ResearchGate

See discussions, stats, and author profiles for this publication at:

Steady-state analysis of Google-like stochastic
matrices with block iterative methods

Article /i Electronic transactions on numerical analysis ETNA - January 2011

CITATIONS READS
2 14

2 authors, including:

& Bilkent University

T4 PUBLICATIONS 634 CITATIONS

SEE PROFILE

All content following this page was uploaded by on 08 July 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/248669727_Steady-state_analysis_of_Google-like_stochastic_matrices_with_block_iterative_methods?enrichId=rgreq-2cf3098db9f9cba723bbff0ff1e22bf9-XXX&enrichSource=Y292ZXJQYWdlOzI0ODY2OTcyNztBUzozODE1MzM2Nzc0NzM3OTJAMTQ2Nzk3NjEyNTc0MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/248669727_Steady-state_analysis_of_Google-like_stochastic_matrices_with_block_iterative_methods?enrichId=rgreq-2cf3098db9f9cba723bbff0ff1e22bf9-XXX&enrichSource=Y292ZXJQYWdlOzI0ODY2OTcyNztBUzozODE1MzM2Nzc0NzM3OTJAMTQ2Nzk3NjEyNTc0MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-2cf3098db9f9cba723bbff0ff1e22bf9-XXX&enrichSource=Y292ZXJQYWdlOzI0ODY2OTcyNztBUzozODE1MzM2Nzc0NzM3OTJAMTQ2Nzk3NjEyNTc0MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tugrul_Dayar?enrichId=rgreq-2cf3098db9f9cba723bbff0ff1e22bf9-XXX&enrichSource=Y292ZXJQYWdlOzI0ODY2OTcyNztBUzozODE1MzM2Nzc0NzM3OTJAMTQ2Nzk3NjEyNTc0MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tugrul_Dayar?enrichId=rgreq-2cf3098db9f9cba723bbff0ff1e22bf9-XXX&enrichSource=Y292ZXJQYWdlOzI0ODY2OTcyNztBUzozODE1MzM2Nzc0NzM3OTJAMTQ2Nzk3NjEyNTc0MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Bilkent_University?enrichId=rgreq-2cf3098db9f9cba723bbff0ff1e22bf9-XXX&enrichSource=Y292ZXJQYWdlOzI0ODY2OTcyNztBUzozODE1MzM2Nzc0NzM3OTJAMTQ2Nzk3NjEyNTc0MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tugrul_Dayar?enrichId=rgreq-2cf3098db9f9cba723bbff0ff1e22bf9-XXX&enrichSource=Y292ZXJQYWdlOzI0ODY2OTcyNztBUzozODE1MzM2Nzc0NzM3OTJAMTQ2Nzk3NjEyNTc0MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tugrul_Dayar?enrichId=rgreq-2cf3098db9f9cba723bbff0ff1e22bf9-XXX&enrichSource=Y292ZXJQYWdlOzI0ODY2OTcyNztBUzozODE1MzM2Nzc0NzM3OTJAMTQ2Nzk3NjEyNTc0MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Electronic Transactions on Numerical Analysis. ETNA

Volume 38, pp. 69-97, 2011. Kent State University
Copyright O 2011, Kent State University. http://etna.math.kent.edu
ISSN 1068-9613.

STEADY-STATE ANALYSIS OF GOOGLE-LIKE
STOCHASTIC MATRICES WITH BLOCK ITERATIVE METHODS *

TUGRUL DAYART AND GOKCE N. NOYAN?

Abstract. A Google—like matrix is a positive stochastic matrix given bganvex combination of a sparse,
nonnegative matrix and a particular rank one matrix. Googkfiuses the steady—state vector of a large matrix of
this form to help order web pages in a search engine. We igatstthe computation of the steady-state vectors
of such matrices using block iterative methods. The blockiarings considered include those based on block
triangular form and those having triangular diagonal b#ooktained using cutsets. Numerical results show that
block Gauss—Seidel with partitionings based on block ¢idar form is most often the best approach. However,
there are cases in which a block partitioning with triangdiagonal blocks is better, and the Gauss—Seidel method
is usually competitive.

Key words. Google, PageRank, stochastic matrices, power method, bleckive methods, partitionings,
cutsets, triangular blocks

AMS subject classifications.60J10, 65F10, 65F50, 65B99

1. Introduction. We consider positive stochastic matrices of the form
S =R+ uv,

whereR € R™*™ is a honnegative and sparse square matrix, possibly rddueith some
zero rows,u € R™*! is a nonnegative column vector, ands R!*" is a nonnegative row
vector [30]. The reason behind representing a row vector will soon become clear. Such
stochastic matrices arise in the page ranking algorithmeRank p], of Google (hence, the
term Google-like). The objective therein is to compute tieady—state probability distribu-
tion row vectorr € R**" of S'in

S =m me=1,

wheree is the column vector of ones. The first difficulty lies in thiihaugh.S does not have
any zero elements, one must make every effort to avoid fikdid work in sparse storage
since R is a sparse matrix andv is an outer product. The second difficulty is related to
the reducibility of R, since an arbitrary partitioning of a reducible matrix witit yield irre-
ducible diagonal blocks, and hence, care must be exercibed employing block iterative
solvers as we shall see. These rule out direct methods suGlaissian elimination (GE)
and iterative methods which require relatively large mensarch as preconditioned Krylov
subspace methods.

Now, let P € R™*™ be the transition probability matrix associated with th@dmnink
structure of the web of pages to be ranked and (0, 1) be the convex combination param-
eter used to obtain a positive stochastic maffigo that it is ergodic and therefore can be
analyzed for its steady—stateq. In the PageRank algorithm,

R =aP, u=e— Re,

*Received April 12, 2010. Accepted for publication Januafy2011. Published online March 28, 2011. Rec-
ommended by M. Benzi.

TDepartment of Computer Engineering, Bilkent University, DB800 Bilkent, Ankara, Turkey
(tugrul@cs.bilkent.edu.tr).

fUndersecretariat for Defence Industries, Ziyabey Cad@dsSokak, No.4, TR-06520 Balgat, Ankara, Turkey
(gnnoyan@ssm.gov.tr).

69

ETNA
Kent State University
http://etna.math.kent.edu

70 T. DAYAR AND G. N. NOYAN

andw is the nonnegative personalization probability distritairow vector satisfyinge = 1.
Note thatP may have zero rows corresponding to dangling nodes; i.eb, peges with-
out any outgoing hyperlinks. An equivalent formulation aard extensive discussion on
PageRank can be found i64]. The PageRank algorithm computesteratively using the
power method. And ranking pages corresponds to sortingabes(i.e., states of the under-
lying discrete—time Markov chain, DTMC) according to thetieady—state probabilities. The
problem is introduced during the Stanford Digital Libramychnologies project (now known
as The Stanford WebBase Proje88]). Since web matrices are extremely large and always
changing, computation lasts long and needs to be repeated.

The rate of convergence of the power method depends on tlid®sitant eigenvalue
of S. This eigenvalue is equal t for reducible P and strictly less thaa otherwise [L8].
Convergence takes place at the rate by which powessagfproach zero. Thus, convergence
is faster asx becomes smaller. However, the smalteis, the higher the contribution of
the second termyv and the lesser the hyperlink structure of the welRiinfluences page
rankings. Slightly differenty values can produce very different PageRank vectors, and as
« approaches one, sensitivity issues begin to ad§g [Brin and Page, the founders of
Google, usex = 0.85 (in other words, a teleportation probabilityy — «), of 0.15), and
for tolerance levels measured by residual norms ranging fto—2 to 10~7, they report
convergence within 50 to 100 power iteratior. [We remark that, normally = 7' /n
(i.e., the uniform distribution) is used. However, when web surfer has preferences and is
therefore biased, a personalization vector other than niferm distribution must be used.
Hence, ideally the problem needs to be solved multiple tifoeslifferent personalization
vectors.

A number of improvements are made over the power methodédpégeRank algorithm.
Here, we mention some that are relevant to our work in thigpaphe work in [L] suggests
using the most recently computed values of the approxinatgisn in the same iteration
as in the Gauss—Seidel (GS) method. This approach, whiclagsified under sequential
updates by the framework ir27], is shown to bring in savings of about one half in the
number of iterations with respect to the power method. Thegpanethod is also improved
in [20], this time using quadratic extrapolation, but the improeat is fairly sensitive to how
frequently the extrapolation strategy is invoked. A rdstwvariant of the Arnoldi algorithm
is investigated in17] for computing PageRank. Although timing results and exaemory
requirements are not provided, the results promise coraitlecomputational savings over
the power method at the expense of relatively large memayirements (since a relatively
large number of solution vectors of lengthneed to be stored). A more recent stud¢][
shows that improvements in number of matrix—vector muttgilons (which is essentially
the number of power iterations) are possible with innerepit¢rations with modest memory
requirements.

Another group of work relates to the way in which the web pagjésterest are obtained
by crawling. By sorting the pages according to their addressd then parsing the addresses
into separate fields, the authors #i] have looked into block partitionings of web matrices in
which each diagonal block represents the hyperlinks amagg$within a domain. Domains
in turn can be partitioned into hosts, thus resulting in tieanof nested blocks and a method
based on iteratively analyzing the diagonal blocks in igota aggregating them, and solving
the aggreated system. This approach, which is classifiedrumiterated updates by the
framework in R7], is shown to yield savings of about one half in the numbenefations
with respect to the power method applied to the original nod@ages, although the savings
in time do not compare as favorably with respect to the powethod applied to the sorted
order of pages. An approach based on aggregation is alsswdl in], where a fixed

ETNA
Kent State University
http://etna.math.kent.edu

GOOGLE-LIKE STOCHASTIC MATRICES 71

solution is assumed for the diagonal blocks associatedhaists, thereby resulting in a faster
but approximative method.

In this paper, we do not assume any knowledge about addrassesiated with web
pages, take a sparse matrix view, and present the resultsnoénical experiments with a
software tool L0, 11] for the steady—state analysis of Google-like matrices seguential
setting; i.e., on a computer with a single computationakcdrhe objective is to systemat-
ically compare and contrast different sparse iterativeessl The tool can also be used to
analyze irreducible DTMCs as ir8{] for their steady—state distribution by setting= 1.
There are eight solvers available. These are power (POWBRgmwith quadratic extrap-
olation (QPOWER), Jacobi over—relaxation (JOR), successier—relaxation (SOR), block
JOR (BJOR), block SOR (BSOR), iterative aggregation—djsegation (IAD) with BJOR
disaggregation step (IABJOR), and IAD with BSOR disaggregation step (IB50R).
The JOR and SOR solvers become respectively the JacobidJp&rsolvers for value 1 of
the relaxation parameter. The motivation of the study islemtify those sparse solvers that
decrease the iteration counts and solution times with ctgpePOWER without increasing
the memory requirements too much. The contribution of tkalte to the literature are in the
understanding of the type of partitionings to be recommeddéh block iterative solvers for
Google-like stochastic matrices and the benefits obtaigenhploying them.

It is known that Tarjan’s algorithm3fg] can be used to symmetrically permute a matrix
of ordern with a zero—free diagonal to block triangular form in whitte tdiagonal blocks
are irreducible 14]. Its time complexity isO(n) + O(7), wherer is the number of nonzero
off-diagonal elements. In the context of web matrices, pleisnutation is first noted ini].
The permutation is later pursued i&1] on parts of two web matrices and some preliminary
results have been obtained with an I1AZ) like method. However, the implementation has
not been done in sparse storage and only iteration countswetied, whereas, timing results
are vital for this kind of study. The study iiJ] is another one which considers symmetric
permutations of web matrices to accelerate convergenoautian methods and is the most
relevant one to the work in this paper. Therein, the effeaising breadth first traversal of
the nodes of the web graph to generate a permutation of thespamding matrix to block
triangular form is investigated together with sorting tlweles for decreasing/increasing in—
/out—degrees. Experiments are conducted on one web matiixme value ofv using power,
Jacobi, GS, backward GS, and block GS (BGS) methods. The $ietes to obtain the
permutations used are not reported. Nevertheless, resuttsee web matrix suggest savings
of about a half with BGS in the number of iterations and sutigilimprovements in solution
time with respect to the power method. These two approachels de classified under
reiterated updates by the framework #v] as well.

In this paper, we use the sparse implementation of Tarjdg&ithm in [37] to obtain
a block triangular form and partitionings having triangué&gonal blocks that follow from
there. To the best of our knowledge, efficient algorithmsgglearch for the strongly connected
components of graphs (which correspond to irreducibleatiagblocks of matrices in block
triangular form) use depth first traversal of the nodes asamam’s algorithm. Through a
systematic study on multiple benchmark matrices with diffié values ofy, we investigate
the merit of various block partitionings. We do not considay optimization in our code,
and treat dangling nodes by considering the hyperlinksemtand not by penalizindlLp],
recursively eliminating25], or aggregating19] them. Hence, the timing results in our work
could be improved further. Nevertheless, our results stpose in [L3], but also show that
there are cases which benefit significantly from triangulaganal blocks, and GS is also
competitive.

In the next section, we discuss the solvers. In Sectiome introduce the partitionings

ETNA
Kent State University
http://etna.math.kent.edu

72 T. DAYAR AND G. N. NOYAN

considered with the block iterative solvers. Sectibis about the benchmark matrices and
their properties. Sectioh provides the results of numerical experiments. In Sediiowe
conclude.

2. The solvers. Consider the following example web matrix ip4].
ExamMpPLE 2.1. P corresponds to the web graph of 6 pages in Figutewhere prob-

1 2 3 4 5 6
1[0 1212 0 0 0
210 0 0 0 0 0

p_ 3|13 13 0 0 13 0

“ 400 0 0 0 1/2 1/2
51 0 0 0 1/2 0 1/2
6| 0 0 0 1 0 0

FiIG. 2.1.Web graph of the example.

abilities of outgoing links are uniformly distributed andge 2 does not have any outgoing
links; i.e., it is a dangling nodeP is reducible with the state space partitiofis 3}, {2},
{4, 5,6} forming irreducible subsets of states as in Figlue

2.1. Power method.Given7(® > 0 andr(®¢e = 1, the POWER iteration
kD) — 7B R 4 7By fork =0,1,...

can be implemented with one vector—matrix multiplicatiaing R and two level-1 opera-
tions; i.e., dot—product and saxpy — multiplication of ateeavith a scalar and the addition
of another vector. Convergence takes place at rate by wiidjoes to 0. The smaller is,
the lesser the effect of the hyperlink structure of the web.

It is reported that by periodically applying quadratic extolation for values oft close
to 1, the convergence of POWER can be accelera?é [However, the improvement is
fairly sensitive to how frequently the extrapolation st@t is invoked, and therefore we do
not consider QPOWER further in this paper.

2.2. Block iterative methods. Let
B=R' -1
and E be a permutation matrix so that
A=EB+v"uET, x = Ex”,

and consider the block splitting = D — L — U = M — N for Az =0 (i.e.,
E(ST — I)ETExT = 0), where

D = diag(ALl, AQ’Q, A ,AJJ),

ETNA
Kent State University
http://etna.math.kent.edu

GOOGLE-LIKE STOCHASTIC MATRICES 73
Ao Az - Ay
Agq Ass - Ay
L= | As1 Asp . U= .. ; ,
: : " Aj1,g
Ajpn A2 - Azga

diag(-) denotes a diagonal matrix with its argument appearing alomdiagonal,/, the num-
ber of blocks along the diagonal satisfies: J < n, A; ; € R"*" fori,j =1,2,...,J S0
thatn = Z}-]:1 n;, A; ; hasnz; nonzero elements, and is nonsingular. We remark thait
is a symmetric permutation ¢f” — I, and thatE is neither explicitly generated nor stored
but rather obtained using integer permutation vectors ashak see.

Givenz(©®) > 0, 2?0 = 1, and the relaxation parameterc (0, 2), the iteration

Mzt = N2®) for k=0,1,...,
where

M=D/w, N=(1-w)D/w+L+U
is (block) Jacobi over—relaxation, (B)JOR, and

M=D/w—L, N=(1—-w)D/w+U

is (block) successive over—relaxation, (B)SOR. These iecpoint methods wheri = n.
The convergence for under—relaxation (i€.,c (0,1)) is well known; in this case, it is
also monotonic since the iteration matrices are positivés 1 due a result inZ, pp. 270—
271] and is proved in a more general setting by Theorem 4.18.fror w = 1, the iteration
matrices are nonnegative. The Jacobi iteration matrix lzas@diagonal and the GS iteration
matrix has a zero first column; otherwise, all other elemehthese two iteration matrices
are positive. Since both iteration matrices have the smiutector as their fixed point (and
therefore, an eigenvalue of 1), a sufficient condition fonwagence is to show that both
iteration matrices do not have other eigenvalues of madeitl Indeed they are as such:
the condition for the Jacobi iteration matrix follows fer> 2 from the positivity of its off—
diagonal; the condition for the GS iteration matrix follofigm the fact that it has a positive
submatrix of ordefn — 1) which is accessible from the excluded first row.

Block iterative methods can be viewed as preconditionedepaterations, where the
preconditioning matrix isM [35]. When combined with aggregation steps, they become
iterative aggregation—disaggregation (IAD) with BJORadigregation step (IAIBJOR) and
BSOR disaggregation step (IABSOR). Because there is an (outer) iteration specified by
k, and for each value of, one needs to solvé subsystems of linear equations directly or
iteratively, methods discussed in this subsection are sores viewed as being two—level
(see alsoZ9]). Although we have implemented and experimented with |ApPet methods,
they do not yield competitive solvers for Google—like stasfic matrices. Hence, we do not
discuss them further in this paper.

In the next section, we present various partitionings thatlee used with block iterative
solvers.

3. Partitionings for block iterative solvers. AlthoughS > 0, one must work in sparse
storage sincer is sparse andw is an outer product; i.e., rank—1 update Bnh When R
(hence,P) is reducible, an arbitrary partitioning will not yield &ducible diagonal blocks
in D. In order to devise effective block iterative solvers, thgeative must be to obtain a

ETNA
Kent State University
http://etna.math.kent.edu

74 T. DAYAR AND G. N. NOYAN

partitioning of B in which J is relatively low and it is relatively easy to solve the diagb
blocks.

ExamPLE 3.1. Let us now consider the nonzero structure of the matrf six web
pages in Sectior?, where an X represents a nonzero value. Recall that oPT — I.
However, scaling witly does not change the nonzero structuré®ét and we have

1 X X 1 [X X
2 2 | X X X
3 | X X X 3 | X X
P=y x x |"B= 4 X X X
5 X X 5 X X X
6 X 6 X X X

Now, without loss of generality, let us assume ttiatis permuted to block lower—
triangular form havingub irreducible diagonal blocks using Tarjan’s algorithid][as in

g
by oo
F= . :
Fnb,l Fnb,2 e Fnb,nb

We remark that the irreducible diagonal blocks; for £ = 1,2,...,nb have zero—free
diagonals due to the definition &f and the states incident on each irreducible diagonal block
are only fixed up to a permutation.

ExampLE 3.1. (Continued) After applying Tarjan’s algorithm to oibta block lower—
triangular matrix for our example, we have the permutatienter [1 3 2 4 5 6]7. If we
symmetrically permuté3 with the permutation matrife; ez ez e4 €5 e]”, wheree; denotes
theith principal axis vector (i.elth column ofI), we get the nonzero structure

1 | X X
3 | X X
2 | X X [X

F_4 X X X |’
5 X X X
6 X X X

wherenb = 3. The irreducible diagonal blocks correspond to state spacitions{1, 3},
{2}, and{4, 5,6}, and they are respectively of order two, one, and three.

It is possible to compute a permutation maifjx 5 for each irreducible diagonal block
Fy. 1 [9] such that

NCy i, NTy i

QurForQl, = Cre Yer | nows
R, Zik Tek | 1

)

whereCy j, € R"kr "% T € R"ex*"Trk andTy i is triangular. Note thaly ;. is
necessarily nonsingular. It is clear that the smaller tlieoof submatrixCy, . is, the larger
the order of submatrid’, , becomes. Since a triangular block can be solved exactly by us
ing substitution (together with the Sherman—Morrison fola{28] since the block becomes

ETNA
Kent State University
http://etna.math.kent.edu

GOOGLE-LIKE STOCHASTIC MATRICES 75

positive due to the addition of the outer product term), iiseful to obtain a larger trian-
gular block. We remark that, under the same permutationoftheliagonal blockF;, ; gets
permuted as

ne,, N1y,

Qi FrQf, = Ort Yea | ne,
TR Zig Tey | nmy,

)

whereCy,; € R"k.r ™"t Ty, € R x *" 711, Note thatl}, ;, for k # | have nothing to do
with triangularity.

Minimizing n¢, , can be posed as the minimum cutset (or feedback vertex sditepn
which is known to be NP—complete for general grapit$§;[therefore, non—optimal solutions
need to be considered. Fortunately, a polynomial time éhguarcalled Cutfind due to Rosen
exists B2]. The algorithm runs in linear time and space and finds csitsegraphs. Although
cutsets computed with Cutfind may not be minimu#fj,ghows that it is a fast algorithm for
large graphs compared to other approximation algorithrdgfaasize of the cutset computed
is generally satisfying. We remark that it is again Tarjaigorithm which is used to find the
symmetric permutation that triangularizes the diagonatkkssociated with the states in the
cutset’s complement; i.€1y, .. Thus, for a block triangular matrix having irreducible glia
onal blocks with zero—free diagonals, sucf2ax 2) block partitioning can be computed for
each diagonal block and substitution can be used for soliadriangular diagonal blocks
at each (outer) iteration, while the solution of the remagniliagonal blocks can be approxi-
mated with some kind of (inner) point iteration. This apmioalleviates the fill-in problem
associated with factorizing diagonal blocks in block iteeasolvers up to a certain extent.

We consider five partitionings which can be used with bloekattive solvers. The first
three are based on the idea of symmetrically permuiintg block triangular form and us-
ing cutsets to obtain triangular diagonal blocks. The lastpartitionings have been already
used in the context of MCs befor&7] and do not utilize Tarjan’s algorithm. They are used to
determine whether any improvement over the block itergireeess results from employing
the first three partitionings. The parameters of the pantitigs can be expressed as a Carte-
sian product of four sets. Let sBt= {y,n} denote whether Tarjan’s algorithm is used or
not, setC = {y,n} denote whether Rosen’s Cutfind algorithm is used or notRset{y,n}
denote whether the number of diagonal blocks is restricie2idr not, and se® = {I ,u}
denote whether a block lower— or upper—triangular oriémtas desired with Tarjan’s algo-
rithm. Then experiments with partitionings take as paranse¢lements from proper subsets
of B x C xR x O. Experiments performed on web matrices using partitionibgnd 2
can utilize elements ofy } x C x R x O. Those using partitioning 3 (in which, through a
recursive application of the Tarjan and Cutfind algorithatlsgiagonal blocks are made to be
triangular) can utilizdly } x {y} x {n} x O. Since partitionings 4 and 5 do not use Tarjan’s
and Rosen'’s algorithms, the concept of orientation doespply, and we arbitrarily set the
last parameter ta and say these partitionings utilize the paramefarsx {n} x {n} x {u}.

Recall thatnb is the number of diagonal blocks returned by Tarjan’s atparifor B and
let nby be of those that are of order two. Without loss of generaétyuls assume that the
symmetric permutation is to block lower—triangular formatss incident on each diagonal
block are ordered increasingly according to index, and tisé tate in each diagonal block
of order two is placed in the cutset. Keep in mind that it doesmake sense to run the
Cutfind algorithm on diagonal blocks of order one and two siaaiagonal block of order
one is already triangular, and either state in a diagonakidd order two forms a triangular
diagonal block.

ETNA
Kent State University
http://etna.math.kent.edu

76 T. DAYAR AND G. N. NOYAN

3.1. Partitioning 1. In this partitioning, diagonal blocks of order one with nd-of
diagonal row elements are placed consecutively in the fiagioshal blocKlj ¢. When Cutfind
is used, lower—triangular diagonal blocks, 15 », . .., Tk, i follow this; the remaining di-
agonal blocks, which include states of cutsets, are ord@s€d r, Cx—_1,x-1, ..., C11.
Diagonal blocks of order one, which have some off—diagonalelements, are grouped into
the last blockC'x 11, k41 @sin

T _
El(yvy,n-,l)BEl(y,y,n,l) -
NTy,0 nry e NTy k NCk, k e ney NCx 11, K41
nr, [Too i
nr Tio T AR 21K +1
NTy Tk,0 Tk, -+ Tk Zrgx || Zka LK K+1
Nex Yko Y1 - Yrk Cxrx || Cka Cr k41 ’
ne, Yio Yia Cia Ci,x+1
NCxir ki1 L YK+1,0 Yr+11 - Y41,k | Cry1,5 | -+ | Cr411 | Ck41,541
sothatnb = nr, , + K + negeyy g @ndJ = I nry >0 T K+ 1nc,,, i, >0 Where

1 is the indicator function evaluating to 1 whefris true, 0 otherwise, an(yyn1) is the
corresponding permutation matrix. Note that the diagot@lohavingTy 0,74 1, - . .. Tk, k
along its diagonal is lower—triangular and that it is onlisthlock which is guaranteed to be
triangular.

An option for partitioning Listo lef = 2asin ,y,y,l) sothat one has@ x 2) block
partitioning in which the second diagonal block is compisé

Crr,Cr-1,k-1,---,011,Cr 41,41

along its diagonal. Note that it is not meaningful to restifie number of diagonal blocks to
2 if the Cutfind algorithm is not used in partitioning 1. Hepae do not consider partition-
ing 1 with parametersy(n,y,|) and §/,n,y,u). A remark must be made at this point about
orientation. When a block upper—triangular form is desiréth Warjan’s algorithm, diagonal
blocks of order one should be checked for zero off-diagoleahents in columns rather than
rows andl’ 1,75 2,. . ..Tx, x should be upper—triangularized if Cutfind is used.

ExampPLE 3.1. (Continued.) Now, let us consider partitioning 1 on web matrix of
6 pages. Since state 2 is in a state space partition by itsdlhas nonzero off-diagonal
elements in its row, it will be at the end of the permutatioar the first irreducible diagonal
block incident on{1, 3}, state 1 is an element of the cutset and state 3, being in thetsu
complement, is placed in the first triangular block. Afteplging the Cutfind algorithm to
the irreducible diagonal block incident dn, 5,6} of order three, we obtain its cutset as
{4} and therefore the cutset’'s complemen{as}. Lower—triangularization of the diagonal
block incident on{5, 6} using Tarjan’s algorithm yields the permutation vedtos6]”. So,
the permutation vector becomiss 6 4 1 2]7 and the order of the triangular block is obtained
as three. Hence, the symmetrically permuted matrix hasdhearo structure in

ETNA
Kent State University
http://etna.math.kent.edu

GOOGLE-LIKE STOCHASTIC MATRICES 77

El(yv}hnal) BElT(y,y,n.,l) =

3 X X 3 X X

5 X X X 5 X X X

6 X X | X 6 X X | X

4 X X | X 4 X X | X ’

1 X X 1 X X

2 X X | X 2 X X X

whereFE; ;1) = [e3 €5 €6 €4 €1 €2]”. In this exampleK = 2 andng, , = 0, ng, , = 1,
nr,, = 2,nc,, = 1,n¢,, = 1,n¢c,, = 1. There are four diagonal blocks; the first one
is lower—triangular and of order three, the other three &@der one each. Restricting the
number of diagonal blocks as iy ,f,y,l) so that we have & x 2) block partitioning in
which the first diagonal block is lower—triangular, we ohttie partitioning on the right.

If an upper-triangular orientation is used with partitiogil, we will end up with the

nonzero structure in

Ei(yynnBE(yyau =
2 [X X 2 [X X
6 X X X 6 X X X
5 X X X 5 X X X
3 X | X 3 X | X ’
1 X | X 1 X | X
4 X X X 4 X X X

WhereEl(yyy,n,u) = [62 €6 €5 €3 €1 64]T, K =2, NTyo = 1, nr,, = 2, nr,, = 1, NC,, = 1,
ne,, = 1, andng, , = 0. Restricting the number of diagonal blocks asyiry(y ,u) so that
we have g2 x 2) block partitioning in which the first diagonal block is uppfangular, we
obtain the partitioning on the right.

3.2. Partitioning 2. In this partitioning, diagonal blocks of order one are teglaas in
partitioning 1. Ordering of the remaining diagonal blocksiot changed except for those of
order two. When Cutfind is used, for blocks of order two, (advily) the first state is moved
to the first diagonal blocKy o, which is lower—triangular, and the second state is moved to
the last diagonal blocK'x 11, x+1. While generating the overall permutation, consecutive
processing of diagonal blocks is essential to ensure therldwangularity ofl; o. When
Cutfind is used, diagonal blocks 1,75, ..., Tk k should be all lower—triangular. In the
end, we have a partitioning of the form

ETNA
Kent State University
http://etna.math.kent.edu

78 T. DAYAR AND G. N. NOYAN

EQ(yyy-,n,l)BEzT

(yyml) —
NTy,0 ncy,, N1,y NCcy, NThs 0 NCxx NTrx MNCri1 ki1
" Too 20, K41]
Yip | Ciq | Y11 Chx+1
Tio | Z11 | Tia 21K +1
Yoo | Con | You1 | Coo | Yapo Co k41
Too | Z2a | Ton Zao | Top 2o, K+1 7
Yo | Cka | Y1 | Ck2 | Yk || Ckx | Yex | Crxs1
Tro | Zrka | Tra | Zro | Tk |- | Zrx | Tex | 2K, K41
L Y11,0/Cr411|Yr4+1,1|Cr+1,2|Yr+1,2] - |Cra1,6 | Yr+1,5 |Cr 41, K41

so thatnb = nr,, + K + Ny iy — b2 andJ = Lngy >0 + 2K + 1o, 0500
where Ey(y , 1 1) IS the corresponding permutation matrix. When Cutfind is rs&tduas in
(y,n,n,l), we still place the first states of diagonal blocks of ordeo &fter the block of
states corresponding to states with zero off—diagonal lements and the second states of
diagonal blocks of order two at the end of the permutationid®mibre the block of states
corresponding to states with some off-diagonal row elemémisee whether there is any
merit in this permutation. Recall that partitioning 1 does mandle diagonal blocks of order
two as such when Cutfind is not used.

When a block upper—triangular form is desired with Tarjaig®ethm in partitioning 2,
diagonal blocks of order one should be checked for zero @ahal elements in columns
rather than rows as in partitioning 1. Since we do not see amit in restricting the number of
diagonal blocks to 2 in partitioning 2, we do not considergheametersy(y,y,|), (y,y.y,u),
(y,nyy,l),and ¢,ny,u).

ExampLE 3.1. (Continued.) Now, we consider partitioning 2 on our vaednirix of 6
pages. We again place state 2 at the end of the permutatianthé&arreducible diagonal
block of order two, the first state is placed in the first diagdsiock and the second state is
placed in the last diagonal block. Since the result of thedi@ialgorithm on the diagonal
block of order three is the same as in partitioning 1, statepldced in the cutset and states
5 and 6 are permuted 6|7 to obtain a lowertriangular diagonal block. The permotati
vector become§l 4 5 6 3 2|7 and we have the four diagonal blocks given in

1 X X
4 X[X X
T 5 X | X X
EQ(Y,Yanyl)BEQ(y,ym,l) = 6 X | X X ’
3 X X
2 X X X

whereEyy v n1) = [e1 €4 €5 €6 €3 e2]T. In this example K = 1 andng, , = 1, n¢, , =1,
nr, = 2,n¢,, = 2. Note that the first and the third blocks are lower—triangula

If an upper—triangular orientation is used with partitiogi2, we will end up with the

ETNA
Kent State University
http://etna.math.kent.edu

GOOGLE-LIKE STOCHASTIC MATRICES 79

nonzero structure in

2 X X X

1 X X

4 X[X X

T
EQ(Y7YaH=u)BE2(y,y,n,u) = 6 X X X)

5 X X | X

3 X X
where By ynu) = [€2 €1 €4 €6 €5 es]’, K = 1, nr,, = 2, n¢,, = 1, ny,, = 2, and

nc,, = 1. Note that the first and the third blocks are upper-triangula

Partitionings 1 and 2 do not guarantee that all diagonalksl@ce triangular. The next
subsection discusses how one can obtain such a partitioning

3.3. Partitioning 3. This partitioning is obtained with a recursive proceduredidgo-
nal block considered at a particular recursive call (at trst fiall, B) is block triangularized
using Tarjan’s algorithm so that it has irreducible diagdnacks along its diagonal. Diago-
nal blocks of order one and two are processed as before withtling the Cutfind algorithm,
and the Cutfind algorithm is run on each irreducible diagdhadk of order larger than two.
In the (2 x 2) block partitionings obtained as such, the non-triangulagahal blocks as-
sociated with the cutsets are grouped together and inputetaéxt recursive call, while
blocks associated with the cutset's complements are wlanged and grouped together into
a larger triangular block. Recursion ends when each n@mgular diagonal block is of order
less than two. We denote the permutation matrix correspgntdi partitioning 3 ag”s, and
remark that the permutation obtained for lower—triangalé&ntation is the reverse of that of
the upper—triangular one.

The implementation of partitioning 3 uses the same datatstrels and routines as in
partitionings 1 and 2 except that it requires three addiiorteger work arrays having lengths
nz, (n+1), andn, wherenz denotes the number of nonzero elementBoNote thatuz less
n is 7. The first two of these arrays are used for storing the norzattern of the submatrix
to be considered at that recursive call and the last one toddgbe permutation in between
recursive calls.

ExampLE 3.1. (Continued.) For partitioning 3, in the first recursiad!, after symmet-
rically permutingB according to the outcome of Tarjan’s algorthm, we have tdiagonal
blocks, the first two of which are of order two and one. So, th#i@d algorithm need not be
executed on them. Therefore, states 1 and 2 are moved totdet’siccomplement and state
3 is moved to the cutset. Application of Cutfind to the thiméducible diagonal block yields
its cutset ag4}, and therefore the cutset's complemen{a%}. Lower—triangularization of
the diagonal block incident ofb, 6} using Tarjan’s algorithm gives the permutation vector
[56]7. Hence, the overall permutation vector at the end of therfatrsive call is obtained
as[341256]”. Restricting the number of diagonal blocks so that we hai@>a2) block
partitioning in which the second diagonal block of orderrfeulower—triangular, and in the
second recursive call, applying Tarjan’s algorithm to thst filiagonal block of order two,
we obtain two irreducible diagonal blocks of order one eatherefore, the cutset is the
empty set, cutset's complement beconigsd}, and recursion ends. Note that now we have

ETNA
Kent State University
http://etna.math.kent.edu

80 T. DAYAR AND G. N. NOYAN

a partitioning in which both diagonal blocks are lower-galar

3 X X
4 X X X
. 1 |X X
E3(y7yvn»1)BE3(y,y,n,l)) X X X)
5 X X X
6 X X X
whereEs v n1) = [e3 ese1 ez es5 ee]T .

If an upper—triangular orientation is used with partitiogni3, we will end up with the
nonzero structure in

6 [X X X
5 X X X
. 2 X X X
ES(y’y,nA,u)BES(y,y)mu) = 1 X X ’
4 X X X
3 X X

whereEs(y v o) = [e6 €5 €2 €1 €4 e3]” and both diagonal blocks are upper—triangular.

3.4. Partitionings 4 and 5. Two straightforward partitionings are considered frdi#|[
Partitioningequal (here, 4) has/n diagonal blocks of ordey/n if n is a perfect square. If
n # L\/ﬁJQ, there is an extra diagonal block of order- L\/ﬁjz. Partitioningother (here,
5) uses diagonal blocks of order respectivelg, 3, It has about/2n blocks with the
largest diagonal block being of order roughi2n.

When partitionings 1 through 3 are employed with block iteessolvers ST — I is sym-
metrically permuted using the corresponding permutatiatrisa £ to obtain the coefficient
matrix A. With partitioni ThenA is scaled to have a diagonal of 1's and then transformed
from point form to block form based on the partitioning chasel is transformed to point
form and scaled back after the iterations are over.

In Table3.1, we summarize the way in which the twelve of the fourteenifanings we
have experimented with can be obtained using the permntasioggested by partitionings 1
through 3.

In the next section, we introduce six web matrices, theipprties, and the experimental
framework.

4. Experimental framework. Different problems resulting from the reducible web ma-
tricesStanford StanfordBerkeleyEu2005 WebGoogleln2004 andWebBaseare considered
by lettinga € {0.85,0.9,0.95,0.97,0.99}. Hence, altogether there are thirty problems that
are analyzed. Th8tanford StanfordBerkeleyandWebGooglenatrices come from the Uni-
versity of Florida Sparse Matrix Collectio8][All matrices model parts of the hyperlinked
web of pages around the world and solving them would rank figeg. The matricdsu2005
andIin2004are crawled by UbiCrawle#] 26] and uncompressed using the WebGrapIB8p]
software. TheNebBasenatrix is obtained from the Stanford WebBase Proj8é}.[The six
matrices we consider have orders ranging between 281,903,662,002, and possess dan-
gling nodes. The matrices lack (some) diagonal elements.

Each matrix is obtained from a file which stores in compactsgpeow format the matrix
columnwise without (some) diagonal entries. In other wpedxch file stores the nonzero
structure ofP” in compact sparse row format and must be read as such. Thiagniagonal

ETNA
Kent State University
http://etna.math.kent.edu

GOOGLE-LIKE STOCHASTIC MATRICES 81

TABLE 3.1
Obtaining partitionings 1 through 3 oB.

Partitioning Steps

1(,y,nl) | (1) Apply Tarjan’s algorithm to obtain block lower-triariguform.

(2) Move states of diagonal blocks of order one with zeroditigonal row elements to
beginning, those with some off-diagonal row elements to enmeohutation.

(3) Apply the Cutfind algorithm to each diagonal block of arligger than two;
move states in cutset’s complement towards beginning and ste¢eitset towards
end of permutation; lower—triangularize diagonal blocktates in cutset’'s complement;
for diagonal blocks of order two, move first state towards erdisecond state towards
beginning of permutation.

(4) All states moved towards beginning of permutation fornt fil@ver—triangular)
diagonal block; all other subsets of states moved toward®Epermutation
form remaining diagonal blocks.

1(y,y,nu) Asin1(y,y,n,) except ‘lower and ‘row’ are replaced with ‘upper’ and ‘cohn’.
1(y.yy,.l) Asin1(y,y,n,l) except step (4) is changed such that

all other subsets of states moved towards end of permutationdecond diagonal block.
1(y.y.y.u) Asin 1 (y,y,n,u) except step (4) is changed such that

all other subsets of states moved towards end of permutationdecond diagonal block.
1(y,n,nl) Asin1(yy,n,) exceptstep (3) is omitted.
1(y,n,n,u) Asin1(y,y,n,u) except step (3) is omitted.

2(yy.nl) | (1) Asinstep(l)ofly,y,n,l).
(2) Asinstep(2)ofly,y,n,l).
(3) For diagonal blocks of order two, move first state towarelgitning of permutation and
second state towards end of permutation.
(4) Apply the Cutfind algorithm to each diagonal block of arégger than two;
move states in cutset's complement towards beginning and
states of cutset to end of states in diagonal block;
lower—triangularize diagonal block of states in cutsetmplement.
(5) All states moved towards beginning of permutation fornt fl@ver—triangular)
diagonal block; all other subsets of states form remainiagainal blocks.
2(y.,y,nu) Asin2(y,y,n,l) except ‘lower and ‘row’ are replaced with ‘upper’ and ‘cohn’.
2(@y,n,nl) Asin2(y,y,n,l) except step (4) is omitted and step (5) is changed such that
only states moved to beginning of permutation in step (2) forst fiower—triangular)
diagonal block; all other subsets of states form remainiagaiial blocks.
2 (y,n,n,u) Asin 2 (y,y,n,u) except step (4) is omitted and step (5) is changed such that
only states moved to beginning of permutation in step (2) forst fupper—triangular)
diagonal block; all other subsets of states form remainiagaiial blocks.
3(.y.nl) Recursively:
(1) Apply Tarjan’s algorithm to obtain block lower—triariguform.
(2) Process diagonal blocks of order one and two withouingathe Cutfind algorithm.
(3) Apply the Cutfind algorithm to all other diagonal blocks.
(4) Lower-triangularize diagonal blocks associated wittsets’ complements and
group them together into a larger triangular block.
(5) Ifthere is a cutset with more than one state, group statescated with cutsets
together and make a recursive call with corresponding dialgdock.
3(y.y,n,u) Asin 3 (y,y,n,l) except ‘lower’ is replaced with ‘upper’.

elements are inserted into the corresponding data stascfar all solvers except POWER so
as to facilitate the construction @ = R” — I. Here we remark that it is possible to
implement the point solvers J and GS without formiigas discussed inlp]. A software
implementation in the form of a Java code which has done sdeaiound at 23]. Now,
note that the particular sparse format in the files favors PBW&wo ways. Since there is
no need to transpose” to work on the rows ofP to handle diagonal elements at the outset
for POWER, memory for missing diagonal elements and trarisposieed not be allocated.
This is not the case for the other solvers and is also merdiom§l6]. That is, POWER
can work by postmultiplyingk” = oPT with a column vector at each iteration aftef’

is read into the compact sparse row format data structurkeeadtitset. This translates to

ETNA
Kent State University
http://etna.math.kent.edu

82 T. DAYAR AND G. N. NOYAN

TABLE 4.1
Properties of web matrices.

dangling missing order of largest

Matrix n nz' nodes diagonal elements nb diagonal block
Stanford 281,903 2,312,497 20,315 281,903 29,914 150,532
StanfordBerkeley 683,446 7,583,376 68,062 683,446 109,238 333,752
Eu2005 862,664 19,235,140 71,675 361,237 90,768 752,725
WebGoogle 916,428 5,105,039 176,974 916,428 412,479 434,818
In2004 1,382,908 16,917,053 86 1,005,498 367,675 593,687
WebBase 2,662,002 44,843,770 574,863 2,662,002 954,137 1,390,621

savings in memory and time for POWER. For all the other sojweesallocate a floating—
point array to store the diagonal elementdifscale the rows so that the diagonal elements
are all 1 and unscale them back at the end as it is done in the M{ysis software tool
MARCA [34]. This saves the flops due to diagonal elements at eachidgier&®ecall that the
software tool L0, 11] also works with irreducible MCs whem is set to 1. Furthermore, each
solver including POWER needs at least two floating—pointyard lengthn to compute an
approximate error norm to test for convergence and theuakitbrm upon stopping. GS (that
is, SOR when the relaxation parameteis 1) can do with one floating—point array of length
n during the iterative process but still needs the seconditfiggttoint array for the residual
norm computation. However, certain optimizations thatriove the memory requirements
and timings of our code may be possible. Finally, the roufioen [37] that implements
Tarjan’s algorithm is available for research purposes.

Information regarding the web matrices used in the exparismappears in Tablé.1
The first column provides the matrix name. Columnandnz’ give the order of the matrix
and its number of nonzeros as read from the input file. Colufousand five provide its
numbers of dangling nodes and missing diagonal elementscd;i¢he number of nonzeros
in B is given bynz = nz’+ missing diagonal elements. Columib lists the number of
diagonal blocks returned by Tarjan’s algorithm BnFinally, the last column gives the order
of the largest one among thé diagonal blocks. The order of the smallest diagonal block in
each matrix is 1 since each matrix has at least one danglitg, @md therefore is not listed in
the table. Computation of /nb reveals that the average order of diagonal blocks returged b
Tarjan’s algorithm is respectively 9.4, 6.3, 9.5, 2.2, 2.8, in one decimal digit of precision
for the matrices in the given order.

TABLE 4.2
Nonzero structure of the partitionings d# for the Stanfordmatrix.

Partitioning J min; n; max;n; ni nz1 Eln;] Elnz;] nzops Meding
1(yy.nl) 3520 1 159,037 159,037 452,823 80 332 1,425,977 2
1(y,y,nu) 3,520 1 179,180 179,180 517,281 80 339 1,401,385 2

1yyyl) 2 122,866 159,037 159,037 452,823 140,952 650,834 1,292740,952
1(yy.y.u) 2 102,723 179,180 179,180 517,281 140,952 608,351 1,887H40,952

1(.,nnl) 3,520 2 150,532 172 172 80 673 224,891 6
1(y,n,nu) 3,520 2 150,532 20,315 20,315 80 668 244,614 6
2(y.ynl) 4,776 1 100,162 1,303 1,356 59 241 1,441,346 6
2(y,y,nu) 4,776 1 100,162 21,446 21,569 59 237 1,461,074 6
2(y,nnl) 3,520 1 150,532 172 172 80 673 226,848 6
2 (y,n,nu) 3,520 1 150,532 20,315 20,315 80 667 246,646 6
3@yy.nu) 42 1 185,332 185,332 555,177 6,712 16,845 1,886,918 52
4(Mnnu) 531 530 1,003 530 534 531 538 2,308,602 530
5@nnu) 751 1 750 1 1 375 380 2,308,739 375

ETNA
Kent State University
http://etna.math.kent.edu

GOOGLE-LIKE STOCHASTIC MATRICES 83

TABLE 4.3
Nonzero structure of the partitionings d for the StanfordBerkeleymatrix.

Partitioning J minjn; max;n; ny nz1 E[nj] Elnz] nzo.py meding
1(@.y.nl) 6,750 1 360,788 360,788 1,013,364 101 601 4,208,017 3
1(yy.nu) 6,750 1 424,115 424,115 1,195,425 101 553 4,534,222 3
1yyyl) 2 322,658 360,788 360,788 1,013,364 341,723 2,348,3030256 341,723
1(y.y.y.u) 2 259,331 424,115 424,115 1,195,425 341,723 1,975,004648385 341,723
1(.,nnl) 6,750 2 333,752 4,735 4,735 101 1,087 926,824 6
1(y,n,nu) 6,750 2 333,752 68,062 68,062 101 1,021 1,371,763 6
2(.y.nl) 10,116 1 227,157 6,426 6,484 68 398 4,239,810 5
2(y,y,nu) 10,116 1 227,157 69,753 69,870 68 354 4,685,016 5
2(y.nnl) 6,750 1 333,752 4,735 4,735 101 1,087 928,567 6
2(y,n,n,u) 6,750 1 333,752 68,062 68,062 101 1,021 1,373,832 6
3(y.y.nu) 163 2 458,614 458,614 1,719,076 4,193 12,946 6,156,597 10

4 (n,n,n,u) 827 826 1,170 826 4,340 826 4,931 4,188,520 826
5(,n,nu) 1,169 1 1,168 1 1 585 3,465 4,216,462 585

TABLE 4.4
Nonzero structure of the partitionings ds for the Eu2005matrix.

Partitioning ~ J min; n; max;n; ny nzi Elnj] Elnzj] nzory Medin;
1(yynl) 1,162 1 465,433 465,433 1,354,607 742 9,087 9,028,274 2
1(.y,nu) 1,163 1 546,874 546,874 1,875,258 742 9,452 8,603,667 2

1yyyl) 2 397,231 465,433 465,433 1,354,607 431,332 5,618,481598185 431,332
1(y.y.y.u) 2 315,790 546,874 546,874 1,875,258 431,332 5,516,56663286 431,332

1(y,nnl) 1,162 2 752,725 752,725 18,201,086 742 15,867 1,158,774 3
1(y.,n,nu) 1,163 2 752,725 81,441 81,441 742 15,841 1,173,377 3
2(y,ynl) 1,588 1 451,763 368 382 543 6,654 9,029,473 2

2(y,y,nu) 1,588 1 451,763 81,809 82,067 543 6,645 9,043,989 2
2(y,nnl) 1,162 1 752,725 752,725 18,201,086 742 15,867 1,158,974 3
2(y,n,nu) 1,163 1 752,725 81,441 81,441 742 15,841 1,173,734 3
3(yy.nu) 378 1 555,044 555,044 1,942,183 2,282 6,713 17,058,750 1
4 (n,n,nu) 929 928 1,480 928 11,808 929 7,829 12,322,997 928
5(,n,nu) 1,314 1 1,313 1 1 657 5,424 12,469,660 656

Representative plots of the resulting nonzero structuneeithe assumed partitionings
are provided in Figureg.1 and4.2 with the pertaining data interleaved in Tableg4.7.
The nonzero plots dstanfordresemble those alVebGoogleand the nonzero plots &tan-
ford_Berkeley In2004 WebBaseesemble those dEu2005 hence, their nonzero plots are
omitted. The number, location, and values of nonzeros isetlpartitionings have a signifi-
cant effect on the number of iterations performed by theesshand their respective solution
times. Note, however that the nonzero structureBofand hence those of its associated
partitionings, do not change for different valuescgfor will they change for different per-
sonalization vectors. Hence, time spent at the outset for computing the partitgsican
very well be justified if they are not significantly more thdwe titeration times. In Tables
4.2-4.7, the column “Partitioning” indicates the block partitiogi used and lists its param-
eters. Number of diagonal blocks, order of smallest ancekirdiagonal blocks, order and
number of nonzeros of the first diagonal block, average addraverage number of nonze-
ros of diagonal blocks (both rounded to the nearest integember of nonzero elements
lying in off—diagonal blocks, and median order of diagoriatks in the particular partition-
ing appear in columnd, min; n;, max; n;, n1, nz1, E[n;l, E[nz;], nzerr, and medn;,
respectively. Note that for partitioning 3, orientationtlé@ block triangular form is immate-
rial from a statistical point of view of the nonzero strueuand therefore, results only with
upper—triangular orientation are reported.

Some observations are due. Among the six web matrices, theeno plots ofB for

ETNA
Kent State University
http://etna.math.kent.edu

84 T. DAYAR AND G. N. NOYAN

nz = 19806377

(a) Original

iz« 19806377

(d) 1y.n,u)

o 2 ‘ B 0 13 2 q s s
= 19806377

(e) 1¢/,nn,l) (® 1 (y,n,nu)

x10 20:

06377

@ 2¢y.nl)

W0

iz = 19806377

(h) 2 .y.n.u)

i - 19506577

@) 2 (y.n,n.u)

- 19306377

@ 2@.nnl)

06377

(k) 3 (y.y.n.u)

10 1o

o

FiG. 4.1.Nonzero plots of the partitionings a8 for the Eu2005matrix.

StanfordandWebGooglgthe latter given in Figurd.2(a) indicate a more uniform distribu-

tion of their nonzeros across rows and columns. These twdaesatare of different orders,

but both look very dense. Note that neither the average afdée diagonal blocks returned

by Tarjan’s algorithm (9.4 and 2.2, respectively) nor therage number of nonzeros per row
(9.2 and 6.6, respectively) is similar for these two magicEor partitioning 3, the largest

percentage of nonzeros within diagonal blocks appear irsthafordand WebGooglema-

ETNA
Kent State University
http://etna.math.kent.edu

GOOGLE-LIKE STOCHASTIC MATRICES 85

O
x10

g

4 g 4 g 4 g
2 = 6021467 2 = 6021467 x10 2 = 6021467

(a) Original (b) Tarjan (©)1@,y.nl)

o

(d) 1¢.y.n,u)

g g

0 g
nz = 6021467

() 1¢.nnl) ® 1(y.n,nu) @ 2@.y.nl)

4 g
2 = 6021467

(h) 2¢.y.n.u)

vvvvvv

B _ . s
g o 2 O g B o 2
x10 e = 6021467 0

@ 2(y,nnl) @ 2(y,nn,u) (k) 3(y.y.n.u)

o
3 2 g

4 g 4 g
2 = 6021467 ne = 6021467 <

FIG. 4.2.Nonzero plots of the partitionings aB for the WebGooglematrix.

trices as well, with about 27% and 32%, respectively. Fos fhartitioning, it is also the
same matrices for which the average order of diagonal blackargest with about 16,835
and 27,771, respectively. We will see in the next sectio ttiase two properties work in
favor of partitioning 3 in all of the ten problems associatégth these two matrices. On the
other hand, the smallest number of nonzeros in the off—dialgolocks appear in partition-
ing 1 with parametersy(n,n,l) in all matrices exceptWVebGoogleandIn2004 for which it

ETNA
Kent State University
http://etna.math.kent.edu

86 T. DAYAR AND G. N. NOYAN
TABLE 4.5
Nonzero structure of the partitionings d# for the WebGooglematrix.
Partitioning J min;n; max; n; ni nz1 Enj] Elnzj] nzopf Meding
1(.y.nl) 12,876 1 524,850 524,850 1,057,698 71 234 3,013,372 1
1(yy,nu) 12,876 1 499,941 499,941 966,216 71 228 3,079,757 1
1yyyl) 2 391,578 524,850 524,850 1,057,698 458,214 1,624,3432731 458,214
1(yy.y.u) 2 416,487 499,941 499,941 966,216 458,214 1,783,650 A@84458,214
1(,n,nl) 12,876 2 434,818 201,883 201,883 71 371 1,243,063 4
1(y,n,nu) 12,876 2 434,818 176,974 176,974 71 371 1,242,875 4
2@yynl) 17,412 1 280,066 206,052 216,382 53 163 3,189,056 2
2(y,y,hu) 17,412 1 280,066 181,143 182,884 53 163 3,189,011 2
2(y,nnl) 12,876 1 434,818 201,883 201,883 71 371 1,247,096 4
2(y,n,nu) 12,876 1 434,818 176,974 176,974 71 371 1,238,462 4
3(y,y,nu) 33 1 722,666 722,666 1,640,818 27,771 58,624 4,086,863 299
4 (n,n,n,u) 958 579 957 957 957 957 962 5,099,746 957
5(,n,nu) 1,354 1 1,353 1 1 677 681 5,099,941 676
TABLE 4.6
Nonzero structure of the partitionings d# for the In2004matrix.
Partitioning J min; n; max;n; ni nz1 Eln;] Elnzj] nzorr mMedin;
1(yy,nl) 16,644 1 929,778 929,778 2,573,755 83 641 7,259,360 4
1(yy.nu) 16,644 1 635,092 635,092 1,745,311 83 619 7,618,442 4
1(y.yy,l) 2 453,130 929,778 929,778 2,573,755 691,454 5,427,03668409 691,454
1(y.y.y.u) 2 635,092 747,816 635,092 1,745,311 691,454 5,408,00806534 691,454
1(y,n,nl) 16,644 2 593,687 294,780 294,780 83 992 1,413,736 7
1(y,n,n,u) 16,644 2 593,687 94 94 83 1,002 1,239,060 7
2(y.y.nl) 26,978 1 384,611 297,934 305,915 51 375 7,809,139 4
2(y,y,n,u) 26,978 1 384,611 3,248 3,297 51 381 7,663,801 4
2(y.n,nl) 16,644 1 593,687 294,780 294,780 83 992 1,413,651 7
2(y,n,n,u) 16,644 1 593,687 94 94 83 1,003 1,230,381 7
3(y.y.n,u) 474 1 986,091 986,091 2,965,885 2,918 7,584 14,327,904 11
4(n,n,nu) 1,176 1,175 2,283 1,175 31,832 1,176 9,404 6,863,176 1,175
5(,n,nu) 1,663 1 1,662 1 1 832 6,615 6,922,088 832

is a contender. It is clear that this partitioning with Tafgaalgorithm employed to obtain
a block lower—triangular form seems to concentrate theelrgumber of nonzeros within
diagonal blocks. We will also see that this is something widef block iterative methods.
Finally, partitioning 4 returns balanced block sizes anbak a reasonable number of blocks
as intended.

In the next section, we provide the results of numerical grpents on the benchmark
matrices.

5. Numerical results. We compare the performance of sparse solvers in the software
tool [11] with an emphasis on the memory used, number of iteratidkentaaccuracy achieved,
time for preprocessing and solution. The numerical expenisiare performed on a2.66 GHz
Pentium IV processor with 4 GB main memory under the Linuxrapjeg system using the
03 optimization level in compiling the code. We provide thsults of experiments with three
solvers: POWER, GS, and BGS.

The stopping criteria used by all solvers is

k > mazit or ||2®) — 2+~ < stoptol,

wherek is the iteration numberpaxit is the maximum number of iterations to be performed,
andstoptol is the stopping tolerance. The solver BGS also uses theiamlitriteria

2 — =1 o < stoptol; and |||z®) — 2F=D || — [z* = — 22| | < stoptols.

ETNA
Kent State University
http://etna.math.kent.edu

GOOGLE-LIKE STOCHASTIC MATRICES 87

TABLE 4.7
Nonzero structure of the partitionings ds for the WebBaseamatrix.

Partitioning J min;n; max;n; ni nzi Eln;] Elnz;] nzopy Meding
1yy.nl) 8,584 11,635,593 1,635,593 5,085,941 310 2,030 30,0389,28 1
1(yy,nu) 8584 11,854,996 1,854,996 6,049,826 310 2,104 29,445,97 1
1yyyl) 2 1,026,409 1,635,593 1,635,593 5,085,941 1,331,001 29,39 28,420,294 1,331,001
1yyy.u) 2 807,006 1,854,996 1,854,996 6,049,826 1,331,001 1,868&4,348,156 1,331,001
1(y.,nnl) 8,584 21,390,621 355,460 355,460 310 4,541 8,523,737 3
1(y,n,nu) 8,584 2 1,390,621 574,863 574,863 310 4,528 8,634,908 3
2(yynl) 10,188 11,054,569 358,949 362,330 261 1,655 30,647,129 4
2(y,y,nu) 10,188 11,054,569 578,352 585,200 261 1,644 30,755,389 4
2(y,nnl) 8584 11,390,621 355,460 355,460 310 4,541 8,524,636 3
2(y,nnu) 8584 11,390,621 574,863 574,863 310 4,528 8,636,363 3
3(.y,nu) 404 1 2,225,698 2,225,698 8,197,002 6,589 21,962 38,883,1 10

4 (n,nnu) 1,632 1,631 1,841 1,631 50,035 1,631 11,114 29,368,144 311,6
5(,n,nu) 2,307 1 2,306 1 1 1,154 7,675 29,799,021 1,154

The use ofstoptol; andstoptols forces the solver to terminate when the norm of the resid-
ual is decreasing too slowly, while the differences betwwemsuccessive iterates is small
enough. We lestoptol = 10710, stoptol; = 1075, andstoptols = 10712, respectively,
whereasnaxit = 5, 000.

For the block iterative methods, the triangular diagonatks are solved exactly at each
outer iteration with the help of the Shermann—Morrison folam The remaining diagonal
blocks are solved approximately using the correspondingt pierative method. BGS has
two additional parameters indicating maximum number atetaoce of inner iterations to
be performed with GS for the solution of diagonal blocks. Vakies of these parameters are
respectively elements of the s€t3, 5} and {1072,107°,1071°}. Hence, six experiments
are carried out with each of the partitioning parametergpixthose of partitioning 3, which
makes altogether seventy—four experiments for each prowliéh the BGS solver.

Now, we present our results and then make a general summalnlesb.1 through5.6
provide results from the experiments for each web matrik wit {0.85,0.9,0.95,0.97,0.99}.
In each table, besides POWER and GS, we have also indicatB&tBasolver which gives the
minimum total solution time for each partitioning. The awmin “Solver” indicates the name
of the solver and, for BGS solvers, the partitioning used\itg parameters. The column
“MB” provides the memory requirement of the solver in megay Note that this column
includes memory for nonzeros in the matrix and (except POWESR)anspose. The columns
“Iterations” and “Residual” give the number of iteratiorsrformed and the infinity norm of
the residual vector (i.ex(*) — (%) S or — Az(*) depending on the solver) upon stopping. The
setup time and the total solution time in seconds (s) arengivéhe next two columns. The
setup time includes time for reading the web matrix from tipui file, allocating and setting
the necessary data structures, and wherever applicabl@gthe coefficient matrix, com-
puting the partitioning, transforming the sparse pointespntation of the coefficient matrix
to a sparse block representation, transforming and scilvagk after the iterations are over.
The total solution time is the sum of setup and iteration §infénally, the last column gives
the ratio of the total partitioning time to one iteration #rof POWER, rounded to the nearest
nonnegative integer. In other words, the column “Ratio”i¢ates the nhumber of POWER
iterations that can be executed during the time the reygepértitioning is computed. The
bold number shows the best overall total timing result irhgable. The identities of winning
solvers according to minimum total solution time coincidéwthose of minimum iteration
time in all problems exceptebBaseavith @ = 0.85, where it will become BGS with parti-
tioning 1 ,n,n,l) rather than GS if we consider minimum iteration time. We twamark

ETNA
Kent State University
http://etna.math.kent.edu

88 T. DAYAR AND G. N. NOYAN

that it is acceptable for timing results of an experimentot#d by different runs on the same
platform to differ by 10-15% due to various effects. The dosions we derive take this into
account.

TABLE 5.1
Results for the&Stanfordmatrix.

o Solver MB lterations Residual Setup (s) Total(s) Ratio
0.85 POWER 38 103 8.4e-11 1.2 10.1
GS 50 45 59e-11 1.3 5.9
BGS1¢,nnl)3,10-19 86 18 9.2e-11 2.5 5.5 15
BGS2,y,nl)3,107% 110 42 6.4e-11 3.0 5.4 21
BGS3,y.n,l) 122 44 5.3e-11 3.1 4.9 22
BGS 4 f,n,n,u) 3,10~3 86 45 509e-11 1.8 6.2 7
BGS 5 fi,n,n,u) 5,103 86 45 5.9e-11 1.8 6.2 7
09 POWER 38 154 7.6e-11 1.3 14.3
GS 50 65 7.5e-11 1.4 8.0
BGS1f,nn,l)3,10-10 86 26 7.1e-11 2.5 6.9 14
BGS2¢,y,nl)3,107% 110 62 7.2e-11 3.0 6.6 20
BGS3f.,y.,n,l) 122 63 7.0e-11 3.1 5.7 21
BGS 4 fi,n,n,u) 3,103 86 65 7.5e-11 1.8 8.1 6
BGS 5 f,n,n,u) 3,10~2 86 65 7.5e-11 1.6 8.0 4
0.95 POWER 38 288 9.1e-11 1.2 25.6
GS 50 124 8.6e-11 1.4 13.9
BGS1¢,nnl)3,10-10 86 45 7.6e-11 25 10.3 15
BGS2f,y,nl)3,107% 110 118 8.2e-11 2.9 9.8 17
BGS3.,y,n,l) 122 117 8.8e-11 3.2 8.0 24
BGS 4 f,n,n,u) 3,103 86 124 8.6e-11 1.8 13.9 7
BGS 5 ,n,n,u) 5,10~3 86 124 8.6e-11 1.8 13.9 7
0.97 POWER 38 475 9.6e-11 1.2 41.4
GS 50 201 9.0e-11 1.4 21.7
BGS1¢,nnl)510°10 86 43 8.6e-11 2.4 14.2 14
BGS2,y,nl)3,107% 110 192 9.0e-11 3.1 14.1 22
BGS3,y.n,l) 122 191 9.3e-11 3.2 11.1 24
BGS 4 f,n,n,u) 5,10~2 86 201 9.0e-11 1.7 21.3 6
BGS 5 f,n,n,u) 3,103 86 201 9.0e-11 1.7 21.4 6
0.99 POWER 38 1,319 9.9e-11 1.2 1125
GS 50 574 5.6e-11 1.4 59.3
BGS1f,yy,l)3,107% 108 566 5.4e-11 3.0 35.0 21
BGS2,y,nu) 3,107 110 588 9.6e-11 3.0 36.2 21
BGS 3 {/,y,n,u) 122 552 7.4e-11 3.1 25.8 23
BGS 4 f,n,n,u) 3,103 86 574 5.6e-11 1.8 57.7 7
BGS 5 f,n,n,u) 5,10~3 86 574 5.6e-11 1.7 57.7 6

5.1. Empirical observations. The results show that we can solve the largest and most
difficult problem in our suite of thirty problems in less thBour minutes on the given plat-
form. The winning solver according to iteration time is ay@aBGS. It is BGS with parti-
tioning 1 in 17 problems, BGS with partitioning 3 in 10 prafig, and BGS with partitioning
4in 3 problems. In general, the time to compute partitiosihghrough 3 are only a fraction
of the iteration time if the time to read the matrix and prepide data structures is excluded
from the setup time. That is, partitioning time is roughlyiebto the setup time of BGS with
the respective partitioning minus the setup time of POWER.

BGS with partitioning 3 and lower—triangular orientatisrwinner in theStanfordmatrix
with o € {0.85,0.9,0.95,0.97}. As reported in Tablé&.1, it is also the winner forx =
0.99, but with upper-triangular orientation. BGS with partitiog 3 is also the winner in
the WebGooglematrix with lower—triangular orientation for € {0.85,0.9} and upper—
triangular orientation forv € {0.95,0.97,0.99}. For these two web matrices, there seems

ETNA
Kent State University
http://etna.math.kent.edu

GOOGLE-LIKE STOCHASTIC MATRICES 89
TABLE 5.2
Results for thé&StanfordBerkeleymatrix.
@ Solver MB Iterations Residual Setup(s) Total(s) Ratio
0.85 POWER 115 93 7.7e-11 3.1 95
GS 152 55 6.3e-11 3.4 7.8
BGS1f,nnl)3,10°10 254 20 5.3e-11 4.0 7.6 13
BGS2{,nn,l)3,10°> 254 44 6.2e-11 4.1 8.7 15
BGS 3 {/,y,n,u) 357 42 7.2e-11 7.0 11.7 57
BGS4 ,n,nu) 3,102 254 55 6.3e-11 3.7 8.5 9
BGS5@,n,nu) 3,102 254 55 6.3e-11 3.7 8.5 9
09 POWER 115 143 8.5e-11 3.4 13.2
GS 152 78 7.le-11 3.4 9.7
BGS1¢,n,n,l)3,1010 254 27 7.7e-11 4.2 9.2 12
BGS2{,nn,l)3,107°> 254 65 8.7e-11 4.2 10.8 12
BGS 3 {/,y,n,u) 357 64 7.5e-11 6.8 14.0 50
BGS 4 Q,n,nu)3,1072 254 78 7.1e-11 3.6 10.4 3
BGS5f,n,nu) 3,102 254 78 7.e-11 3.8 10.7 6
0.95 POWER 115 292 9.5e-11 3.0 23.0
GS 152 143 8.5e-11 3.4 15.0
BGS1¢.nnl)510°10 254 31 1.2e-10 4.2 12.7 18
BGS2f,y.,nl)3,10°2 320 119 7.4e-11 4.6 16.5 23
BGS 3 §/,y,n,u) 357 128 8.5e-11 6.9 21.3 57
BGS4 ,n,nu) 3,10 254 142 8.6e-11 3.9 16.4 13
BGS5@,n,nu)5,107° 254 137 9.3e-11 3.6 15.8 9
0.97 POWER 115 490 9.6e-11 3.1 36.5
GS 152 239 9.de-11 3.4 225
BGS1¢,n,n,l)5 10710 254 52 1.5e-10 4.1 17.7 15
BGS2f,y,nu)5,1072 320 186 9.0e-11 4.6 23.0 22
BGS3,y.,n,l) 357 209 9.1e-11 6.7 30.1 53
BGS 4 fi,n,n,u) 3,10~ 10 254 169 9.2e-11 3.7 22.4 9
BGS 5 (,n,n,u) 3,10~ 10 254 173 9.0e-11 3.8 22.8 10
0.99 POWER 115 1,454 9.8e-11 3.1 101.7
GS 152 719 9.7e-11 3.4 61.2
BGS1¢,n,n,l)510-10 254 138 1.1e-10 4.1 40.9 15
BGS2f,y,nu)3,1072 320 524 9.8e-11 4.8 56.8 25
BGS3,y.,n,l) 357 559 9.7e-11 6.7 69.3 53
BGS 4 @,n,n,u)3,10710 254 454 9.7e-11 3.9 53.4 12
BGS5 f,n,n,u) 3,100 254 411 9.5e-11 4.2 49.6 16

to be a value ofx beyond which the BGS solver favors upper—triangular oaéon with
partitioning 3 as the problem becomes more difficult to solWe remark that we use forward
BGS and the block lower—triangular part 4fas the preconditioning matri/. It is that part
which multiplies the values of the current approximatiarterestingly, it is only th&tanford
andWebGooglematrices in which partitioning 3 accompanies a winning snlWot all web
matrices need to look the same, and 8tanfordmatrix may not be a good representative
most probably due to its relative smallness. But, partitigr8 also yields a winning solver
with BGS in WebGooglewhich has an order of about a million and significantly diffet
statistical features thaBtanfordas pointed out in sectioh. When BGS is a winner with
partitioning 3, the improvements in iteration time comphte the second best solver, GS,
and POWER are respectively more than 21%, 47%, and 74%. Tbhesspond to speedups
of more than 1.3, 1.9, and 3.8. In Figusel(a), we plot the % change in iteration time of
BGS 3 {/,y,n,u) over that of GS for the ten experiments carried out with $t@nfordand
WebGooglenatrices. The graph shows that the improvement in iterdiioe is at least 45%
for this set of experiments. In general, the time to compatifpning 3 becomes relatively
large compared to those of other partitionings as the ortineomatrix increases, due to
the relatively large number of recursive calls performedwiver, it is still dependent on the

ETNA
Kent State University
http://etna.math.kent.edu

90 T. DAYAR AND G. N. NOYAN
TABLE 5.3
Results for thé&eu2005matrix.
« Solver MB Iterations Residual Setup(s) Total(s) Ratio
0.85 POWER 256 90 7.9e-11 7.6 20.3
GS 340 48 4.5e-11 8.6 16.0
BGS1f,nnl)5 10710 542 11 5.4e-11 9.5 15.5 13
BGS2§,nn,l)5 10> 542 43 7.le-11 9.6 18.0 14
BGS3§,y.nl) 746 41 7.1e-11 19.1 29.5 81
BGS 4 ,n,n,u)3,10°°> 542 44 53e-11 8.8 16.0 9
BGS 5 f,n,n,u)5,10°° 542 44 56e-11 9.0 16.3 10
09 POWER 256 137 8.1e-11 7.4 26.7
GS 340 71 4.0e-11 8.3 19.2
BGS1¢,nnl)510"10 542 15 5.8e-11 9.6 18.5 16
BGS2f,nnl)3,1073 542 72 1.8e-11 9.6 22.2 16
BGS3{.,y.nl) 746 63 7.1e-11 18.9 34.9 82
BGS4 Q,nnu)3,10710 542 52 7.0e-11 8.6 18.8 9
BGS560,nnu)3,10°10 542 53 8.0e-11 8.8 19.1 10
095 POWER 256 269 9.4e-11 77 452
GS 340 140 1.7e-11 8.5 29.9
BGS1f,nnl)3,10°10 542 47 8.2e-11 9.6 29.1 14
BGS2f,ynl)3,1073 663 132 6.7e-11 10.5 33.6 20
BGS3§,y.nl) 746 127 8.7e-11 18.6 50.8 78
BGS4 O,nnu)3,10°10 542 96 9.0e-11 8.9 27.2 9
BGS5 fi,n,n,u)3,10719 542 98 8.le-11 9.1 27.8 10
0.97 POWER 256 434 9.6e-11 7.3 67.5
GS 340 228 2.3e-11 8.6 43.6
BGS1(,n,nu)3,10710 542 85 5.6e-11 9.8 43.0 18
BGS2f,ynl)3,1073 663 214 7.7e-11 10.5 47.9 23
BGS3§.,y.nl) 746 210 9.1e-11 18.5 71.8 81
BGS4 O,nnu)3,10°10 542 168 9.2e-11 8.9 40.1 12
BGS560,nn,u)3,1010 542 171 9.3e-11 9.9 42.0 19
099 POWER 256 1,258 9.9e-11 7.4 182.5
GS 340 634 4.8e-11 8.3 105.9
BGS1(,nnl)3,10°10 542 267 7.0e-11 9.9 115.1 18
BGS2f,ynl)3,107% 663 590 8.3e-11 10.5 113.3 22
BGS3§.,y.nl) 746 594 9.5e-11 18.9 169.5 83
BGS 4 fi,n,n,u)3,10710 542 502 9.6e-11 8.9 100.9 11
BGS560,nnu)3,10°10 542 511 9.7e-11 8.8 102.8 10

value ofJ, the number of blocks irl, that comes up as a result of the computation. When
relatively small, the partitioning time will also be relatly small. Note that/ equals 42 and
33 with partitioning 3 for theStanfordand WebGooglematrices, respectively. Although the
Cutfind algorithm shortens time per outer iteration, it deest the expense of an increased
number of iterations, and this sets back the total solutio®.t In any case, partitioning
3 is to be recommended for web matrices having nonzero pothase ofStanfordand
WebGoogleand the larger partitioning time will be clearly offset whthe same web matrix
is used multiple times.

GS is producing minimum total solution time in théebBasematrix with « = 0.85,
but is a runner—up in eleven other problems. However, if mimh iteration time is consid-
ered, it is never a winner, and a runner—up only in eight moisl. GS consistently reduces
the number of iterations with a factor of about 2 over that @WER and does not have
much overhead associated with preprocessing, which makenpetitive as observed in the
literature before. BGS with partitioning 4 is producing imim solution time in three prob-
lems, namelyEu2005with o € {0.95,0.97,0.99}, and performs relatively well in all other
problems. When only Tarjan’s algorithm is employed, BGS wpiintitioning 1 is producing
minimum total solution time in the remaining sixteen prabte(seventeen if minimum itera-

ETNA
Kent State University
http://etna.math.kent.edu

GOOGLE-LIKE STOCHASTIC MATRICES 91
TABLE 5.4
Results for th&VebGooglematrix.
e Solver MB Iterations Residual Setup(s) Total(s) Ratio
0.85 POWER 97 92 8.0e-11 3.2 32.8
GS 127 42 5.7e-11 3.9 19.4
BGS1f{,nnl)5 1010 225 11 4.0e-11 8.0 18.6 15
BGS2,nn,l)3,1073 225 42 7.4e-11 8.0 21.2 15
BGS3,y,n,l) 324 41 6.8e-11 9.8 17.5 21
BGS4{,n,nu)3,10-2 225 42 57e-11 5.3 20.3 7
BGS5@,n,nu) 3,102 225 42 57e-11 5.3 20.2 7
09 POWER 97 142 8.4e-11 3.4 48.7
GS 127 63 5.8e-11 3.8 26.9
BGS1¢,n,n,l)3,10710 225 24 7.1e-11 8.0 245 14
BGS2f,y,nu)3,1072 295 60 7.5e-11 10.1 26.9 21
BGS3f,y.,n,l) 324 61 7.9e-11 10.0 21.4 21
BGS 4 @,n,nu)3,107°> 225 63 5.8e-11 5.2 27.7 6
BGS5f,n,nu) 3,102 225 63 5.8e-11 5.3 27.8 6
0.95 POWER 97 291 9.de-11 33 96.2
GS 127 121 7.7e-11 3.9 48.4
BGS1¢,nnl)3,10°10 225 46 8.2e-11 8.0 41.3 15
BGS2f,y,n,u)3,10-3 295 118 8.4e-11 10.3 43.2 22
BGS 3 {/,y,n,u) 324 127 8.le-11 10.0 33.7 21
BGS4 ,n,nu) 3,102 225 121 7.7e-11 5.2 48.5 6
BGS5f,n,nu)3,1073 225 121 7.7e-11 5.3 48.5 6
0.97 POWER 97 489 9.6e-11 33 159.3
GS 127 195 8.2e-11 3.8 75.7
BGS1¢,n,n,l)3,10710 225 74 8.7e-11 8.1 60.9 15
BGS2f,y,nu)3,1073 295 191 9.le-11 10.1 63.4 21
BGS 3 {/,y,n,u) 324 204 8.9e-11 9.9 48.0 21
BGS 4 @,n,nu)5,1073 225 195 8.2e-11 5.4 75.0 7
BGS5(,n,nu)5,10~2 225 195 8.2e-11 5.3 75.0 6
0.99 POWER 97 1481 9.8e-11 3.2 472.9
GS 127 528 9.8e-11 3.9 197.9
BGS1,n,n,l)3,10710 225 198 9.8e-11 8.0 138.5 15
BGS2§,y.nl)51072 295 532 9.8e-11 9.8 158.1 21
BGS 3 §,y,n,u) 324 553 9.2e-11 9.9 1129 21
BGS4 Q,n,nu) 3,107 225 527 9.8e-11 5.3 193.4 7
BGS 5 f,n,n,u) 3,103 225 528 9.8e-11 5.3 193.5 7

tion time is considered). In fifteen (respectively, sixieehthose problems, it is the winner
with lower—triangular orientation, the exception beiim@004 with o« = 0.99. Whenever
BGS is the winner with partitioning 1 and parameteran(n,|) or (y,n,n,u), it yields the
smallest number of iterations among the solvers in the sablie all cases for the winning
solvers, the stopping tolerance for the inner GS iteratesmbn—triangular diagonal blocks
turns out to bel0—'°. When BGS 1¥,n,n,l) 5,107!° is a winner, it reduces the number
of iterations over that of POWER with a factor ranging betw@&eh(n2004with oo = 0.95)
to 10.5 BtanfordBerkeleywith o = 0.99). When BGS 1y,n,n,l) 3,107'° is a winner,
it reduces the number of iterations over that of POWER withchofaranging between 4.6
(StanfordBerkeleywith o = 0.85) to 7.0 (MebBasevith o = 0.97). When BGS is a winner
with partitioning 1 ¢,n,n,), the improvements in iteration time compared to POWER are
between 44% and 63%. This corresponds to a speedup betv@amdl2.7. In FigureS.1(b)
and5.1(c), we plot the % changes in iteration times of respecti®Bs 1 ¢/,n,n,l) 3,10~ 1°
and BGS 1y,n,n,l) 5,10~ over that of GS for the thirty experiments performed. The two
graphs show that the improvement in iteration time is att|l2@%o in 60% of the experiments
and at least 15% in 70% of the experiments.

We remark that BGS 1y(n,n,) 3,10~ !0 is faster than BGS 1y(n,n,) 3,10~2 and

ETNA
Kent State University
http://etna.math.kent.edu

92 T. DAYAR AND G. N. NOYAN

TABLE 5.5
Results for thén2004matrix.

« Solver MB Iterations Residual Setup(s) Total(s) Ratio
0.85 POWER 252 100 3.8e-10 6.9 21.3
GS 332 57 6.4e-11 8.9 18.3
BGS1¢,nn,l)3,10-10 551 21 4.9e-11 9.3 17.0 17
BGS2f,ynl)3,1073 690 44 6.9e-11 9.7 18.8 19
BGS 3 §/,y,n,u) 771 44 2.0e-11 29.7 39.8 158
BGS4 0,nnu)3,10°5 551 52 7.5e-11 8.1 17.5 8
BGS56,nnu)3,10-10 551 40 1.4e-11 8.0 17.3 8
09 POWER 252 151 4.8e-10 7.1 28.8
GS 332 84 7.2e-11 7.9 21.8
BGS1f¢,nnl)3,1010 551 30 6.5e-11 9.4 20.2 16
BGS2,y,n,u)5,1073 690 63 7.3e-11 10.1 23.3 21
BGS 3 {/,y.n,u) 771 65 3.2e-11 30.0 44.8 159
BGS 4 Q,nnu)3,10-10 551 58 1.8e-11 8.7 22.0 11
BGS5&,nnu) 51075 551 58 1.8e-11 8.3 21.8 8
095 POWER 252 313 2.6e-10 6.9 51.6
GS 332 159 6.1e-11 7.7 34.0
BGS1¢,nn,l)5,10~10 551 40 6.9e-11 9.2 28.4 16
BGS2f/,y.nu)510~3 690 124 8.5e-11 10.1 36.0 22
BGS3(.,y.,n,l) 771 128 8.9e-11 30.6 60.0 166
BGS4 Q,nnu)3,1010 551 110 2.1e-11 8.3 33.3 10
BGS 5 f,n,n,u) 3,100 551 110 2.3e-11 8.1 33.3 8
0.97 POWER 252 526 1.3e-10 6.9 82.1
GS 332 253 8.7e-11 7.8 49.7
BGS1f,nnl)5 1019 551 54 9.0e-11 9.0 36.1 15
BGS2f,nnl)3,10°10 551 145 9.4e-11 9.1 51.9 15
BGS3§,y.nl) 771 207 9.2e-11 30.2 77.5 163
BGS4 O,nnu)3,10°10 551 173 3.1e-11 8.3 47.4 10
BGS56,nnu)3,10-10 551 173 3.3e-11 8.4 47.7 10
099 POWER 252 1,379 1.8e-10 7.0 204.9
GS 332 757 9.9e-11 7.9 133.0
BGS1f,nnu)3,10-10 551 222 9.2e-11 9.2 91.9 15
BGS2f,nn,l)3,10719 551 387 9.7e-11 9.4 126.4 17
BGS3§.,y.nl) 771 556 9.3e-11 30.2 157.3 162
BGS 4 fi,n,nu)3,10719 551 449 9.7e-11 8.6 108.0 11
BGS5h,nnu)3,1010 551 448 9.8e-11 8.4 108.4 10

BGS 1 {/,n,n,l) 3,10° in all of the thirty experiments. The improvement in itecatitime
with BGS 1 §/,n,n,l) 3, 10719 over both solvers is at least 25% in 50% of the thirty experi-
ments (results not shown). On the other hand, BG$,4,6,1) 5,10~ is slower than BGS
1(y,n,nl)5,1072 and BGS 1y,n,n,) 5,105 in less than 10% of the thirty experiments.
The improvement in iteration time with BGS ¢,0,n,1) 5,10~ '° over both solvers is at
least 25% in 50% of the thirty experiments (results not sHowfrthe performances of BGS
1(y,n,n1)3,1071%and BGS 1y,n,n,l) 5,1071% are compared, they come across as being
similar.

Among the three solvers we consider in this paper, POWER asithimum memory
requirement, whereas BGS has the highest memory requitemiem partitioning 3 is em-
ployed. The memory requirement of BGS with partitioning ingsonly Tarjan’s algorithm
is about twice that of POWER, the memory requirement of BG& wértitioning 3 is about
three times that of POWER, and the memory requirement of G®rngarable to that of
POWER.

Another set of experiments are conducted by consideringrsstnic permutations of the
six web matrices under study. To this end, ten random petiootafor each web matrix is
generated using Matlab, thus giving us altogether sixtyegrpents fora. = 0.85. All of

ETNA
Kent State University
http://etna.math.kent.edu

GOOGLE-LIKE STOCHASTIC MATRICES 93

TABLE 5.6
Results for th&VebBasematrix.

«a Solver MB Iterations Residual Setup(s) Total(s) Ratio
0.85 POWER 625 96 7.2e-11 21.3 53.4
GS 826 44 7.4e-11 205 37.1
BGS1¢,nn,l)3,10710 1,341 18 6.8e-11 24.3 39.8 9
BGS2f,nnu)5 1073 1,341 46 6.7e-11 23.7 45.0 7
BGS3f,y.n,l) 1,858 42 6.le-11 38.1 63.8 50
BGS4 a,nnu)3,10°° 1,341 44 6.3e-11 20.9 39.8 0
BGS56,nnu)5 1073 1,341 45 6.2e-11 21.0 40.2 0
09 POWER 625 147 8.3e-11 18.6 67.8
GS 826 65 7.9e-11 21.3 459
BGS1f¢,nnl)510°10 1,341 17 7.9e-11 22.8 44.1 13
BGS2{,n,n,u)5,1073 1,341 68 7.0e-11 22.8 54.0 13
BGS3§,y.nl) 1,858 62 7.5e-11 37.4 75.2 56
BGS4 ,nn,u)3,1073 1,341 66 7.4e-11 21.6 49.4 9
BGS56,nnu)510°% 1,341 66 7.9e-11 20.8 49.1 7
0.95 POWER 625 300 9.4e-11 17.7 119.4
GS 826 126 8.3e-11 20.5 69.1
BGS1¢,nnl)3,10°10 1,341 44 9.0e-11 24.2 64.4 19
BGS2f,y,nu)5 103 1,657 122 9.0e-11 26.2 82.0 25
BGS3{,y.n,l) 1,858 121 7.4e-11 39.3 112.9 64
BGS4 a,nnu)3, 1073 1,341 127 8.3e-11 20.6 73.6 9
BGS5@,n,n,u) 3,107 1,341 127 8.7e-11 21.4 76.5 11
0.97 POWER 625 503 9.5e-11 18.5 185.8
GS 826 205 9.2e-11 21.0 98.7
BGS1¢,nn,l)3,10710 1341 72 9.2e-11 23.1 88.3 14
BGS2f,y.,nu)5 103 1,657 197 9.3e-11 26.1 115.9 23
BGS3§,y.nl) 1,858 196 8.6e-11 38.0 156.8 59
BGS4 a,nnu)3,10°% 1,341 206 9.2e-11 20.9 110.9 7
BGS58&,n,nu)5,1073 1,341 206 9.4e-11 20.6 108.3 6
0.99 POWER 625 1,511 9.9e-11 18.1 522.1
GS 826 583 9.7e-11 21.4 242.0
BGS1¢,nnl)3,10°10 1,341 221 9.8e-11 231 2225 15
BGS2f,y,nu)3,10~% 1,657 559 9.7e-11 25.5 279.8 22
BGS3§,y.nl) 1,858 563 9.8e-11 37.4 378.3 58
BGS4 fa,nnu)3, 1073 1,341 587 9.8e-11 22.1 266.5 12
BGS5h,nnu)3,10°% 1,341 583 9.8e-11 20.8 265.0 8

the sixty symmetrically permuted matrices are inspectethfeir nonzero structures and ob-
served to possess nonzero plots that look uniformly digteith (as in the original versions of
the StanfordandWebGooglenatrices). Furthermore, the performance of BGS with pantit
ing 3 turns out to be insensitive to random symmetric pertiarta of the input matrix and
is much better than that of GS under the same symmetric petioit It is noticed that GS
favors the ordering of web pages in the original versionshefStanfordBerkeley Eu2005
IN2004 andWebBasamatrices. Results of numerical experiments in Figbishow that
BGS with partitioning 3 is always better than BGSyLr(n,|) 3,1071°, which in turn is
always better than GS, and the % change in iteration time d& B@h partitioning 3 over
that of GS is at least 45%.

To compare the performance of BGS with partitioningy h(n,|) and 3 ¢,y,n,l) and
to test our hypothesis further, two sets of fifty sparse resriof order 500,000 with densi-
ties 0f0.625 x 10~° and1.25 x 10~° are randomly generated using Matlab. The respective
densities yield average numbers of nonzeros of about 4.17 2hder row including the di-
agonal element in each matrix. Furthermore, the sparsitgna of these matrices follow
the standard uniform distribution and look like thoseStéinfordandWebGoogleNumerical
experiments with our tool fonx = 0.85 show that BGS 3y(,y,n,|) is always faster than

94

ETNA
Kent State University
http://etna.math.kent.edu

46
% change in iteration time of

T. DAYAR AND G. N. NOYAN

%
E'E§10
230
o2
°83 g i
o8&z 80
82>
=8>
o™ 60 1
c
s<c®
-£0
2 2m
L us 40 1
S5 o
S o
O eE
ng 20 e 4
o\ég

Q

- %8 40 48

50 52 54
BGS 3 (y,y,n,u) over GS

56

(a) BGS 3y,y,n,u) versus GS inStan ford andW ebGoogle experiments

1000 T
-

veo |
£E T 80 1
== 2
wéeg
T &2 60 i
E£g ™
5== | .
2o = 40 |
=23
EJ‘:BH
56 ¢ 20 1
R0

o

0 70 80 90 100 110

% change in iteration time of BGS 1 (y,n,n,l) 3Xbover GS
(b) BGS1¢,n,n,l) 3,109 versus GS in all experiments

00— ..
s o0 T
veo | e
£E & 80 1
;-o—l
ngoo
589 60]
Egw
o=
2o = 40 |
=23
S8~
G ¢ 20 1
RO
o |
0 60 70 80 90 100 110 120 130

% change in iteration time of BGS 1 (y,n,n,l) 5Xbover GS
(c) BGS1¢,n,n,l)51019 versus GS in all experiments

FiG. 5.1.Plots for the % changes in iteration times of various BGSesslwver those of GS.

BGS 1 {/,n,n,l) 3,10~ !° and the average improvement in iteration time in the firstoget
fifty sparse matrices is about 43% and that in the second gityo§parse matrices is about
42% (results not shown). These correspond to speedups enil.8.7, respectively. More
importantly, as depicted in Figurés3(a) ands.3(b), in 90% of the experiments the % change
in iteration time of BGS 3Y(,y,n,I) over those of POWER and GS are respectively at least
50% and 40% for the lower density case and 35% and 25% for gieehdensity case.

ETNA
Kent State University
http://etna.math.kent.edu

GOOGLE-LIKE STOCHASTIC MATRICES 95

0
S

o
=

IN
o

BGS solver over GS

* BGS 1 (y,n,n,l) 3,10°
v BGS 3 (y,y,nl)
2 BGS 3 (y,y,n,u)

N
o

% of 60 experiments with <
% change in iteration time of

7
z
=

0 40 . 50 . 60 70 80 90 100
% change in iteration time of BGS solver over GS

FiG. 5.2. Plots for the % changes in iteration times of BGS solvers tivese of GS on 60 experiments (10
symmetric random permutations of 6 web matrices each)avith 0.85.

6. Conclusion. Various partitionings are considered with block iteratimethods for
the computation of the steady—state vector of Google—tiketsstic matrices in a sequential
setting. Some of these partitionings have triangular diagblocks, which can be solved
directly. Effects of these block partitionings are anatyfierough a set of numerical exper-
iments with different values of the teleportation probipiin which, among other things,
memory requirements and solution times are measured. e at the outset for comput-
ing the partitionings are relatively small and can very viljustified when the same web
matrix is used multiple times. In general, block Gauss—-&8eidth Tarjan’s algorithm used
to symmetrically permute the sparse term in the coefficieatrisn of the system of linear
equations to block lower—triangular form, with 3 to 5 poinaUss—Seidel iterations and a
stopping tolerance dfo—'° to solve the diagonal blocks yields the fastest solver. ksory
requirement is about twice that of the power method and itedeses the number of itera-
tions over that of the power method by a factor of more thandwever, for matrices with
nonzero plots that look uniformly distributed, a block jtayhing with triangular diagonal
blocks is to be favored with a lower—triangular orientatfonvalues ofa close to 0.85 and
an upper-triangular orientation for valuesc@fclose to 1. Although requiring about three
times memory as that of the power method and more time comgutoi compute, such a
partitioning when accompanying block Gauss—Seidel on suatnices yields iteration time
improvements of over 20% compared to the second best sdtuethermore, it is observed
that the performance of block Gauss—Seidel with this paniitg is insensitive to random
symmetric permutations of the input matrix (which also haeeazero plots that look uni-
formly distributed) and is much better than that of Gaus&ebeinder the same symmetric
permutation. However, as has been repeatedly observed literature, Gauss—Seidel is to
be recommended if memory is at a premium. It has comparahieamerequirement to that
of the power method and reduces the number of iterationstbaéiof the power method by
a factor of about 2.

Acknowledgements. The work of the first author is supported by the Turkish Acagler
Sciences grantUBA-GEBIP and that of the second author is supported by The Scieatiic
Technological Research Council of Turkey. A preliminarysien of this work is presented
in the Dagstuhl Seminar 07071 “Web Information Retrieval amear Algebra Algorithms”
in February 2007, and part of the work is carried out at Sadrlaniversity where the first
author was on sabbatical leave. We thank the two anonyméeizes for their remarks and

96

T. DAYAR AND G. N. NOYAN

ETNA
Kent State University
http://etna.math.kent.edu

- 10 :

2

-
V%35 =
_:G)(/)
2Ey 80- R e g
R x -

<
2§50
€S s -
o® L 60 b
Ego -
5= =
oMt =gpy
3 o= 40]

L >
352 b
— ™
5oy 20 .]
229 - « POWER

) L L — L .GS

20 30 . 40 50 60 70 80
% change in iteration time of BGS 3 (y,y,n,l) over other solver

(a) BGS 3y,y,n,l) versus POWER and GS on 50 sparse matrices with densities
0.625 x 10~° anda = 0.85

=
o

B M\ B Pv——
”62 S e
V(DS e
§E$ 80 4
;";E
28?2
m‘@g 60 |
Eg?d
==
[} =
ot &
3 g x40 1
852
— o ™
e]
=
SR/ « POWER
— N ‘ -GS

60 . 65 70 75 80
% change in iteration time of BGS 3 (y,y,n,l) over other solver

(b) BGS 3 ,n,n,l) versus POWER and GS on 50 sparse matrices with densities
1.25 x 107? anda = 0.85

FiG. 5.3. Plots for the % changes in iteration times of BGS/3/(n,l) over those of POWER and GS on 100

sparse matrices of order 500,000 with= 0.85.

pointing out some of the references, and the second refspseially for encouraging us to
consider random symmetric permutations, which led to arravgd manuscript.

(1]
(2]
(3]
(4]
(5]
(6]
(7]

REFERENCES

A. ARASU, J. NOVAK, A. S. TOMKINS, AND J. A. TOMLIN, PageRank computation and the structure of the
web: Experiments and algorithmi; Proceedings of the 11th International Conference onld\afide
Web, Honolulu, Hawaii, 2002, Poster Tra¢ktp://www2002.0rg/CDROM/poster/173.pdf

R. BELLMAN, Introduction to Matrix Analysis2nd ed., SIAM, Philadelphia, Pennsylvania, 1997.

P. BoLDI AND S. VIGNA, The WebGraph Framework I: Compression TechnigireBroceedings of the 13th
International Conference on World Wide Web, New York, ACNQZ, pp. 595-601.

P. BoLDI, B. CODENOTTI, M. SANTINI, AND S. VIGNA, UbiCrawler: A Scalable Fully Distributed Web
Crawler, Software: Practice & Experience, 34 (2004), pp. 711-726.

S. BRIN AND L. PAGE, The anatomy of a large—scale hypertextual web search enGiomputer Networks
and ISDN Systems, 30 (1998), pp. 107-117.

A.Z.BRODER, R. LEMPEL, F. MAGHOUL, AND J. FEDERSEN Efficient PageRank approximation via graph
aggregation Inform. Retrieval, 9 (2006), pp. 123-138.

P. BucHHOLZ AND T. DAYAR, On the convergence of a class of multilevel methods for |agarse Markov
chains SIAM J. Matrix Anal. Appl., 29 (2007), pp. 1025-1049

http://www2002.org/CDROM/poster/173.pdf

ETNA
Kent State University
http://etna.math.kent.edu

GOOGLE-LIKE STOCHASTIC MATRICES 97

[8] T. Davis, University of Florida Sparse Matrix Collection2011, NA Digest, 92, no. 42, October
16, 1994, NA Digest, 96, no. 28, July 23, 1996, and NA Digest, 8o. 23, June 7, 1997.
http://www.cise.ufl.edu/research/sparse/matrices .

[9] T. DAYAR, Obtaining triangular diagonal blocks using cutsetdechnical Report BU-CE-0701,
Department of Computer Engineering, Bilkent University, Ard& Turkey, January 2007.
http://www.cs.bilkent.edu.tr/tech-reports/2007/BU-C E-0701.pdf

[10] T. DAvAarR AND G. N. NOoYAN, A software tool for the steady—state analysis of Google-dikchastic matri-
ces in Proceeding of the Fourth International ICST Conferemc®erformance Evaluation Methodolo-
gies and Tools, Workshop on Tools for Solving Structured RdarChains, Eds. B. Meini, A. Horvath,
ICST, Brussels, Belgium, 2009, Article No. 14.

[11] , Software for the steady-state analysis of Google-like hststic matrices 2011.
http://www.cs.bilkent.edu.tr/ ~ tugrul/software.html

[12] T. DAYAR AND W. J. STEWART, Comparison of partitioning techniques on two—level itemtsolvers on
large, sparse Markov chainSIAM J. Sci. Comput., 21 (2000), pp. 1691-1705.

[13] G. M. DEL CoRsO, A. GuLLI, AND F. RoMANI, Fast PageRank computation via a sparse linear system
Internet Math., 2 (2005), pp. 251-273.

[14] 1. S. Durr AND J. K. ReID, An implementation of Tarjan’s algorithm for the block trgrarization of a
matrix, ACM Trans. Math. Software, 4 (1978), pp. 137-147.

[15] N. EIRON, K. S. McCURLEY, AND J. A. ToMmLIN, Ranking the web frontierin Proceedings of
the 13th International Conference on World Wide Web, NewkYoACM, 2004, pp. 309-318.
http://research.yahoo.com/files/1p309.pdf

[16] D. F. GLEICH, A. P. GRAY, C. GREIF, AND T. LAU, An inner—outer iteration for PageRan8IAM J. Sci.
Comput., 32 (2010), pp. 349-371.

[17] G. H. GoLuB AND C. GREIF, An Arnoldi-type algorithm for computing Page RaT Numer. Math., 46
(2006), pp. 759-771.

[18] T. H. HaveLiwALA AND S. D. KaMVAR, The second eigenvalue of the Google maffiechnical Report
2003-20, Stanford University, 2003.
http://ilpubs.stanford.edu:8090/582/1/2003-20.pdf

[19] I.C. F.IPSEN ANDT. M. SELEE, PageRank computation, with special attention to dangliodes SIAM J.
Matrix Anal. Appl., 28 (2007), pp. 1281-1296.

[20] S. D. KamVvAR, T. H. HAVELIWALA , C. D. MANNING, AND G. H. GoLuB, Extrapolation methods for
accelerating PageRank computations Proceedings of the 12th International Conference onldVor
Wide Web, Budapest, Hungary, 2003, pp. 261-270.

, Exploiting the block structure of the web for computing FRaek Technical Report 2003-17, Stan-
ford University, 2003http://ilpubs.stanford.edu:8090/579/1/2003-17 .pdf

[22] R. M. KARP, Reducibility among combinatorial probleria Complexity of Computer Computations, R. E.
Miller and J. W. Thatcher, eds., Plenum Press, New York, 1p#285-103.

[23] Laboratory of Web Algorithms Software, 201tttp://law.dsi.unimi.it/software.php

[24] A.N. LANGVILLE AND C. D. MEYER, Deeper inside PageRankternet Math., 1 (2004), pp. 335-380.

[25] , A reordering for the PageRank proble®IAM J. of Sci. Comput., 27 (2006), pp. 2112-2120.

[26] Larbin home page, 201http://larbin.sourceforge.net/index-eng.html

[27] F. MCSHERRY, A uniform approach to accelerated PageRank computaiiothe Proceedings of the 14th
International Conference on the World Wide Web, Chiba, dap&€M, 2005, pp. 575-582.

[28] C. D. MEYER, Matrix Analysis and Applied Linear Algehr&IAM, Philadelphia, 2000.

[29] V. MIGALLON, J. FENADES, AND D. B. SzYLD, Block two-stage methods for singular systems and Markov
chains Numer. Linear Algebra Appl., 3 (1996), pp. 413-426.

[30] G. N. NoYaN, Steady-state analysis of Google—like matrjddsS. Thesis, Department of Computer Engi-
neering, Bilkent University, Ankara, Turkey, September200

[31] I. PULTAROVA, Tarjan's algorithm in computing PageRank the 13th Annual Conference Proceedings of
Technical Computing Prague, C. Moler, A. Praegka, and B. Walden, eds.SCHT, Prague, Czech
Republic, 2005.

[32] B. K. ROSEN Robust linear algorithms for cutsetd Algorithms, 3 (1982), pp. 205-217.

[33] S. SERRA-CAPIZZANO, Jordan canonical form of the Google matrix: A potential adnition to the
PageRank computatioSIAM J. Matrix Anal. Appl., 27 (2005), pp. 305-312.

[34] W. J. SrEwART, MARCA: Markov chain analyzem Numerical Solution of Markov Chains, W. J. Stewart,
ed., Marcel Dekker, New York, 1991, pp. 687—-690.

, Introduction to the Numerical Solution of Markov Chairizinceton University Press, Princeton,
1994.

[36] R. E. TARJAN, Depth—first search and linear graph algorithn&AM J. Comput., 1 (1972), pp. 146-160.

[37] The HSL Mathematical Software Library, 2011ttp://www.hsl.rl.ac.uk/

[38] The Stanford WebBase Project, 2011.
http://diglib.stanford.edu:8091/ ~ testbed/doc2/WebBase/

[39] Webgraph, 2011http://webgraph.dsi.unimi.it

[21]

(35]

http://www.cise.ufl.edu/research/sparse/matrices
http://www.cs.bilkent.edu.tr/tech-reports/2007/BU-CE-0701.pdf
http://www.cs.bilkent.edu.tr/~tugrul/software.html
http://research.yahoo.com/files/1p309.pdf
http://ilpubs.stanford.edu:8090/582/1/2003-20.pdf
http://ilpubs.stanford.edu:8090/579/1/2003-17.pdf
http://law.dsi.unimi.it/software.php
http://larbin.sourceforge.net/index-eng.html
http://www.hsl.rl.ac.uk/
http://diglib.stanford.edu:8091/~testbed/doc2/WebBase/
http://webgraph.dsi.unimi.it
https://www.researchgate.net/publication/248669727

