positive and
electrons inelastically tunnel from the highest level of QD2
to the lowest level of QD1. The scenario is confirmed by the
numerical data, as N1 increases while N2 decreases.

We notice that a negative-differential conductance also
exists in the ratchet regime. More precisely, electron occupy-
ing the lowest level of QD2 can gain enough energy to access
the highest level of QD2 but this does not ensure that they
would also tunnel to QD1 and to the left lead, as this process
requires an energy amount already spent on the intradot tran-
sition. As a consequence the ratchet current decreases. By
further increasing VD �i.e., for VD�3, see Fig. 1� the pro-
cesses leading to the ratchet current are again stimulated and
the occupation number of QD2 decreases again. The ratchet
current increases again and then saturates.

The third regime shown in Fig. 1�a� is therefore charac-
terized by a negative ratchet current through the DQD which
is entirely due to inelastic tunneling between the two dots. In
this case electrons from QD2 can still tunnel from the highest
level to the right lead but the level is more likely fed back
from the same lead so a positive current is unlikely. In con-
trast, an electron that tunneled from QD2 to QD1 escapes
more easily into the left lead because the weak interdot tun-
neling prevents relaxation in QD2.

In the intermediate regime the tunneling processes from
QD2 to QD1 compete with the tunneling from the dots to the
drain lead. When the two contributions �i.e., the positive and
the counterflow currents� compensate each other the current
through the DQD is very small, as can be seen in the first
long-dashed curve in Fig. 1�a�.

Another observation is that the negative ratchet current
emerges at a larger �threshold� value of VD than the positive
current. This happens because in the latter case the minimal
energy electrons need in order to escape into the drain lead is
roughly given by the difference between their energy and the
chemical potential of the drain even if at larger energies they
could as well inelastically tunnel first from QD1 to QD2 and
subsequently to the drain lead.

As the detuning increases the levels of QD1 are pushed
above the bias window and the inelastic processes that lead
to a finite current are the ones from QD2 to QD1. Obviously,
the energy required for these processes increases with V1.

Up to now we have seen that the inelastic interdot tunnel-
ing leads to a negative current through the DQD if the levels
of the left dot are above the chemical potentials of the leads.
In Ref. 10 this configuration corresponds to a positive detun-
ing. What happens in the negative detuning case? We ana-

lyzed this configuration as well by varying V2 in the same
range we previously varied V1; the gate potential on QD1 is
kept at V1=−1.55. In this case QD1 contains almost two elec-
trons when VD=0 while the lowest level of QD2 is below
�L,R so N1
1. This time we find that JDQD is positive over
the entire range of V2.

Figure 2�a� presents current curves for different values of
V2. Although they are quite similar, the occupation numbers
N1,2 depicted in Figs. 2�b� and 2�c� reveal again that there are
different tunneling processes contributing to transport. For
V2=0.4 almost the same amount of charge is expelled from
both dots in a similar way. The inelastic processes leading to
the current are most likely the ones in which electrons tunnel
from both dots to the leads. The setup changes at V2=0.6 and
V2=0.8. As the lowest level of QD2 is shifted above the bias
window �hence its occupation at VD=0 considerably de-
creases� the energy detuning becomes negative �i.e., E2,0
−E1,1�0� and the inelastic interdot tunneling from QD1 to
QD2 activates at suitable values of VD. The comparison of
the occupation numbers reveals some interesting features: �i�
the excess charge of QD2 does not compensate the charge
loss of QD1; �ii� the bias threshold value of N2 increases with
V2, which means that larger energies are needed to populate
the lowest level of QD2.

Actually at V2=2.2 one observes that QD2 occupation is
vanishingly small as long as the bias applied on the detector
VD�3 and only slightly increases at larger values. This
clearly means that the levels of QD2 do not participate in
transport as they are pushed well above the chemical poten-
tials of the leads by the gate potential and the energy ab-
sorbed from the detector is not enough to trigger significant
inelastic tunneling from the lowest level of QD1 to the lowest
level of QD2. Now, in spite of this fact the current through
the DQD is not zero and the occupation number of QD1
decreases when increasing the driving bias. This means that
electrons tunnel from the lowest level of QD1 to the right
lead, without implying the levels of QD2.

These observations suggest that in the negative detuning
case there are two contributions to the current, each one cor-
responding to different tunneling “paths” across the dot. On
one hand electrons from QD1 can absorb energy and leave
the double-dot system to the drain lead without populating
first the lowest level of QD2 The current given by this “di-
rect” process is very similar to the Coulomb drag current in
an unbiased single dot �see Ref. 20� and is not captured in
previous approaches to the ratchet effect �Ref. 17�. Indeed in
the work of Ouyang et al. the Coulomb effects are only
included in the interdot tunneling rates while the dot-
reservoir tunneling rates are noninteracting quantities—this
means that an electron cannot tunnel from QD1 to the right
lead unless it first inelastically tunnels to a higher level of
QD2. As we have said, in our approach all the tunneling
processes captured via the Green’s-function formalism are
affected by the interaction.

On the other hand, if the energy provided by the detector
is large enough electron jump first to the higher level of QD2
and then relax to the right lead. This second contribution
gives a ratchet-type current just as in the positive detuning
case and becomes less important when V2 increases. We find
that JDQD saturates for V2�2. Note also that very little
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charge adds to QD2 in this regime while N1 still considerably
decreases.

Let us point out that in our simulations the interdot cou-
pling parameter 
 is 3.5 times smaller than the coupling be-
tween the leads and the dots vL ,vR. This does not guarantee
that the electronic wave functions are strongly confined in
one dot only. On the other hand in the experiments of Khra-
pai et al. the ratio between the interdot tunneling rate and
lead-dot tunneling rate is 1/400. In this regime the contribu-
tion coming from the direct tunneling could be probably ne-
glected. However, we believe that at the theoretical level it is
important to point out the possibility of this contribution.

In Figs. 3�a� and 3�b� we show the occupation numbers of
QD1 and QD2 as a function of VD for three values of the
interdot coupling 
. The gate potentials V1,2 are chosen such
that the ratchet carries a negative current. We observe that by
increasing the interdot coupling more charge is localized on
QD1 in the absence of the bias VD but QD2 contains less
charge. These changes are due to the shift of QD levels when

 varies. When VD increases the effect of inelastic interdot
transitions is still visible; N1 increases while N2 decreases
but globally there is less charge added on QD1.

Then the ratchet current decreases at larger interdot cou-
plings, as shown in Fig. 3�c� �note that we actually present
JDQD for clarity�. A negative-differential conductance region
is also present in this case; it appears when the energy ab-
sorbed from the driving system is rather spent on transitions

between levels in QD2. Indeed, around VD=2.5 the occupa-
tion number N2 increases with the bias and then the charge
transferred to QD1 decreases. The ratchet current is further
enhanced when VD�3.25; the fact that N2 decreases again
suggests that inelastic tunneling from the lowest level of
QD2 to the lowest level of QD1 becomes active.

Let us now investigate the role of inelastic interdot tran-
sitions to transport in a slightly different manner. Rather than
keeping one of the gate potentials fixed we vary them simul-
taneously. More precisely, we redefine the gate potentials as:
Vi=Vi

�0���V, where Vi
�0� are fixed such that at the lowest

value of �V the charge configuration on the double dot is
�N1=2 , N2=0�.

By varying �V the levels of QD1 shift up while the ones
of QD2 move down. The charge configuration evolves as
follows: �2,0�→ �1,0�→ �1,1�→ �0,1�→ �0,2� �see also
Fig. 4�b��. If the bias applied to the detector is small the two
occupation numbers exhibit a steplike behavior as a function
of �V �not shown�. The transitions between steps correspond
to the removal/addition of one electron from/to the corre-
sponding dot. As expected, JDQD is vanishingly small, the
elastic tunneling being strongly suppressed because the QD
levels are detuned and the interdot tunneling is small. The
inelastic transitions within the DQD become active if a suf-
ficiently large bias �VD
1� is applied to the detector. In Fig.
4�a� we present the current through the double-dot ratchet as
a function of � for three values of VD. Clearly JDQD has a
sawtooth behavior and changes sign more than once.
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FIG. 3. �Color online� ��a� and �b�� The occupations of QD1 and
QD2 as a function of the bias VD at different values of the interdot
coupling 
. �b� The current JDQD through the double dot. Other
parameters: U=0.15, V1=0.7, and V2=−1.55.
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As VD increases the steps of the occupation numbers
soften, as a consequence of the inelastic transitions which
now allow electrons to tunnel out to the leads. The steps are
more affected at large values of VD because the energy ab-
sorbed from the detector increases. One also observes that as
N1 passes through half-integer values JDQD changes sign
�from positive to negative�.

The main point is that electrons from a level of QD1
which is below the chemical potential of the leads can tunnel
into the drain lead without performing a transition to a higher
level of the nearby dot �giving rise to a positive Coulomb
drag current� or via an intermediate tunneling to a higher
level of QD2 �a positive ratchet current�. In this case the
current in the double dot is positive, flowing in the same
direction as the driving current. In contrast, when a level of
QD1 passes above the bias window electrons can access this
level from the lowest level of QD1 �performing an intradot
transition� or from a lower level of QD2. As explained pre-
viously, the relaxation process from QD1 to the left lead is
more favorable so the current is negative, i.e., it flows
against the driving current. We remark that the amplitude of
the negative current is always smaller than the one of the
positive current.

In order to further substantiate the above discussion we
present in Fig. 5 the double-dot density of states for two
values of VD. The selected energy range illustrates the evo-
lution of the double-dot states. The traces with positive
�negative� slope correspond to QD1 �QD2�. The bias applied
on the detector leads to finite density of states above the
chemical potentials of the leads attached to the DQD �we
recall that �L,R= �0.01�. This fact confirms the existence of
inelastic tunneling processes induced by the driving bias VD.
All the results presented here were consistently recovered for
other values of the interaction strength.

IV. CONCLUSIONS

We have studied the steady-state transport properties of a
double quantum-dot system coupled capacitively to a charge
detector. The Keldysh formalism and the random-phase ap-
proximation of the Coulomb effects provide a reliable de-
scription of the correlated transport. A current passing
through the independently biased detector drives a current in
the nearby double dot via energy/momentum exchange. We
have calculated and discussed the inelastic current generated
in the double dot as a function of the gate potentials applied
on each dot. These potentials allow experimental control of
the energy detuning. It turns out that the sign of this current
depends on the energy detuning between the dots. We ex-
plain this fact by analyzing the various Coulomb-induced
inelastic transitions within the double-dot system. We find

that besides the inelastic interdot transitions leading to the
ratchet current, electrons also inelastically tunnel from the
dots to the leads without performing first a transition to a
higher level of the nearby dot. This contribution to the total
current could be important if the interdot coupling is not
extremely small so that the wave functions are not highly
localized on one dot only. We also report on the negative-
differential conductance regime associated with intradot tran-
sitions. These features can be experimentally confirmed.

The role of the interdot coupling is also discussed. The
results obtained in this work are entirely due to the Coulomb
interaction between the double dot and the detector and agree
qualitatively with the experimental ones.10 More subtle ef-
fects due to the changes in the common bosonic environment
not considered here would be of interest in future studies.
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FIG. 5. �Color online� The density of states in the double dot as
a function of the detuning parameter �V for two values of the bias
applied to the detector �a� VD=1.4 and �b� VD=1.8. The traces with
positive �negative� slope correspond to QD1 �QD2�. Other param-
eters: U=0.15, 
=0.1, and vL=vR=0.35.
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