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Force spectroscopy using bimodal frequency modulation atomic force microscopy
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We propose a force-spectroscopy technique where a higher order mode of a cantilever is excited simultaneously
with the first. Resonance tracking of both vibration modes through a frequency modulation scheme provides a
way to extract topographical information and the gradient of the tip-sample interaction within a single surface
scan. We provide an analytic treatment of the scheme, derive expressions relating frequency shifts of the higher
mode and the tip-sample forces, and offer two methods of improving the accuracy of reconstruction of the force
gradient. Finally, we confirm our predictions by numerical simulations.
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I. INTRODUCTION

Since its invention, atomic force microscopy (AFM) has
been used in a vast variety of applications and has proven
to be a powerful tool in nanometer science.1 Although
nanoscale resolution of the surface topography achieved by
AFM reveals a lot of information about the sample, it is
also desirable to identify and differentiate compositional
features. It is possible to perform frequency-versus-distance
measurements by tracking frequency changes of a vibrating
lever to calculate tip-sample forces.2–4 Such spectroscopic
measurements suffer from lateral and vertical thermal drift,
and imaging speed is severely reduced by the requirement of
scanning in the normal direction.5 Several techniques have
been proposed for simultaneous and faster acquisition of the
compositional features and the topographical information.
Sahin et al. introduced the use of harmonic cantilevers to
recover time resolved forces acting on the tip from harmonics
generated by the nonlinear tip-sample interaction.6,7 Recently,
bimodal amplitude modulation AFM techniques have been
developed whereby a higher order flexural mode is excited
simultaneously with the first mode to achieve increased
phase sensitivity to compositional features at the higher order
mode.8–10 Chawla et al. proposed a hybrid technique, bringing
together ideas from both frequency and amplitude modulation
AFM techniques, to extract the tip-sample force curve Fts(z).11

Slow transient response of the probe with a large quality fac-
tor is a fundamental restriction on the available bandwidth in
amplitude modulation AFM.12 Frequency modulation AFM13

seems to circumvent this problem, since the frequency shift
of the vibration is almost instantaneous and is independent
of the quality factor of the resonator, therefore imaging
bandwidth can be chosen arbitrarily large. Recent development
of low-noise, wide-bandwidth frequency demodulators open
up the possibility of exploiting frequency modulation AFM
schemes in different ways.14 One possibility is to capture the
rapid frequency shifts of a higher mode of a cantilever to
extract the properties of the tip-sample forces.

In this paper, we propose a fast force-spectroscopy tech-
nique in which two modes of a cantilever, having resonant
frequencies f̄1 and f̄2 (not necessarily an integer multiple
of each other) with f̄1 � f̄2, are excited in such a way that
the amplitudes of both components of the vibration (A1, A2)
stay constant. As seen in Fig. 1, the modes are operated
as independent self-sustained oscillators using two separate

positive feedback loops, therefore implementing a bimodal
frequency modulation AFM scheme. We show that we can
extract the tip-sample force gradient along with the surface
topography by recording the instantaneous frequency shifts
of both vibration modes for small amplitudes of the higher
mode vibration such that A2 � A1. In Sec. II, expressions
relating surface forces to the instantaneous frequency shift of
the higher mode are presented, and the conditions for which
those expressions remain valid are derived. In Sec. III, simple
recovery algorithms to find the force gradient from the mea-
sured frequency shift are discussed. Theoretical predictions
are tested by numerical simulations in Sec. IV.

II. THEORY

Referring to Fig. 2, the instantaneous tip-sample distance
z(t) is written as

z(t) = z1(t) + A2 cos(2πf2t − φ), (1)

with

z1(t) = Z0 + A1 cos(2πf1t), (2)

where Z0 is the base-sample (or the average tip-sample)
separation, f1 and f2 are the instantaneous frequencies of
the components of the biharmonic vibration centered around
f̄1 and f̄2 with φ being the phase shift of the higher mode
vibration with respect to the time reference of the first mode
vibration.

As Z0 is decreased, the tip enters into a force field, i.e., the
cantilever tip starts spending time at the attractive and repulsive
force regimes for increasingly longer intervals within the
period T1 = 1/f̄1. The presence of the force field modulates
the instantaneous frequencies of vibration modes. As it is
traditionally exploited in single mode frequency modulation
AFM experiments,13 the frequency shift of the first mode
(�f1 = f1 − f̄1) can be used as a feedback parameter to
extract the topographical variation, whereas the frequency shift
of the higher mode (�f2 = f2 − f̄2) is sensitive to sample
properties such as the density and the elasticity.11 However,
the exact nature of the relation between �f2 and the nonlinear
tip-sample interaction is complicated and therefore deserves a
careful treatment.

We assume that the motion of the modes of the cantilever
can be described by independent weakly disturbed harmonic
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FIG. 1. Schematic description of the proposed technique. Two
modes of a cantilever driven simultaneously. z(t) is the instantaneous
tip position with respect to the sample, and z1(t) represents the
first mode of vibrations. z(t) can be detected using an optical
beam deflection (OBD) system. Automatic gain circuitries (AGC) on
the positive feedback loop are used to maintain the constancy of the
vibration amplitudes, and a single proportional-integral-derivative
(PID) control block is used to maintain a fixed base sample
separation (Z0).

oscillators with a spring constant k and an effective mass m.
The instantaneous frequency shift, �f̃2, due to nonlinear
tip-sample interaction can be calculated by a first-order
perturbation theory using the Hamilton-Jacobi approach3 as

�f̃2(t) ≈ − f̄2
2

k2A2

∫ t+ T2
2

t− T2
2

Fts(z1(τ ) + A2 cos(2πf̄2τ − φ))

× cos(2πf̄2τ − φ)dτ, (3)
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FIG. 2. (Color online) Tip trajectory with respect to time during
a single period of the first mode vibration for different values of φ.
f̄2 ≈ 16f̄1, Z0 = 14 nm, while A1 = 10 and A2 = 2 nm.
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FIG. 3. (Color online) The dashed curve is the instanta-
neous frequency shift of the higher mode, �f̃2(t), with re-
spect to time as obtained from Eq. (3) (f̄2 ≈ 100f̄1). The solid
curve is the low-pass filtered version of the frequency shift,
�f2(t), from Eq. (7). Equivalently, it is the response of fre-
quency demodulator with a bandwidth of 20f̄1. A1 = 10 nm,
A2 = 0.5 nm, Z0 = 10 nm, f̄1 = 100 kHz, Fmax = 5 nN, Srep =
150 nN nm−2 where Fts is given by Eq. (21).

where k2 is the spring constant of the higher mode, T2 = 1/f̄2

is the period of this mode, and Fts(z) is the force acting on
the tip. Figure 3 shows a plot of instantaneous frequency shift
of the higher mode as a function of time as obtained from
Eq. (3). This figure reveals that the instantaneous frequency
shift has small wiggles with a period of T2 and with a phase
shift of φ. Although Eq. (3) describes the frequency shift of
the higher mode to a great accuracy, this equation does not
allow an easy way of determining Fts(z) from the measured
�f̃2(t). Moreover, it is possible to measure �f̃2(t) only
with a wideband demodulator having a bandwidth larger than
f̄2. If f̄2 is a high frequency, it is not feasible to measure
the instantaneous frequency �f̃2(t) at that high speed with
presently available electronic circuits. Therefore we need to
obtain an expression that does not contain the high-frequency
wiggles at f̄2.

Since T2 � T1, τ in Eq. (3) lies in the close proximity of
t , and hence we can write z1(τ ) of Eq. (2) as a Taylor series
expansion of the first order

z1(τ ) ≈ z1(t) + dz1(t)

dτ
(τ − t)

= z1(t) − 2πA1f1 sin(2πf1t)(τ − t). (4)

Assuming that f1 ≈ f̄1 in Eq. (4) and through a change of
variables θ = 2πf̄2(τ − t) in Eq. (3) we arrive at

�f̃2(t) ≈ − f̄2

2πk2A2

∫ π

−π

Fts(z1(t) − A1
f̄1

f̄2
θ sin(2πf̄1t)

+A2 cos (θ + φ′)) cos(θ + φ′)dθ, (5)

where φ′ = 2πf̄2t − φ. Since f̄1 � f̄2, Eq. (5) is a good
approximation to Eq. (3).
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If the following condition is satisfied for −π � θ � π ,

max

∣∣∣∣A1
f̄1

f̄2
θ sin(2πf̄1t)

∣∣∣∣ � max |A2 cos(θ + φ′)|, (6)

the middle term of the argument of Fts in Eq. (5) can be ignored.
This approximation removes the high-frequency wiggles of
�f̃2(t) seen in Fig. 3, and we get a low pass filtered version
of the frequency shift, �f2(t):

�f2(t) = −f̄2

2πk2A2

∫ π

−π

Fts(z1(t) + A2 cos(θ + φ′))

× cos(θ + φ′)dθ. (7)

We note that this frequency shift �f2 is significant only during
the “contact time” (Tc). This condition occurs around the
negative peak of the first mode or when

2n + 1

2f1
− Tc

2
< t <

2n + 1

2f1
+ Tc

2
, (8)

where n is an integer. If Tc is small enough, for the values of t

given in Eq. (8) we have |sin(2πf̄1t)| < 2πf̄1Tc/2, hence the
requirement in Eq. (6) becomes

π2A1
f̄1

2

f̄2
Tc � A2. (9)

In this case, the frequency shift of the higher mode is given
by an integration only over a single cycle of higher mode
oscillations; therefore, in a sense, the vibration modes are
decoupled.

Equation (7) is preferable over Eq. (3) since it generates
a frequency shift curve without high-frequency wiggles and
therefore without a phase ambiguity. Notice that the phase
term φ′ in Eq. (7) can be dropped since d(�f2(t))/dφ′ = 0,
i.e., the low pass filtered frequency shift does not depend on
the phase shift between the independent oscillators. Hence, we
have

�f2(t) = −f̄2

2πk2A2

∫ π

−π

Fts(z1(t) + A2 cos θ ) cos θ dθ. (10)

This is the frequency shift of the higher mode measured with a
frequency demodulator of moderate bandwidth. �f2(t) is also
plotted in Fig. 3 for comparison.

Through integration by-parts where we take dv = cos θ dθ

and u = Fts(z1(t) + A2 cos θ ), a simpler, yet powerful expres-
sion of �f2(t) is available:

�f2(t) ≈ − f̄2

2πk2

∫ π

−π

F ′
ts(z1(t) + A2 cos θ ) sin2 θdθ

= − f̄2

4πk2

[∫ π

−π

F ′
ts(z1(t) + A2 cos θ )dθ

−
∫ π

−π

F ′
ts(z1(t) + A2 cos θ ) cos 2θdθ

]
, (11)

where F ′
ts(·) is the derivative of the tip-sample interaction force.

If the third and higher order terms in the power series expansion
of F ′

ts(·) are negligible, i.e., as long as the condition

A2 � 2

∣∣∣∣ F ′′
ts (z1(t))

F ′′′
ts (z1(t))

∣∣∣∣ (12)

is satisfied, we can write

F ′
ts(z1(t) + A2 cos θ ) = F ′

ts(z1(t)) + F ′′
ts (z1(t))A2 cos θ. (13)

The second integral vanishes if Eq. (13) is substituted into
Eq. (11), and we get a simpler result:

�f2(t) ≈ − f̄2

4πk2

∫ π

−π

F ′
ts(z1(t) + A2 cos θ )dθ, (14)

with the combined necessary condition of

π2A1
f̄1

2

f̄2
Tc � A2 � 2

∣∣∣∣ F ′′
ts (z1(t))

F ′′′
ts (z1(t))

∣∣∣∣ . (15)

Within this range of A2, �f2(t) is accurately described by the
integral in Eq. (14). So, the higher mode vibration “samples”
the gradient of the tip-sample force interaction and allows us
to quantify Fts(z) in a single cycle of the first mode vibrations
T1, while �f1 can be used to extract topographical features.

Suppose that the bandwidth of the frequency demodulator
is not wide enough to capture the changes of �f2(t) and an
aggregate effect is observed. For example, a bandwidth smaller
than f̄1 implies an averaging of Eq. (14) along T1, and we get an
averaged frequency shift, 〈�f2〉, of the higher mode vibrations

〈�f2〉 ≈ − f̄2

4πk2

∫ π

−π

F ′
ts(Z0 + A1 cos φ)dφ, (16)

which is the expression published recently by Kawai et al.15

to describe the observed frequency shift of the higher mode
vibrations in bimodal dynamic force microscopy.

Equation (14) describes the frequency shift in terms of
the force gradient. Solving the inverse problem, i.e., finding
the force gradient from the measured frequency shift is more
important. Starting from Eq. (14), we can derive an even
simpler expression relating the force gradient to the measured
frequency shift. If A2 is sufficiently small, while still satisfying
the left-hand side of Eq. (15), we can approximate A2 cos θ

with a square wave of the same peak values, and the integral
in Eq. (14) can be simplified to give

�f2(t) ≈ − f̄2

4k2
[F ′

ts(z1(t) + A2) + F ′
ts(z1(t) − A2)]

≡ − f̄2

2k2
F ′

ts(z1(t)), (17)

where the bar over the gradient function shows the average
operation. Hence, the frequency shift is proportional to the
average of two force gradient functions shifted by 2A2 with
respect to each other. On the other hand, in the limit where A2

is very small, Eq. (17) reduces to

F ′
ts(z(t)) ≈ −2k2

f̄2
�f2(t), (18)

which shows that the tip-sample force gradient is directly
proportional to the frequency shift. This equation is not very
accurate, because of the condition in Eq. (15). It loses its
validity when A2 is made very small. It is better to use Eq. (17)
and try to recover F ′

ts from it.
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III. RECOVERY OF THE FORCE GRADIENT

It is possible to recover F ′
ts from F ′

ts by noting that

F ′
ts(z − A2) = 2F ′

ts(z) − F ′
ts(z + A2), (19)

F ′
ts(z) → 0 for z → ∞. (20)

For this purpose, first an interpolation is necessary to get
equally spaced samples of F ′

ts in z from equally spaced samples
in t . The first recovery algorithm can be written as follows:

1. From the measured �f̃2(t) for ti = ti−1 + �t , determine
F ′

ts(z(ti)) using Eq. (17).
2. Interpolate F ′

ts(z(ti)) to get F ′
ts(z(j )) with z(j+1) = z(j ) −

A2/m, where m is an integer chosen to give a sufficient
sampling distance in z. j is the sample index. z(0) is chosen
sufficiently large so that F ′

ts(z(0)) = 0.
3. Use F ′

ts(z(j+m)) = 2F ′
ts(z(j )) − F ′

ts(z(j−m)) for j = 0, 1,
2, . . . to recover F ′

ts function at equally spaced intervals. For
initialization we choose F ′

ts(z(j )) = 0 for j < 0.
This algorithm tries to recover the force gradient from
the average value starting from very large z values where
the gradient is known to vanish and work its way in an
iterative manner toward lower z values. Since the algorithm is
sufficiently simple, it can be implemented in real time while
the data points are being captured. If the noise between the
samples are uncorrelated, the recovery algorithm degrades the
signal-to-noise ratio by about 10 log10 5 = 7 dB. This is a
significant loss in signal quality.

One can obtain a better performance in recovery using a
more computationally intensive and hence possibly an off-line
method. For the second algorithm, assume a model for Fts(z)
and find the parameters of the model to satisfy Eq. (3) in the
least-squares sense using an optimization method. A possible
model is given by11

Fts(z) =
{−Fmax/[1 + 30(z − a0)2] for z � a0,

−Fmax + Srep(z − a0)2 for z < a0,
(21)

where Fmax represents the maximum of the attractive forces,
Srep is the strength of the repulsive interaction, and a0 is the
interatomic distance separating attractive and repulsive force
regimes. All forces are in nN, all distances are nm, and Srep

has units of nN nm−2.

IV. SIMULATIONS

We test the validity of Eq. (14) using a time-domain electri-
cal circuit simulator, SPICE. We treat the vibration modes
of the cantilever using two series RLC circuits, therefore
assuming a point mass model. Other vibration modalities are
simply ignored. Two positive feedback loops are included to
maintain 90◦ of phase shift between the vibrations of the tip
and the actuation. RMS detectors for each vibration mode
followed by corresponding proportional-integral controllers
maintain constant amplitude vibrations of the modes regardless
of the strength of the interaction and hence regardless of
the base-sample distance. The vibration modes are coupled
through a nonlinear circuit component, output of which is
described by Eq. (21). This equation is preferred over the
widely used Derjaguin, Muller, and Toporov model16 of the
tip-sample forces, since the derivative of Fts in Eq. (21)
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FIG. 4. (Color online) Frequency shift of the higher mode (dots)
and the tip-sample distance (solid line) with respect to time. The dots
are obtained from the numerical simulation and the dashed line is
calculated using Eq. (18) and assuming that Fts is given by Eq. (21).
A1 = 3 nm, A2 = 0.2 nm, Z0 = 3 nm, f̄1 = 100 kHz, f̄2 ≈ 100f̄1.
Fmax = 5 nN, Srep = 150 nN nm−2 for t < 100 μs and Srep =
75 nN nm−2 for t > 100 μs. Measurement bandwidth is 20f̄1.

with respect to tip-sample distance is continuous regardless
of the parameters used. For all simulations, f̄1 = 100 kHz,
first mode stiffness k1 = 10 N/m, Q1 = 200, and Q2 = 500.
The resonant frequency of the higher mode (f̄2) is either
3 or 10 MHz. Stiffness of the higher mode is given by
k2 = k1(f̄2/f̄1)2.

Figure 4 shows the simulation results for the instantaneous
frequency shift of the higher mode as a function of time.
The sample is assumed to be perfectly flat, but it has two
regions with different force curves. As seen in the figure, the
frequency shifts when the tip is nearest to the sample. The
scan speed is limited by the period of the low-frequency drive.
As expected, the sensitivity of the higher mode vibrations
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FIG. 5. (Color online) The actual force gradient F ′
ts(z) and

the force gradient curves obtained from the frequency shift data
using Eq. (18) with respect to tip-sample distance. A1 = 10 nm,
Z0 = 10 nm, f̄1 = 100 kHz, f̄2 ≈ 100f̄1, Fmax = 5 nN, and Srep =
150 nN nm−2, where Fts is given by Eq. (21).
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100 kHz, f̄2 ≈ 30f̄1, and Fmax = 5 nN, where Fts is given by Eq. (21).

to surface property variations are instantaneous, therefore
independent of the quality factor of the higher mode.

The force gradient can be calculated from the frequency
shift data, assuming that Eq. (18) is sufficient to describe the
dynamics. Figure 5 shows such a calculation along with the
actual curve for F ′

ts(z). The accuracy of the force gradient
degrades as A2 is increased. This is expected, since the
right-hand condition in Eq. (15) is violated. On the other
extreme, when A2 becomes too small, the accuracy also begins
to deteriorate. In this case, the left-hand condition of Eq. (15)
is violated. The effect is more pronounced in Fig. 6, where
f̄2 = 3 MHz, and base-sample separation Z0 = 4 nm. In this
case, tip oscillates only in the attractive regime. Reconstruction
is almost perfect for A2 = 0.2 nm for which Eq. (15) holds.
However, for A2 = 0.1–0.05 nm, the left-hand condition of
Eq. (15) is not satisfied, hence the distortion in the gradient
reconstruction.

Notice that in Fig. 5 the discrepancy between the actual
force gradient and the force gradient calculated from
the frequency shift data using Eq. (18) is maximum for
the region where the force gradient is maximum. This is the
transition region between the attractive and repulsive forces for
which the right-hand side of Eq. (15) is violated regardless of
the chosen higher mode amplitude. If the characteristics of the
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FIG. 7. (Color online) Actual force gradient F ′
ts(z) and the force

gradient estimate obtained using Eq. (18) along with the force gradient
curves reconstructed using the first recovery algorithm and the second
algorithm. A1 = 10 nm, A2 = 0.1 nm, Z0 = 10 nm, f̄1 = 100 kHz,
f̄2 ≈ 100f̄1, Fmax = 5 nN, and Srep = 150 nN nm−2, where Fts is
given by Eq. (21).

force curve within this transition region is of interest, it is
worthwhile to use one of the recovery algorithms. Figure 7
shows the results of the recovery algorithms in comparison
to uncorrected data. The recovered force gradients within the
transition region are not perfect, but they are definitely better
than the uncorrected version.

V. CONCLUSION

We derived expressions describing the time-dependent
frequency shift of the higher mode vibrations which is related
to an averaging over the force gradient of the tip-sample force
interaction. We have shown that frequency shifts of the higher
mode can be used to extract tip-sample forces. We proposed
two methods of improving the accuracy of reconstruction from
the measured frequency shift data.

Finally, we note that bimodal frequency modulation AFM
is a strong candidate for force spectroscopy especially in a vac-
uum environment where the large quality factor of the vibration
mode limits the imaging bandwidth of amplitude modulation
techniques, namely, harmonic imaging and bimodal amplitude
modulation AFM. Using the proposed scheme would allow a
high-quality quantification of the mechanical properties of the
sample without any degradation of the scan speed.
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