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STEADY–STATE ANALYSIS OF GOOGLE–LIKE
STOCHASTIC MATRICES WITH BLOCK ITERATIVE METHODS ∗

TUǦRUL DAYAR† AND GÖKÇE N. NOYAN‡

Abstract. A Google–like matrix is a positive stochastic matrix given by aconvex combination of a sparse,
nonnegative matrix and a particular rank one matrix. Google itself uses the steady–state vector of a large matrix of
this form to help order web pages in a search engine. We investigate the computation of the steady–state vectors
of such matrices using block iterative methods. The block partitionings considered include those based on block
triangular form and those having triangular diagonal blocks obtained using cutsets. Numerical results show that
block Gauss–Seidel with partitionings based on block triangular form is most often the best approach. However,
there are cases in which a block partitioning with triangular diagonal blocks is better, and the Gauss–Seidel method
is usually competitive.

Key words. Google, PageRank, stochastic matrices, power method, block iterative methods, partitionings,
cutsets, triangular blocks
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1. Introduction. We consider positive stochastic matrices of the form

S = R+ uv,

whereR ∈ R
n×n is a nonnegative and sparse square matrix, possibly reducible with some

zero rows,u ∈ R
n×1 is a nonnegative column vector, andv ∈ R

1×n is a nonnegative row
vector [30]. The reason behindv representing a row vector will soon become clear. Such
stochastic matrices arise in the page ranking algorithm, PageRank [5], of Google (hence, the
term Google–like). The objective therein is to compute the steady–state probability distribu-
tion row vectorπ ∈ R

1×n of S in

πS = π, πe = 1,

wheree is the column vector of ones. The first difficulty lies in that althoughS does not have
any zero elements, one must make every effort to avoid fill–inand work in sparse storage
sinceR is a sparse matrix anduv is an outer product. The second difficulty is related to
the reducibility ofR, since an arbitrary partitioning of a reducible matrix willnot yield irre-
ducible diagonal blocks, and hence, care must be exercised when employing block iterative
solvers as we shall see. These rule out direct methods such asGaussian elimination (GE)
and iterative methods which require relatively large memory such as preconditioned Krylov
subspace methods.

Now, letP ∈ R
n×n be the transition probability matrix associated with the hyperlink

structure of the web of pages to be ranked andα ∈ (0, 1) be the convex combination param-
eter used to obtain a positive stochastic matrixS so that it is ergodic and therefore can be
analyzed for its steady–state [35]. In the PageRank algorithm,

R = αP, u = e−Re,
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andv is the nonnegative personalization probability distribution row vector satisfyingve = 1.
Note thatP may have zero rows corresponding to dangling nodes; i.e., web pages with-
out any outgoing hyperlinks. An equivalent formulation andan extensive discussion on
PageRank can be found in [24]. The PageRank algorithm computesπ iteratively using the
power method. And ranking pages corresponds to sorting the pages (i.e., states of the under-
lying discrete–time Markov chain, DTMC) according to theirsteady–state probabilities. The
problem is introduced during the Stanford Digital Library Technologies project (now known
as The Stanford WebBase Project [38]). Since web matrices are extremely large and always
changing, computation lasts long and needs to be repeated.

The rate of convergence of the power method depends on the subdominant eigenvalue
of S. This eigenvalue is equal toα for reducibleP and strictly less thanα otherwise [18].
Convergence takes place at the rate by which powers ofα approach zero. Thus, convergence
is faster asα becomes smaller. However, the smallerα is, the higher the contribution of
the second termuv and the lesser the hyperlink structure of the web inR influences page
rankings. Slightly differentα values can produce very different PageRank vectors, and as
α approaches one, sensitivity issues begin to arise [33]. Brin and Page, the founders of
Google, useα = 0.85 (in other words, a teleportation probability,(1 − α), of 0.15), and
for tolerance levels measured by residual norms ranging from 10−3 to 10−7, they report
convergence within 50 to 100 power iterations [5]. We remark that, normallyv = eT /n
(i.e., the uniform distribution) is used. However, when theweb surfer has preferences and is
therefore biased, a personalization vector other than the uniform distribution must be used.
Hence, ideally the problem needs to be solved multiple timesfor different personalization
vectors.

A number of improvements are made over the power method for the PageRank algorithm.
Here, we mention some that are relevant to our work in this paper. The work in [1] suggests
using the most recently computed values of the approximate solution in the same iteration
as in the Gauss–Seidel (GS) method. This approach, which is classified under sequential
updates by the framework in [27], is shown to bring in savings of about one half in the
number of iterations with respect to the power method. The power method is also improved
in [20], this time using quadratic extrapolation, but the improvement is fairly sensitive to how
frequently the extrapolation strategy is invoked. A restarted variant of the Arnoldi algorithm
is investigated in [17] for computing PageRank. Although timing results and exactmemory
requirements are not provided, the results promise considerable computational savings over
the power method at the expense of relatively large memory requirements (since a relatively
large number of solution vectors of lengthn need to be stored). A more recent study [16]
shows that improvements in number of matrix–vector multiplications (which is essentially
the number of power iterations) are possible with inner–outer iterations with modest memory
requirements.

Another group of work relates to the way in which the web pagesof interest are obtained
by crawling. By sorting the pages according to their addresses and then parsing the addresses
into separate fields, the authors in [21] have looked into block partitionings of web matrices in
which each diagonal block represents the hyperlinks among pages within a domain. Domains
in turn can be partitioned into hosts, thus resulting in the view of nested blocks and a method
based on iteratively analyzing the diagonal blocks in isolation, aggregating them, and solving
the aggreated system. This approach, which is classified under reiterated updates by the
framework in [27], is shown to yield savings of about one half in the number of iterations
with respect to the power method applied to the original order of pages, although the savings
in time do not compare as favorably with respect to the power method applied to the sorted
order of pages. An approach based on aggregation is also followed in [6], where a fixed
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solution is assumed for the diagonal blocks associated withhosts, thereby resulting in a faster
but approximative method.

In this paper, we do not assume any knowledge about addressesassociated with web
pages, take a sparse matrix view, and present the results of numerical experiments with a
software tool [10, 11] for the steady–state analysis of Google–like matrices in asequential
setting; i.e., on a computer with a single computational core. The objective is to systemat-
ically compare and contrast different sparse iterative solvers. The tool can also be used to
analyze irreducible DTMCs as in [34] for their steady–state distribution by settingα = 1.
There are eight solvers available. These are power (POWER), power with quadratic extrap-
olation (QPOWER), Jacobi over–relaxation (JOR), successive over–relaxation (SOR), block
JOR (BJOR), block SOR (BSOR), iterative aggregation–disaggregation (IAD) with BJOR
disaggregation step (IADBJOR), and IAD with BSOR disaggregation step (IADBSOR).
The JOR and SOR solvers become respectively the Jacobi (J) and GS solvers for value 1 of
the relaxation parameter. The motivation of the study is to identify those sparse solvers that
decrease the iteration counts and solution times with respect to POWER without increasing
the memory requirements too much. The contribution of the results to the literature are in the
understanding of the type of partitionings to be recommended with block iterative solvers for
Google–like stochastic matrices and the benefits obtained by employing them.

It is known that Tarjan’s algorithm [36] can be used to symmetrically permute a matrix
of ordern with a zero–free diagonal to block triangular form in which the diagonal blocks
are irreducible [14]. Its time complexity isO(n) + O(τ), whereτ is the number of nonzero
off–diagonal elements. In the context of web matrices, thispermutation is first noted in [1].
The permutation is later pursued in [31] on parts of two web matrices and some preliminary
results have been obtained with an IADBJ like method. However, the implementation has
not been done in sparse storage and only iteration counts arereported, whereas, timing results
are vital for this kind of study. The study in [13] is another one which considers symmetric
permutations of web matrices to accelerate convergence of solution methods and is the most
relevant one to the work in this paper. Therein, the effect ofusing breadth first traversal of
the nodes of the web graph to generate a permutation of the corresponding matrix to block
triangular form is investigated together with sorting the nodes for decreasing/increasing in–
/out–degrees. Experiments are conducted on one web matrix with one value ofα using power,
Jacobi, GS, backward GS, and block GS (BGS) methods. The setup times to obtain the
permutations used are not reported. Nevertheless, resultson the web matrix suggest savings
of about a half with BGS in the number of iterations and substantial improvements in solution
time with respect to the power method. These two approaches could be classified under
reiterated updates by the framework in [27] as well.

In this paper, we use the sparse implementation of Tarjan’s algorithm in [37] to obtain
a block triangular form and partitionings having triangular diagonal blocks that follow from
there. To the best of our knowledge, efficient algorithms that search for the strongly connected
components of graphs (which correspond to irreducible diagonal blocks of matrices in block
triangular form) use depth first traversal of the nodes as in Tarjan’s algorithm. Through a
systematic study on multiple benchmark matrices with different values ofα, we investigate
the merit of various block partitionings. We do not considerany optimization in our code,
and treat dangling nodes by considering the hyperlinks to them and not by penalizing [15],
recursively eliminating [25], or aggregating [19] them. Hence, the timing results in our work
could be improved further. Nevertheless, our results support those in [13], but also show that
there are cases which benefit significantly from triangular diagonal blocks, and GS is also
competitive.

In the next section, we discuss the solvers. In Section3, we introduce the partitionings
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considered with the block iterative solvers. Section4 is about the benchmark matrices and
their properties. Section5 provides the results of numerical experiments. In Section6, we
conclude.

2. The solvers.Consider the following example web matrix in [24].
EXAMPLE 2.1. P corresponds to the web graph of 6 pages in Figure2.1, where prob-

1 2 3 4 5 6

P =

1
2
3
4
5
6

















0 1/2 1/2 0 0 0
0 0 0 0 0 0
1/3 1/3 0 0 1/3 0
0 0 0 0 1/2 1/2
0 0 0 1/2 0 1/2
0 0 0 1 0 0

















1 3

2

5

4

6

FIG. 2.1.Web graph of the example.

abilities of outgoing links are uniformly distributed and page 2 does not have any outgoing
links; i.e., it is a dangling node.P is reducible with the state space partitions{1, 3}, {2},
{4, 5, 6} forming irreducible subsets of states as in Figure2.1.

2.1. Power method.Givenπ(0) > 0 andπ(0)e = 1, the POWER iteration

π(k+1) = π(k)R+ π(k)uv for k = 0, 1, . . .

can be implemented with one vector–matrix multiplication usingR and two level–1 opera-
tions; i.e., dot–product and saxpy — multiplication of a vector with a scalar and the addition
of another vector. Convergence takes place at rate by whichαk goes to 0. The smallerα is,
the lesser the effect of the hyperlink structure of the web.

It is reported that by periodically applying quadratic extrapolation for values ofα close
to 1, the convergence of POWER can be accelerated [20]. However, the improvement is
fairly sensitive to how frequently the extrapolation strategy is invoked, and therefore we do
not consider QPOWER further in this paper.

2.2. Block iterative methods.Let

B = RT − I

andE be a permutation matrix so that

A = E(B + vTuT )ET , x = EπT ,

and consider the block splittingA = D − L− U = M −N for Ax = 0 (i.e.,
E(ST − I)ETEπT = 0), where

D = diag(A1,1, A2,2, . . . , AJ,J ),



ETNA
Kent State University 

http://etna.math.kent.edu

GOOGLE–LIKE STOCHASTIC MATRICES 73

−L =















A2,1

A3,1 A3,2

...
...

. ..
AJ,1 AJ,2 · · · AJ,J−1















, −U =















A1,2 A1,3 · · · A1,J

A2,3 · · · A2,J

.. .
...

AJ−1,J















,

diag(·) denotes a diagonal matrix with its argument appearing alongthe diagonal,J , the num-
ber of blocks along the diagonal satisfies1 < J ≤ n, Ai,j ∈ R

ni×nj for i, j = 1, 2, . . . , J so
thatn =

∑J

j=1 nj , Aj,j hasnzj nonzero elements, andM is nonsingular. We remark thatA
is a symmetric permutation ofST − I, and thatE is neither explicitly generated nor stored
but rather obtained using integer permutation vectors as weshall see.

Givenx(0) > 0, eTx(0) = 1, and the relaxation parameterω ∈ (0, 2), the iteration

Mx(k+1) = Nx(k) for k = 0, 1, . . . ,

where

M = D/ω, N = (1− ω)D/ω + L+ U

is (block) Jacobi over–relaxation, (B)JOR, and

M = D/ω − L, N = (1− ω)D/ω + U

is (block) successive over–relaxation, (B)SOR. These become point methods whenJ = n.
The convergence for under–relaxation (i.e.,ω ∈ (0, 1)) is well known; in this case, it is
also monotonic since the iteration matrices are positive. This is due a result in [2, pp. 270–
271] and is proved in a more general setting by Theorem 4.16 in[7]. Forω = 1, the iteration
matrices are nonnegative. The Jacobi iteration matrix has azero diagonal and the GS iteration
matrix has a zero first column; otherwise, all other elementsof these two iteration matrices
are positive. Since both iteration matrices have the solution vector as their fixed point (and
therefore, an eigenvalue of 1), a sufficient condition for convergence is to show that both
iteration matrices do not have other eigenvalues of magnitude 1. Indeed they are as such:
the condition for the Jacobi iteration matrix follows forn > 2 from the positivity of its off–
diagonal; the condition for the GS iteration matrix followsfrom the fact that it has a positive
submatrix of order(n− 1) which is accessible from the excluded first row.

Block iterative methods can be viewed as preconditioned power iterations, where the
preconditioning matrix isM [35]. When combined with aggregation steps, they become
iterative aggregation–disaggregation (IAD) with BJOR disaggregation step (IADBJOR) and
BSOR disaggregation step (IADBSOR). Because there is an (outer) iteration specified by
k, and for each value ofk, one needs to solveJ subsystems of linear equations directly or
iteratively, methods discussed in this subsection are sometimes viewed as being two–level
(see also [29]). Although we have implemented and experimented with IAD type methods,
they do not yield competitive solvers for Google–like stochastic matrices. Hence, we do not
discuss them further in this paper.

In the next section, we present various partitionings that can be used with block iterative
solvers.

3. Partitionings for block iterative solvers. AlthoughS > 0, one must work in sparse
storage sinceR is sparse anduv is an outer product; i.e., rank–1 update onR. WhenR
(hence,P ) is reducible, an arbitrary partitioning will not yield irreducible diagonal blocks
in D. In order to devise effective block iterative solvers, the objective must be to obtain a



ETNA
Kent State University 

http://etna.math.kent.edu

74 T. DAYAR AND G. N. NOYAN

partitioning ofB in which J is relatively low and it is relatively easy to solve the diagonal
blocks.

EXAMPLE 3.1. Let us now consider the nonzero structure of the matrixP of six web
pages in Section2, where an X represents a nonzero value. Recall thatB = αPT − I.
However, scaling withα does not change the nonzero structure ofPT , and we have

P =

1
2
3
4
5
6

















X X

X X X
X X

X X
X

















, B =

1
2
3
4
5
6

















X X
X X X
X X

X X X
X X X

X X X

















.

Now, without loss of generality, let us assume thatB is permuted to block lower–
triangular form havingnb irreducible diagonal blocks using Tarjan’s algorithm [14] as in

F =











F1,1

F2,1 F2,2

...
...

. . .
Fnb,1 Fnb,2 · · · Fnb,nb











.

We remark that the irreducible diagonal blocksFk,k for k = 1, 2, . . . , nb have zero–free
diagonals due to the definition ofB and the states incident on each irreducible diagonal block
are only fixed up to a permutation.

EXAMPLE 3.1. (Continued) After applying Tarjan’s algorithm to obtain a block lower–
triangular matrix for our example, we have the permutation vector [1 3 2 4 5 6]T . If we
symmetrically permuteB with the permutation matrix[e1 e3 e2 e4 e5 e6]T , whereel denotes
thelth principal axis vector (i.e.,lth column ofI), we get the nonzero structure

F =

1
3
2
4
5
6

















X X
X X
X X X

X X X
X X X

X X X

















,

wherenb = 3. The irreducible diagonal blocks correspond to state spacepartitions{1, 3},
{2}, and{4, 5, 6}, and they are respectively of order two, one, and three.

It is possible to compute a permutation matrixQk,k for each irreducible diagonal block
Fk,k [9] such that

nCk,k
nTk,k

Qk,kFk,kQ
T
k,k =

[

Ck,k Yk,k

Zk,k Tk,k

]

nCk,k

nTk,k

,

whereCk,k ∈ R
nCk,k

×nCk,k , Tk,k ∈ R
nTk,k

×nTk,k , andTk,k is triangular. Note thatTk,k is
necessarily nonsingular. It is clear that the smaller the order of submatrixCk,k is, the larger
the order of submatrixTk,k becomes. Since a triangular block can be solved exactly by us-
ing substitution (together with the Sherman–Morrison formula [28] since the block becomes
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positive due to the addition of the outer product term), it isuseful to obtain a larger trian-
gular block. We remark that, under the same permutation, theoff–diagonal blockFk,l gets
permuted as

nCl,l
nTl,l

Qk,kFk,lQ
T
l,l =

[

Ck,l Yk,l

Zk,l Tk,l

]

nCk,k

nTk,k

,

whereCk,l ∈ R
nCk,k

×nCl,l , Tk,l ∈ R
nTk,k

×nTl,l . Note thatTk,l for k 6= l have nothing to do
with triangularity.

Minimizing nCk,k
can be posed as the minimum cutset (or feedback vertex set) problem

which is known to be NP–complete for general graphs [22]; therefore, non–optimal solutions
need to be considered. Fortunately, a polynomial time algorithm called Cutfind due to Rosen
exists [32]. The algorithm runs in linear time and space and finds cutsets of graphs. Although
cutsets computed with Cutfind may not be minimum, [9] shows that it is a fast algorithm for
large graphs compared to other approximation algorithms and the size of the cutset computed
is generally satisfying. We remark that it is again Tarjan’salgorithm which is used to find the
symmetric permutation that triangularizes the diagonal block associated with the states in the
cutset’s complement; i.e.,Tk,k. Thus, for a block triangular matrix having irreducible diag-
onal blocks with zero–free diagonals, such a(2 × 2) block partitioning can be computed for
each diagonal block and substitution can be used for solvingthe triangular diagonal blocks
at each (outer) iteration, while the solution of the remaining diagonal blocks can be approxi-
mated with some kind of (inner) point iteration. This approach alleviates the fill–in problem
associated with factorizing diagonal blocks in block iterative solvers up to a certain extent.

We consider five partitionings which can be used with block iterative solvers. The first
three are based on the idea of symmetrically permutingB to block triangular form and us-
ing cutsets to obtain triangular diagonal blocks. The last two partitionings have been already
used in the context of MCs before [12] and do not utilize Tarjan’s algorithm. They are used to
determine whether any improvement over the block iterativeprocess results from employing
the first three partitionings. The parameters of the partitionings can be expressed as a Carte-
sian product of four sets. Let setB = {y ,n} denote whether Tarjan’s algorithm is used or
not, setC = {y ,n} denote whether Rosen’s Cutfind algorithm is used or not, setR = {y ,n}
denote whether the number of diagonal blocks is restricted to 2 or not, and setO = {l ,u}
denote whether a block lower– or upper–triangular orientation is desired with Tarjan’s algo-
rithm. Then experiments with partitionings take as parameters elements from proper subsets
of B × C × R × O. Experiments performed on web matrices using partitionings 1 and 2
can utilize elements of{y} × C × R × O. Those using partitioning 3 (in which, through a
recursive application of the Tarjan and Cutfind algorithms,all diagonal blocks are made to be
triangular) can utilize{y} × {y} × {n} ×O. Since partitionings 4 and 5 do not use Tarjan’s
and Rosen’s algorithms, the concept of orientation does notapply, and we arbitrarily set the
last parameter tou and say these partitionings utilize the parameters{n}×{n}×{n}×{u}.

Recall thatnb is the number of diagonal blocks returned by Tarjan’s algorithm forB and
let nb2 be of those that are of order two. Without loss of generality let us assume that the
symmetric permutation is to block lower–triangular form, states incident on each diagonal
block are ordered increasingly according to index, and the first state in each diagonal block
of order two is placed in the cutset. Keep in mind that it does not make sense to run the
Cutfind algorithm on diagonal blocks of order one and two since a diagonal block of order
one is already triangular, and either state in a diagonal block of order two forms a triangular
diagonal block.



ETNA
Kent State University 

http://etna.math.kent.edu

76 T. DAYAR AND G. N. NOYAN

3.1. Partitioning 1. In this partitioning, diagonal blocks of order one with no off–
diagonal row elements are placed consecutively in the first diagonal blockT0,0. When Cutfind
is used, lower–triangular diagonal blocksT1,1, T2,2, . . . , TK,K follow this; the remaining di-
agonal blocks, which include states of cutsets, are orderedasCK,K , CK−1,K−1, . . ., C1,1.
Diagonal blocks of order one, which have some off–diagonal row elements, are grouped into
the last blockCK+1,K+1 as in

E1(y,y,n,l)BET
1(y,y,n,l) =

nT0,0
nT1,1

· · · nTK,K
nCK,K

· · · nC1,1
nCK+1,K+1

nT0,0

nT1,1

...
nTK,K

nCK,K

...
nC1,1

nCK+1,K+1





























T0,0

T1,0 T1,1 Z1,1 Z1,K+1

...
...

. . . . .
. ...

...
TK,0 TK,1 · · · TK,K ZK,K · · · ZK,1 ZK,K+1

YK,0 YK,1 · · · YK,K CK,K · · · CK,1 CK,K+1

...
... . .

. . ..
...

...
Y1,0 Y1,1 C1,1 C1,K+1

YK+1,0 YK+1,1 · · · YK+1,K CK+1,K · · · CK+1,1 CK+1,K+1





























,

so thatnb = nT0,0
+K + nCK+1,K+1

andJ = 1∑K
k=0

nTk,k
>0 +K + 1nCK+1,K+1

>0, where

1f is the indicator function evaluating to 1 whenf is true, 0 otherwise, andE1(y,y,n,l) is the
corresponding permutation matrix. Note that the diagonal block havingT0,0,T1,1, . . .,TK,K

along its diagonal is lower–triangular and that it is only this block which is guaranteed to be
triangular.

An option for partitioning 1 is to letJ = 2 as in (y ,y ,y ,l ) so that one has a(2×2) block
partitioning in which the second diagonal block is comprised of

CK,K , CK−1,K−1, . . . , C1,1, CK+1,K+1

along its diagonal. Note that it is not meaningful to restrict the number of diagonal blocks to
2 if the Cutfind algorithm is not used in partitioning 1. Hence, we do not consider partition-
ing 1 with parameters (y ,n,y ,l ) and (y ,n,y ,u). A remark must be made at this point about
orientation. When a block upper–triangular form is desired with Tarjan’s algorithm, diagonal
blocks of order one should be checked for zero off–diagonal elements in columns rather than
rows andT1,1,T2,2,. . .,TK,K should be upper–triangularized if Cutfind is used.

EXAMPLE 3.1. (Continued.) Now, let us consider partitioning 1 on ourweb matrix of
6 pages. Since state 2 is in a state space partition by itself and has nonzero off–diagonal
elements in its row, it will be at the end of the permutation. For the first irreducible diagonal
block incident on{1, 3}, state 1 is an element of the cutset and state 3, being in the cutset’s
complement, is placed in the first triangular block. After applying the Cutfind algorithm to
the irreducible diagonal block incident on{4, 5, 6} of order three, we obtain its cutset as
{4} and therefore the cutset’s complement as{5, 6}. Lower–triangularization of the diagonal
block incident on{5, 6} using Tarjan’s algorithm yields the permutation vector[5 6]T . So,
the permutation vector becomes[3 5 6 4 1 2]T and the order of the triangular block is obtained
as three. Hence, the symmetrically permuted matrix has the nonzero structure in
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E1(y,y,n,l)BET
1(y,y,n,l) =

3
5
6
4
1
2

















X X
X X X

X X X
X X X

X X
X X X

















,

3
5
6
4
1
2

















X X
X X X

X X X
X X X

X X
X X X

















,

whereE1(y,y,n,l) = [e3 e5 e6 e4 e1 e2]
T . In this example,K = 2 andnT0,0

= 0, nT1,1
= 1,

nT2,2
= 2, nC2,2

= 1, nC1,1
= 1, nC3,3

= 1. There are four diagonal blocks; the first one
is lower–triangular and of order three, the other three are of order one each. Restricting the
number of diagonal blocks as in (y ,y ,y ,l ) so that we have a(2 × 2) block partitioning in
which the first diagonal block is lower–triangular, we obtain the partitioning on the right.

If an upper–triangular orientation is used with partitioning 1, we will end up with the
nonzero structure in

E1(y,y,n,u)BET
1(y,y,n,u) =

2
6
5
3
1
4

















X X
X X X

X X X
X X
X X

X X X

















,

2
6
5
3
1
4

















X X
X X X

X X X
X X
X X

X X X

















,

whereE1(y,y,n,u) = [e2 e6 e5 e3 e1 e4]
T , K = 2, nT0,0

= 1, nT1,1
= 2, nT2,2

= 1, nC2,2
= 1,

nC1,1
= 1, andnC3,3

= 0. Restricting the number of diagonal blocks as in (y ,y ,y ,u) so that
we have a(2× 2) block partitioning in which the first diagonal block is upper–triangular, we
obtain the partitioning on the right.

3.2. Partitioning 2. In this partitioning, diagonal blocks of order one are treated as in
partitioning 1. Ordering of the remaining diagonal blocks is not changed except for those of
order two. When Cutfind is used, for blocks of order two, (arbitrarily) the first state is moved
to the first diagonal blockT0,0, which is lower–triangular, and the second state is moved to
the last diagonal blockCK+1,K+1. While generating the overall permutation, consecutive
processing of diagonal blocks is essential to ensure the lower–triangularity ofT0,0. When
Cutfind is used, diagonal blocksT1,1, T2,2, . . . , TK,K should be all lower–triangular. In the
end, we have a partitioning of the form
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E2(y,y,n,l)BET
2(y,y,n,l) =

nT0,0
nC1,1

nT1,1
nC2,2

nT2,2
· · · nCK,K

nTK,K
nCK+1,K+1































T0,0 Z0,K+1

Y1,0 C1,1 Y1,1 C1,K+1

T1,0 Z1,1 T1,1 Z1,K+1

Y2,0 C2,1 Y2,1 C2,2 Y2,2 C2,K+1

T2,0 Z2,1 T2,1 Z2,2 T2,2 Z2,K+1

...
...

...
...

...
. . .

...
YK,0 CK,1 YK,1 CK,2 YK,2 · · · CK,K YK,K CK,K+1

TK,0 ZK,1 TK,1 ZK,2 TK,2 · · · ZK,K TK,K ZK,K+1

YK+1,0 CK+1,1 YK+1,1 CK+1,2 YK+1,2 · · · CK+1,K YK+1,K CK+1,K+1































,

so thatnb = nT0,0
+ K + nCK+1,K+1

− nb2 andJ = 1nT0,0
>0 + 2K + 1nCK+1,K+1

>0,
whereE2(y,y,n,l) is the corresponding permutation matrix. When Cutfind is not used as in
(y ,n,n,l ), we still place the first states of diagonal blocks of order two after the block of
states corresponding to states with zero off–diagonal row elements and the second states of
diagonal blocks of order two at the end of the permutation butbefore the block of states
corresponding to states with some off–diagonal row elements to see whether there is any
merit in this permutation. Recall that partitioning 1 does not handle diagonal blocks of order
two as such when Cutfind is not used.

When a block upper–triangular form is desired with Tarjan’s algorithm in partitioning 2,
diagonal blocks of order one should be checked for zero off–diagonal elements in columns
rather than rows as in partitioning 1. Since we do not see any merit in restricting the number of
diagonal blocks to 2 in partitioning 2, we do not consider theparameters (y ,y ,y ,l ), (y ,y ,y ,u),
(y ,n,y ,l ), and (y ,n,y ,u).

EXAMPLE 3.1. (Continued.) Now, we consider partitioning 2 on our webmatrix of 6
pages. We again place state 2 at the end of the permutation. For the irreducible diagonal
block of order two, the first state is placed in the first diagonal block and the second state is
placed in the last diagonal block. Since the result of the Cutfind algorithm on the diagonal
block of order three is the same as in partitioning 1, state 4 is placed in the cutset and states
5 and 6 are permuted as[5 6]T to obtain a lower–triangular diagonal block. The permutation
vector becomes[1 4 5 6 3 2]T and we have the four diagonal blocks given in

E2(y,y,n,l)BET
2(y,y,n,l) =

1
4
5
6
3
2

















X X
X X X
X X X
X X X

X X
X X X

















,

whereE2(y,y,n,l) = [e1 e4 e5 e6 e3 e2]
T . In this example,K = 1 andnT0,0

= 1, nC1,1
= 1,

nT1,1
= 2, nC2,2

= 2. Note that the first and the third blocks are lower–triangular.

If an upper–triangular orientation is used with partitioning 2, we will end up with the
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nonzero structure in

E2(y,y,n,u)BET
2(y,y,n,u) =

2
1
4
6
5
3

















X X X
X X

X X X
X X X
X X X

X X

















,

whereE2(y,y,n,u) = [e2 e1 e4 e6 e5 e3]
T , K = 1, nT0,0

= 2, nC1,1
= 1, nT1,1

= 2, and
nC2,2

= 1. Note that the first and the third blocks are upper–triangular.

Partitionings 1 and 2 do not guarantee that all diagonal blocks are triangular. The next
subsection discusses how one can obtain such a partitioning.

3.3. Partitioning 3. This partitioning is obtained with a recursive procedure. Adiago-
nal block considered at a particular recursive call (at the first call,B) is block triangularized
using Tarjan’s algorithm so that it has irreducible diagonal blocks along its diagonal. Diago-
nal blocks of order one and two are processed as before without calling the Cutfind algorithm,
and the Cutfind algorithm is run on each irreducible diagonalblock of order larger than two.
In the (2 × 2) block partitionings obtained as such, the non–triangular diagonal blocks as-
sociated with the cutsets are grouped together and input to the next recursive call, while
blocks associated with the cutset’s complements are triangularized and grouped together into
a larger triangular block. Recursion ends when each non–triangular diagonal block is of order
less than two. We denote the permutation matrix corresponding to partitioning 3 asE3, and
remark that the permutation obtained for lower–triangularorientation is the reverse of that of
the upper–triangular one.

The implementation of partitioning 3 uses the same data structures and routines as in
partitionings 1 and 2 except that it requires three additional integer work arrays having lengths
nz, (n+1), andn, wherenz denotes the number of nonzero elements ofB. Note thatnz less
n is τ . The first two of these arrays are used for storing the nonzeropattern of the submatrix
to be considered at that recursive call and the last one to record the permutation in between
recursive calls.

EXAMPLE 3.1. (Continued.) For partitioning 3, in the first recursivecall, after symmet-
rically permutingB according to the outcome of Tarjan’s algorthm, we have threediagonal
blocks, the first two of which are of order two and one. So, the Cutfind algorithm need not be
executed on them. Therefore, states 1 and 2 are moved to the cutset’s complement and state
3 is moved to the cutset. Application of Cutfind to the third irreducible diagonal block yields
its cutset as{4}, and therefore the cutset’s complement as{5, 6}. Lower–triangularization of
the diagonal block incident on{5, 6} using Tarjan’s algorithm gives the permutation vector
[5 6]T . Hence, the overall permutation vector at the end of the firstrecursive call is obtained
as[3 4 1 2 5 6]T . Restricting the number of diagonal blocks so that we have a(2 × 2) block
partitioning in which the second diagonal block of order four is lower–triangular, and in the
second recursive call, applying Tarjan’s algorithm to the first diagonal block of order two,
we obtain two irreducible diagonal blocks of order one each.Therefore, the cutset is the
empty set, cutset’s complement becomes{3, 4}, and recursion ends. Note that now we have
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a partitioning in which both diagonal blocks are lower–triangular

E3(y,y,n,l)BET
3(y,y,n,l) =

3
4
1
2
5
6


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










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X X X
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













,

whereE3(y,y,n,l) = [e3 e4 e1 e2 e5 e6]
T .

If an upper–triangular orientation is used with partitioning 3, we will end up with the
nonzero structure in

E3(y,y,n,u)BET
3(y,y,n,u) =

6
5
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1
4
3
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










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
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









,

whereE3(y,y,n,u) = [e6 e5 e2 e1 e4 e3]
T and both diagonal blocks are upper–triangular.

3.4. Partitionings 4 and 5. Two straightforward partitionings are considered from [12].
Partitioningequal(here, 4) has

√
n diagonal blocks of order

√
n if n is a perfect square. If

n 6= ⌊√n⌋2, there is an extra diagonal block of ordern − ⌊√n⌋2. Partitioningother (here,
5) uses diagonal blocks of order respectively1, 2, 3, . . .. It has about

√
2n blocks with the

largest diagonal block being of order roughly
√
2n.

When partitionings 1 through 3 are employed with block iterative solvers,ST −I is sym-
metrically permuted using the corresponding permutation matrix E to obtain the coefficient
matrix A. With partitioni ThenA is scaled to have a diagonal of 1’s and then transformed
from point form to block form based on the partitioning chosen. A is transformed to point
form and scaled back after the iterations are over.

In Table3.1, we summarize the way in which the twelve of the fourteen partitionings we
have experimented with can be obtained using the permutations suggested by partitionings 1
through 3.

In the next section, we introduce six web matrices, their properties, and the experimental
framework.

4. Experimental framework. Different problems resulting from the reducible web ma-
tricesStanford, StanfordBerkeley, Eu2005, WebGoogle, In2004, andWebBaseare considered
by lettingα ∈ {0.85, 0.9, 0.95, 0.97, 0.99}. Hence, altogether there are thirty problems that
are analyzed. TheStanford, StanfordBerkeley, andWebGooglematrices come from the Uni-
versity of Florida Sparse Matrix Collection [8]. All matrices model parts of the hyperlinked
web of pages around the world and solving them would rank the pages. The matricesEu2005
andIn2004are crawled by UbiCrawler [4, 26] and uncompressed using the WebGraph [3, 39]
software. TheWebBasematrix is obtained from the Stanford WebBase Project [38]. The six
matrices we consider have orders ranging between 281,903 and 2,662,002, and possess dan-
gling nodes. The matrices lack (some) diagonal elements.

Each matrix is obtained from a file which stores in compact sparse row format the matrix
columnwise without (some) diagonal entries. In other words, each file stores the nonzero
structure ofPT in compact sparse row format and must be read as such. The missing diagonal
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TABLE 3.1
Obtaining partitionings 1 through 3 onB.

Partitioning Steps
1 (y ,y ,n,l ) (1) Apply Tarjan’s algorithm to obtain block lower–triangular form.

(2) Move states of diagonal blocks of order one with zero off–diagonal row elements to
beginning, those with some off–diagonal row elements to end ofpermutation.

(3) Apply the Cutfind algorithm to each diagonal block of order larger than two;
move states in cutset’s complement towards beginning and states in cutset towards
end of permutation; lower–triangularize diagonal block of states in cutset’s complement;
for diagonal blocks of order two, move first state towards end and second state towards
beginning of permutation.

(4) All states moved towards beginning of permutation form first (lower–triangular)
diagonal block; all other subsets of states moved towards endof permutation
form remaining diagonal blocks.

1 (y ,y ,n,u) As in 1 (y ,y ,n,l ) except ‘lower’ and ‘row’ are replaced with ‘upper’ and ‘column’.
1 (y ,y ,y ,l ) As in 1 (y ,y ,n,l ) except step (4) is changed such that

all other subsets of states moved towards end of permutation form second diagonal block.
1 (y ,y ,y ,u) As in 1 (y ,y ,n,u) except step (4) is changed such that

all other subsets of states moved towards end of permutation form second diagonal block.
1 (y ,n,n,l ) As in 1 (y ,y ,n,l ) except step (3) is omitted.
1 (y ,n,n,u) As in 1 (y ,y ,n,u) except step (3) is omitted.
2 (y ,y ,n,l ) (1) As in step (1) of 1 (y ,y ,n,l ).

(2) As in step (2) of 1 (y ,y ,n,l ).
(3) For diagonal blocks of order two, move first state towards beginning of permutation and

second state towards end of permutation.
(4) Apply the Cutfind algorithm to each diagonal block of order larger than two;

move states in cutset’s complement towards beginning and
states of cutset to end of states in diagonal block;
lower–triangularize diagonal block of states in cutset’s complement.

(5) All states moved towards beginning of permutation form first (lower–triangular)
diagonal block; all other subsets of states form remaining diagonal blocks.

2 (y ,y ,n,u) As in 2 (y ,y ,n,l ) except ‘lower’ and ‘row’ are replaced with ‘upper’ and ‘column’.
2 (y ,n,n,l ) As in 2 (y ,y ,n,l ) except step (4) is omitted and step (5) is changed such that

only states moved to beginning of permutation in step (2) form first (lower–triangular)
diagonal block; all other subsets of states form remaining diagonal blocks.

2 (y ,n,n,u) As in 2 (y ,y ,n,u) except step (4) is omitted and step (5) is changed such that
only states moved to beginning of permutation in step (2) form first (upper–triangular)
diagonal block; all other subsets of states form remaining diagonal blocks.

3 (y ,y ,n,l ) Recursively:
(1) Apply Tarjan’s algorithm to obtain block lower–triangular form.
(2) Process diagonal blocks of order one and two without calling the Cutfind algorithm.
(3) Apply the Cutfind algorithm to all other diagonal blocks.
(4) Lower–triangularize diagonal blocks associated with cutsets’ complements and

group them together into a larger triangular block.
(5) If there is a cutset with more than one state, group states associated with cutsets

together and make a recursive call with corresponding diagonal block.
3 (y ,y ,n,u) As in 3 (y ,y ,n,l ) except ‘lower’ is replaced with ‘upper’.

elements are inserted into the corresponding data structures for all solvers except POWER so
as to facilitate the construction ofB = RT − I. Here we remark that it is possible to
implement the point solvers J and GS without formingB as discussed in [13]. A software
implementation in the form of a Java code which has done so canbe found at [23]. Now,
note that the particular sparse format in the files favors POWER in two ways. Since there is
no need to transposePT to work on the rows ofP to handle diagonal elements at the outset
for POWER, memory for missing diagonal elements and transposition need not be allocated.
This is not the case for the other solvers and is also mentioned in [16]. That is, POWER
can work by postmultiplyingRT = αPT with a column vector at each iteration afterPT

is read into the compact sparse row format data structure at the outset. This translates to
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TABLE 4.1
Properties of web matrices.

dangling missing order of largest
Matrix n nz′ nodes diagonal elements nb diagonal block
Stanford 281,903 2,312,497 20,315 281,903 29,914 150,532
StanfordBerkeley 683,446 7,583,376 68,062 683,446 109,238 333,752
Eu2005 862,664 19,235,140 71,675 361,237 90,768 752,725
WebGoogle 916,428 5,105,039 176,974 916,428 412,479 434,818
In2004 1,382,908 16,917,053 86 1,005,498 367,675 593,687
WebBase 2,662,002 44,843,770 574,863 2,662,002 954,137 1,390,621

savings in memory and time for POWER. For all the other solvers, we allocate a floating–
point array to store the diagonal elements ofB, scale the rows so that the diagonal elements
are all 1 and unscale them back at the end as it is done in the MC analysis software tool
MARCA [34]. This saves the flops due to diagonal elements at each iteration. Recall that the
software tool [10, 11] also works with irreducible MCs whenα is set to 1. Furthermore, each
solver including POWER needs at least two floating–point arrays of lengthn to compute an
approximate error norm to test for convergence and the residual norm upon stopping. GS (that
is, SOR when the relaxation parameterω is 1) can do with one floating–point array of length
n during the iterative process but still needs the second floating-point array for the residual
norm computation. However, certain optimizations that improve the memory requirements
and timings of our code may be possible. Finally, the routinefrom [37] that implements
Tarjan’s algorithm is available for research purposes.

Information regarding the web matrices used in the experiments appears in Table4.1.
The first column provides the matrix name. Columnsn andnz′ give the order of the matrix
and its number of nonzeros as read from the input file. Columnsfour and five provide its
numbers of dangling nodes and missing diagonal elements. Hence, the number of nonzeros
in B is given bynz = nz′+ missing diagonal elements. Columnnb lists the number of
diagonal blocks returned by Tarjan’s algorithm onB. Finally, the last column gives the order
of the largest one among thenb diagonal blocks. The order of the smallest diagonal block in
each matrix is 1 since each matrix has at least one dangling node, and therefore is not listed in
the table. Computation ofn/nb reveals that the average order of diagonal blocks returned by
Tarjan’s algorithm is respectively 9.4, 6.3, 9.5, 2.2, 3.8,2.8 in one decimal digit of precision
for the matrices in the given order.

TABLE 4.2
Nonzero structure of the partitionings onB for theStanfordmatrix.

Partitioning J minj nj maxj nj n1 nz1 E[nj ] E[nzj ] nzoff medjnj

1 (y ,y ,n,l ) 3,520 1 159,037 159,037 452,823 80 332 1,425,977 2
1 (y ,y ,n,u) 3,520 1 179,180 179,180 517,281 80 339 1,401,385 2
1 (y ,y ,y ,l ) 2 122,866 159,037 159,037 452,823 140,952 650,834 1,292,733 140,952
1 (y ,y ,y ,u) 2 102,723 179,180 179,180 517,281 140,952 608,351 1,377,698 140,952
1 (y ,n,n,l ) 3,520 2 150,532 172 172 80 673 224,891 6
1 (y ,n,n,u) 3,520 2 150,532 20,315 20,315 80 668 244,614 6
2 (y ,y ,n,l ) 4,776 1 100,162 1,303 1,356 59 241 1,441,346 6
2 (y ,y ,n,u) 4,776 1 100,162 21,446 21,569 59 237 1,461,074 6
2 (y ,n,n,l ) 3,520 1 150,532 172 172 80 673 226,848 6
2 (y ,n,n,u) 3,520 1 150,532 20,315 20,315 80 667 246,646 6
3 (y ,y ,n,u) 42 1 185,332 185,332 555,177 6,712 16,845 1,886,918 52
4 (n,n,n,u) 531 530 1,003 530 534 531 538 2,308,602 530
5 (n,n,n,u) 751 1 750 1 1 375 380 2,308,739 375
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TABLE 4.3
Nonzero structure of the partitionings onB for theStanfordBerkeleymatrix.

Partitioning J minj nj maxj nj n1 nz1 E[nj ] E[nzj ] nzoff medjnj

1 (y ,y ,n,l ) 6,750 1 360,788 360,788 1,013,364 101 601 4,208,017 3
1 (y ,y ,n,u) 6,750 1 424,115 424,115 1,195,425 101 553 4,534,222 3
1 (y ,y ,y ,l ) 2 322,658 360,788 360,788 1,013,364 341,723 2,348,303 3,570,216 341,723
1 (y ,y ,y ,u) 2 259,331 424,115 424,115 1,195,425 341,723 1,975,004 4,316,815 341,723
1 (y ,n,n,l ) 6,750 2 333,752 4,735 4,735 101 1,087 926,824 6
1 (y ,n,n,u) 6,750 2 333,752 68,062 68,062 101 1,021 1,371,763 6
2 (y ,y ,n,l ) 10,116 1 227,157 6,426 6,484 68 398 4,239,810 5
2 (y ,y ,n,u) 10,116 1 227,157 69,753 69,870 68 354 4,685,016 5
2 (y ,n,n,l ) 6,750 1 333,752 4,735 4,735 101 1,087 928,567 6
2 (y ,n,n,u) 6,750 1 333,752 68,062 68,062 101 1,021 1,373,832 6
3 (y ,y ,n,u) 163 2 458,614 458,614 1,719,076 4,193 12,946 6,156,597 10
4 (n,n,n,u) 827 826 1,170 826 4,340 826 4,931 4,188,520 826
5 (n,n,n,u) 1,169 1 1,168 1 1 585 3,465 4,216,462 585

TABLE 4.4
Nonzero structure of the partitionings onB for theEu2005matrix.

Partitioning J minj nj maxj nj n1 nz1 E[nj ] E[nzj ] nzoff medjnj

1 (y ,y ,n,l ) 1,162 1 465,433 465,433 1,354,607 742 9,087 9,028,274 2
1 (y ,y ,n,u) 1,163 1 546,874 546,874 1,875,258 742 9,452 8,603,667 2
1 (y ,y ,y ,l ) 2 397,231 465,433 465,433 1,354,607 431,332 5,618,481 8,359,415 431,332
1 (y ,y ,y ,u) 2 315,790 546,874 546,874 1,875,258 431,332 5,516,566 8,563,246 431,332
1 (y ,n,n,l ) 1,162 2 752,725 752,725 18,201,086 742 15,867 1,158,774 3
1 (y ,n,n,u) 1,163 2 752,725 81,441 81,441 742 15,841 1,173,377 3
2 (y ,y ,n,l ) 1,588 1 451,763 368 382 543 6,654 9,029,473 2
2 (y ,y ,n,u) 1,588 1 451,763 81,809 82,067 543 6,645 9,043,989 2
2 (y ,n,n,l ) 1,162 1 752,725 752,725 18,201,086 742 15,867 1,158,974 3
2 (y ,n,n,u) 1,163 1 752,725 81,441 81,441 742 15,841 1,173,734 3
3 (y ,y ,n,u) 378 1 555,044 555,044 1,942,183 2,282 6,713 17,058,750 1
4 (n,n,n,u) 929 928 1,480 928 11,808 929 7,829 12,322,997 928
5 (n,n,n,u) 1,314 1 1,313 1 1 657 5,424 12,469,660 656

Representative plots of the resulting nonzero structures under the assumed partitionings
are provided in Figures4.1 and4.2 with the pertaining data interleaved in Tables4.2–4.7.
The nonzero plots ofStanfordresemble those ofWebGoogle, and the nonzero plots ofStan-
ford Berkeley, In2004, WebBaseresemble those ofEu2005; hence, their nonzero plots are
omitted. The number, location, and values of nonzeros in these partitionings have a signifi-
cant effect on the number of iterations performed by the solvers and their respective solution
times. Note, however that the nonzero structure ofB, and hence those of its associated
partitionings, do not change for different values ofα, nor will they change for different per-
sonalization vectorsv. Hence, time spent at the outset for computing the partitionings can
very well be justified if they are not significantly more than the iteration times. In Tables
4.2–4.7, the column “Partitioning” indicates the block partitioning used and lists its param-
eters. Number of diagonal blocks, order of smallest and largest diagonal blocks, order and
number of nonzeros of the first diagonal block, average orderand average number of nonze-
ros of diagonal blocks (both rounded to the nearest integer), number of nonzero elements
lying in off–diagonal blocks, and median order of diagonal blocks in the particular partition-
ing appear in columnsJ , minj nj , maxj nj , n1, nz1, E[nj ], E[nzj ], nzoff , and medjnj ,
respectively. Note that for partitioning 3, orientation ofthe block triangular form is immate-
rial from a statistical point of view of the nonzero structure, and therefore, results only with
upper–triangular orientation are reported.

Some observations are due. Among the six web matrices, the nonzero plots ofB for
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(a) Original (b) Tarjan (c) 1 (y ,y ,n,l )

(d) 1 (y ,y ,n,u)

(e) 1 (y ,n,n,l ) (f) 1 (y ,n,n,u) (g) 2 (y ,y ,n,l )

(h) 2 (y ,y ,n,u)

(i) 2 (y ,n,n,l ) (j) 2 (y ,n,n,u) (k) 3 (y ,y ,n,u)

FIG. 4.1.Nonzero plots of the partitionings onB for theEu2005matrix.

StanfordandWebGoogle(the latter given in Figure4.2(a) indicate a more uniform distribu-
tion of their nonzeros across rows and columns. These two matrices are of different orders,
but both look very dense. Note that neither the average orderof the diagonal blocks returned
by Tarjan’s algorithm (9.4 and 2.2, respectively) nor the average number of nonzeros per row
(9.2 and 6.6, respectively) is similar for these two matrices. For partitioning 3, the largest
percentage of nonzeros within diagonal blocks appear in theStanfordandWebGooglema-
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(a) Original (b) Tarjan (c) 1 (y ,y ,n,l )

(d) 1 (y ,y ,n,u)

(e) 1 (y ,n,n,l ) (f) 1 (y ,n,n,u) (g) 2 (y ,y ,n,l )

(h) 2 (y ,y ,n,u)

(i) 2 (y ,n,n,l ) (j) 2 (y ,n,n,u) (k) 3 (y ,y ,n,u)

FIG. 4.2.Nonzero plots of the partitionings onB for theWebGooglematrix.

trices as well, with about 27% and 32%, respectively. For this partitioning, it is also the
same matrices for which the average order of diagonal blocksis largest with about 16,835
and 27,771, respectively. We will see in the next section that these two properties work in
favor of partitioning 3 in all of the ten problems associatedwith these two matrices. On the
other hand, the smallest number of nonzeros in the off–diagonal blocks appear in partition-
ing 1 with parameters (y ,n,n,l ) in all matrices exceptWebGoogleand In2004 for which it
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TABLE 4.5
Nonzero structure of the partitionings onB for theWebGooglematrix.

Partitioning J minj nj maxj nj n1 nz1 E[nj ] E[nzj ] nzoff medjnj

1 (y ,y ,n,l ) 12,876 1 524,850 524,850 1,057,698 71 234 3,013,372 1
1 (y ,y ,n,u) 12,876 1 499,941 499,941 966,216 71 228 3,079,757 1
1 (y ,y ,y ,l ) 2 391,578 524,850 524,850 1,057,698 458,214 1,624,343 2,772,781 458,214
1 (y ,y ,y ,u) 2 416,487 499,941 499,941 966,216 458,214 1,783,650 2,454,168 458,214
1 (y ,n,n,l ) 12,876 2 434,818 201,883 201,883 71 371 1,243,063 4
1 (y ,n,n,u) 12,876 2 434,818 176,974 176,974 71 371 1,242,875 4
2 (y ,y ,n,l ) 17,412 1 280,066 206,052 216,382 53 163 3,189,056 2
2 (y ,y ,n,u) 17,412 1 280,066 181,143 182,884 53 163 3,189,011 2
2 (y ,n,n,l ) 12,876 1 434,818 201,883 201,883 71 371 1,247,096 4
2 (y ,n,n,u) 12,876 1 434,818 176,974 176,974 71 371 1,238,462 4
3 (y ,y ,n,u) 33 1 722,666 722,666 1,640,818 27,771 58,624 4,086,863 299
4 (n,n,n,u) 958 579 957 957 957 957 962 5,099,746 957
5 (n,n,n,u) 1,354 1 1,353 1 1 677 681 5,099,941 676

TABLE 4.6
Nonzero structure of the partitionings onB for theIn2004matrix.

Partitioning J minj nj maxj nj n1 nz1 E[nj ] E[nzj ] nzoff medjnj

1 (y ,y ,n,l ) 16,644 1 929,778 929,778 2,573,755 83 641 7,259,360 4
1 (y ,y ,n,u) 16,644 1 635,092 635,092 1,745,311 83 619 7,618,442 4
1 (y ,y ,y ,l ) 2 453,130 929,778 929,778 2,573,755 691,454 5,427,036 7,068,479 691,454
1 (y ,y ,y ,u) 2 635,092 747,816 635,092 1,745,311 691,454 5,408,008 7,106,534 691,454
1 (y ,n,n,l ) 16,644 2 593,687 294,780 294,780 83 992 1,413,736 7
1 (y ,n,n,u) 16,644 2 593,687 94 94 83 1,002 1,239,060 7
2 (y ,y ,n,l ) 26,978 1 384,611 297,934 305,915 51 375 7,809,139 4
2 (y ,y ,n,u) 26,978 1 384,611 3,248 3,297 51 381 7,663,801 4
2 (y ,n,n,l ) 16,644 1 593,687 294,780 294,780 83 992 1,413,651 7
2 (y ,n,n,u) 16,644 1 593,687 94 94 83 1,003 1,230,381 7
3 (y ,y ,n,u) 474 1 986,091 986,091 2,965,885 2,918 7,584 14,327,904 11
4 (n,n,n,u) 1,176 1,175 2,283 1,175 31,832 1,176 9,404 6,863,176 1,175
5 (n,n,n,u) 1,663 1 1,662 1 1 832 6,615 6,922,088 832

is a contender. It is clear that this partitioning with Tarjan’s algorithm employed to obtain
a block lower–triangular form seems to concentrate the largest number of nonzeros within
diagonal blocks. We will also see that this is something useful for block iterative methods.
Finally, partitioning 4 returns balanced block sizes and always a reasonable number of blocks
as intended.

In the next section, we provide the results of numerical experiments on the benchmark
matrices.

5. Numerical results. We compare the performance of sparse solvers in the software
tool [11] with an emphasis on the memory used, number of iterations taken, accuracy achieved,
time for preprocessing and solution. The numerical experiments are performed on a 2.66 GHz
Pentium IV processor with 4 GB main memory under the Linux operating system using the
o3 optimization level in compiling the code. We provide the results of experiments with three
solvers: POWER, GS, and BGS.

The stopping criteria used by all solvers is

k ≥ maxit or ‖x(k) − x(k−1)‖∞ ≤ stoptol,

wherek is the iteration number,maxit is the maximum number of iterations to be performed,
andstoptol is the stopping tolerance. The solver BGS also uses the additional criteria

‖x(k)−x(k−1)‖∞ ≤ stoptol1 and
∣

∣

∣
‖x(k) − x(k−1)‖∞ − ‖x(k−1) − x(k−2)‖∞

∣

∣

∣
≤ stoptol2.
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TABLE 4.7
Nonzero structure of the partitionings onB for theWebBasematrix.

Partitioning J minj nj maxj nj n1 nz1 E[nj ] E[nzj ] nzoff medjnj

1 (y ,y ,n,l ) 8,584 1 1,635,593 1,635,593 5,085,941 310 2,030 30,079,285 1
1 (y ,y ,n,u) 8,584 1 1,854,996 1,854,996 6,049,826 310 2,104 29,445,974 1
1 (y ,y ,y ,l ) 2 1,026,409 1,635,593 1,635,593 5,085,941 1,331,001 9,542,739 28,420,294 1,331,001
1 (y ,y ,y ,u) 2 807,006 1,854,996 1,854,996 6,049,826 1,331,001 11,578,808 24,348,156 1,331,001
1 (y ,n,n,l ) 8,584 2 1,390,621 355,460 355,460 310 4,541 8,523,737 3
1 (y ,n,n,u) 8,584 2 1,390,621 574,863 574,863 310 4,528 8,634,908 3
2 (y ,y ,n,l ) 10,188 1 1,054,569 358,949 362,330 261 1,655 30,647,129 4
2 (y ,y ,n,u) 10,188 1 1,054,569 578,352 585,200 261 1,644 30,755,389 4
2 (y ,n,n,l ) 8,584 1 1,390,621 355,460 355,460 310 4,541 8,524,636 3
2 (y ,n,n,u) 8,584 1 1,390,621 574,863 574,863 310 4,528 8,636,363 3
3 (y ,y ,n,u) 404 1 2,225,698 2,225,698 8,197,002 6,589 21,962 38,633,180 10
4 (n,n,n,u) 1,632 1,631 1,841 1,631 50,035 1,631 11,114 29,368,144 1,631
5 (n,n,n,u) 2,307 1 2,306 1 1 1,154 7,675 29,799,021 1,154

The use ofstoptol1 andstoptol2 forces the solver to terminate when the norm of the resid-
ual is decreasing too slowly, while the differences betweentwo successive iterates is small
enough. We letstoptol = 10−10, stoptol1 = 10−6, andstoptol2 = 10−12, respectively,
whereasmaxit = 5, 000.

For the block iterative methods, the triangular diagonal blocks are solved exactly at each
outer iteration with the help of the Shermann–Morrison formula. The remaining diagonal
blocks are solved approximately using the corresponding point iterative method. BGS has
two additional parameters indicating maximum number and tolerance of inner iterations to
be performed with GS for the solution of diagonal blocks. Thevalues of these parameters are
respectively elements of the sets{3, 5} and{10−3, 10−5, 10−10}. Hence, six experiments
are carried out with each of the partitioning parameters except those of partitioning 3, which
makes altogether seventy–four experiments for each problem with the BGS solver.

Now, we present our results and then make a general summary. Tables5.1 through5.6
provide results from the experiments for each web matrix withα ∈ {0.85, 0.9, 0.95, 0.97, 0.99}.
In each table, besides POWER and GS, we have also indicated theBGS solver which gives the
minimum total solution time for each partitioning. The column “Solver” indicates the name
of the solver and, for BGS solvers, the partitioning used with its parameters. The column
“MB” provides the memory requirement of the solver in megabytes. Note that this column
includes memory for nonzeros in the matrix and (except POWER)its transpose. The columns
“Iterations” and “Residual” give the number of iterations performed and the infinity norm of
the residual vector (i.e.,π(k)−π(k)S or−Ax(k) depending on the solver) upon stopping. The
setup time and the total solution time in seconds (s) are given in the next two columns. The
setup time includes time for reading the web matrix from the input file, allocating and setting
the necessary data structures, and wherever applicable, scaling the coefficient matrix, com-
puting the partitioning, transforming the sparse point representation of the coefficient matrix
to a sparse block representation, transforming and scalingit back after the iterations are over.
The total solution time is the sum of setup and iteration times. Finally, the last column gives
the ratio of the total partitioning time to one iteration time of POWER, rounded to the nearest
nonnegative integer. In other words, the column “Ratio” indicates the number of POWER
iterations that can be executed during the time the respective partitioning is computed. The
bold number shows the best overall total timing result in each table. The identities of winning
solvers according to minimum total solution time coincide with those of minimum iteration
time in all problems exceptWebBasewith α = 0.85, where it will become BGS with parti-
tioning 1 (y ,n,n,l ) rather than GS if we consider minimum iteration time. We must remark
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that it is acceptable for timing results of an experiment obtained by different runs on the same
platform to differ by 10–15% due to various effects. The conclusions we derive take this into
account.

TABLE 5.1
Results for theStanfordmatrix.

α Solver MB Iterations Residual Setup (s) Total (s) Ratio
0.85 POWER 38 103 8.4e-11 1.2 10.1

GS 50 45 5.9e-11 1.3 5.9
BGS 1 (y ,n,n,l ) 3, 10−10 86 18 9.2e-11 2.5 5.5 15
BGS 2 (y ,y ,n,l ) 3, 10−3 110 42 6.4e-11 3.0 5.4 21
BGS 3 (y ,y ,n,l ) 122 44 5.3e-11 3.1 4.9 22
BGS 4 (n,n,n,u) 3, 10−3 86 45 5.9e-11 1.8 6.2 7
BGS 5 (n,n,n,u) 5, 10−3 86 45 5.9e-11 1.8 6.2 7

0.9 POWER 38 154 7.6e-11 1.3 14.3
GS 50 65 7.5e-11 1.4 8.0
BGS 1 (y ,n,n,l ) 3, 10−10 86 26 7.1e-11 2.5 6.9 14
BGS 2 (y ,y ,n,l ) 3, 10−3 110 62 7.2e-11 3.0 6.6 20
BGS 3 (y ,y ,n,l ) 122 63 7.0e-11 3.1 5.7 21
BGS 4 (n,n,n,u) 3, 10−3 86 65 7.5e-11 1.8 8.1 6
BGS 5 (n,n,n,u) 3, 10−3 86 65 7.5e-11 1.6 8.0 4

0.95 POWER 38 288 9.1e-11 1.2 25.6
GS 50 124 8.6e-11 1.4 13.9
BGS 1 (y ,n,n,l ) 3, 10−10 86 45 7.6e-11 2.5 10.3 15
BGS 2 (y ,y ,n,l ) 3, 10−3 110 118 8.2e-11 2.9 9.8 17
BGS 3 (y ,y ,n,l ) 122 117 8.8e-11 3.2 8.0 24
BGS 4 (n,n,n,u) 3, 10−3 86 124 8.6e-11 1.8 13.9 7
BGS 5 (n,n,n,u) 5, 10−3 86 124 8.6e-11 1.8 13.9 7

0.97 POWER 38 475 9.6e-11 1.2 41.4
GS 50 201 9.0e-11 1.4 21.7
BGS 1 (y ,n,n,l ) 5, 10−10 86 43 8.6e-11 2.4 14.2 14
BGS 2 (y ,y ,n,l ) 3, 10−3 110 192 9.0e-11 3.1 14.1 22
BGS 3 (y ,y ,n,l ) 122 191 9.3e-11 3.2 11.1 24
BGS 4 (n,n,n,u) 5, 10−3 86 201 9.0e-11 1.7 21.3 6
BGS 5 (n,n,n,u) 3, 10−3 86 201 9.0e-11 1.7 21.4 6

0.99 POWER 38 1,319 9.9e-11 1.2 112.5
GS 50 574 5.6e-11 1.4 59.3
BGS 1 (y ,y ,y ,l ) 3, 10−3 108 566 5.4e-11 3.0 35.0 21
BGS 2 (y ,y ,n,u) 3, 10−3 110 588 9.6e-11 3.0 36.2 21
BGS 3 (y ,y ,n,u) 122 552 7.4e-11 3.1 25.8 23
BGS 4 (n,n,n,u) 3, 10−3 86 574 5.6e-11 1.8 57.7 7
BGS 5 (n,n,n,u) 5, 10−3 86 574 5.6e-11 1.7 57.7 6

5.1. Empirical observations. The results show that we can solve the largest and most
difficult problem in our suite of thirty problems in less thanfour minutes on the given plat-
form. The winning solver according to iteration time is always BGS. It is BGS with parti-
tioning 1 in 17 problems, BGS with partitioning 3 in 10 problems, and BGS with partitioning
4 in 3 problems. In general, the time to compute partitionings 1 through 3 are only a fraction
of the iteration time if the time to read the matrix and prepare the data structures is excluded
from the setup time. That is, partitioning time is roughly equal to the setup time of BGS with
the respective partitioning minus the setup time of POWER.

BGS with partitioning 3 and lower–triangular orientation is winner in theStanfordmatrix
with α ∈ {0.85, 0.9, 0.95, 0.97}. As reported in Table5.1, it is also the winner forα =
0.99, but with upper–triangular orientation. BGS with partitioning 3 is also the winner in
the WebGooglematrix with lower–triangular orientation forα ∈ {0.85, 0.9} and upper–
triangular orientation forα ∈ {0.95, 0.97, 0.99}. For these two web matrices, there seems
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TABLE 5.2
Results for theStanfordBerkeleymatrix.

α Solver MB Iterations Residual Setup (s) Total (s) Ratio
0.85 POWER 115 93 7.7e-11 3.1 9.5

GS 152 55 6.3e-11 3.4 7.8
BGS 1 (y ,n,n,l ) 3, 10−10 254 20 5.3e-11 4.0 7.6 13
BGS 2 (y ,n,n,l ) 3, 10−5 254 44 6.2e-11 4.1 8.7 15
BGS 3 (y ,y ,n,u) 357 42 7.2e-11 7.0 11.7 57
BGS 4 (n,n,n,u) 3, 10−3 254 55 6.3e-11 3.7 8.5 9
BGS 5 (n,n,n,u) 3, 10−3 254 55 6.3e-11 3.7 8.5 9

0.9 POWER 115 143 8.5e-11 3.4 13.2
GS 152 78 7.1e-11 3.4 9.7
BGS 1 (y ,n,n,l ) 3, 10−10 254 27 7.7e-11 4.2 9.2 12
BGS 2 (y ,n,n,l ) 3, 10−5 254 65 8.7e-11 4.2 10.8 12
BGS 3 (y ,y ,n,u) 357 64 7.5e-11 6.8 14.0 50
BGS 4 (n,n,n,u) 3, 10−3 254 78 7.1e-11 3.6 10.4 3
BGS 5 (n,n,n,u) 3, 10−3 254 78 7.1e-11 3.8 10.7 6

0.95 POWER 115 292 9.5e-11 3.0 23.0
GS 152 143 8.5e-11 3.4 15.0
BGS 1 (y ,n,n,l ) 5, 10−10 254 31 1.2e-10 4.2 12.7 18
BGS 2 (y ,y ,n,l ) 3, 10−3 320 119 7.4e-11 4.6 16.5 23
BGS 3 (y ,y ,n,u) 357 128 8.5e-11 6.9 21.3 57
BGS 4 (n,n,n,u) 3, 10−5 254 142 8.6e-11 3.9 16.4 13
BGS 5 (n,n,n,u) 5, 10−5 254 137 9.3e-11 3.6 15.8 9

0.97 POWER 115 490 9.6e-11 3.1 36.5
GS 152 239 9.1e-11 3.4 22.5
BGS 1 (y ,n,n,l ) 5, 10−10 254 52 1.5e-10 4.1 17.7 15
BGS 2 (y ,y ,n,u) 5, 10−3 320 186 9.0e-11 4.6 23.0 22
BGS 3 (y ,y ,n,l ) 357 209 9.1e-11 6.7 30.1 53
BGS 4 (n,n,n,u) 3, 10−10 254 169 9.2e-11 3.7 22.4 9
BGS 5 (n,n,n,u) 3, 10−10 254 173 9.0e-11 3.8 22.8 10

0.99 POWER 115 1,454 9.8e-11 3.1 101.7
GS 152 719 9.7e-11 3.4 61.2
BGS 1 (y ,n,n,l ) 5, 10−10 254 138 1.1e-10 4.1 40.9 15
BGS 2 (y ,y ,n,u) 3, 10−3 320 524 9.8e-11 4.8 56.8 25
BGS 3 (y ,y ,n,l ) 357 559 9.7e-11 6.7 69.3 53
BGS 4 (n,n,n,u) 3, 10−10 254 454 9.7e-11 3.9 53.4 12
BGS 5 (n,n,n,u) 3, 10−10 254 411 9.5e-11 4.2 49.6 16

to be a value ofα beyond which the BGS solver favors upper–triangular orientation with
partitioning 3 as the problem becomes more difficult to solve. We remark that we use forward
BGS and the block lower–triangular part ofA as the preconditioning matrixM . It is that part
which multiplies the values of the current approximation. Interestingly, it is only theStanford
andWebGooglematrices in which partitioning 3 accompanies a winning solver. Not all web
matrices need to look the same, and theStanfordmatrix may not be a good representative
most probably due to its relative smallness. But, partitioning 3 also yields a winning solver
with BGS in WebGoogle, which has an order of about a million and significantly different
statistical features thanStanfordas pointed out in section4. When BGS is a winner with
partitioning 3, the improvements in iteration time compared to the second best solver, GS,
and POWER are respectively more than 21%, 47%, and 74%. These correspond to speedups
of more than 1.3, 1.9, and 3.8. In Figure5.1(a), we plot the % change in iteration time of
BGS 3 (y ,y ,n,u) over that of GS for the ten experiments carried out with theStanfordand
WebGooglematrices. The graph shows that the improvement in iterationtime is at least 45%
for this set of experiments. In general, the time to compute partitioning 3 becomes relatively
large compared to those of other partitionings as the order of the matrix increases, due to
the relatively large number of recursive calls performed. However, it is still dependent on the
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TABLE 5.3
Results for theEu2005matrix.

α Solver MB Iterations Residual Setup (s) Total (s) Ratio
0.85 POWER 256 90 7.9e-11 7.6 20.3

GS 340 48 4.5e-11 8.6 16.0
BGS 1 (y ,n,n,l ) 5, 10−10 542 11 5.4e-11 9.5 15.5 13
BGS 2 (y ,n,n,l ) 5, 10−5 542 43 7.1e-11 9.6 18.0 14
BGS 3 (y ,y ,n,l ) 746 41 7.1e-11 19.1 29.5 81
BGS 4 (n,n,n,u) 3, 10−5 542 44 5.3e-11 8.8 16.0 9
BGS 5 (n,n,n,u) 5, 10−5 542 44 5.6e-11 9.0 16.3 10

0.9 POWER 256 137 8.1e-11 7.4 26.7
GS 340 71 4.0e-11 8.3 19.2
BGS 1 (y ,n,n,l ) 5, 10−10 542 15 5.8e-11 9.6 18.5 16
BGS 2 (y ,n,n,l ) 3, 10−3 542 72 1.8e-11 9.6 22.2 16
BGS 3 (y ,y ,n,l ) 746 63 7.1e-11 18.9 34.9 82
BGS 4 (n,n,n,u) 3, 10−10 542 52 7.0e-11 8.6 18.8 9
BGS 5 (n,n,n,u) 3, 10−10 542 53 8.0e-11 8.8 19.1 10

0.95 POWER 256 269 9.4e-11 7.7 45.2
GS 340 140 1.7e-11 8.5 29.9
BGS 1 (y ,n,n,l ) 3, 10−10 542 47 8.2e-11 9.6 29.1 14
BGS 2 (y ,y ,n,l ) 3, 10−3 663 132 6.7e-11 10.5 33.6 20
BGS 3 (y ,y ,n,l ) 746 127 8.7e-11 18.6 50.8 78
BGS 4 (n,n,n,u) 3, 10−10 542 96 9.0e-11 8.9 27.2 9
BGS 5 (n,n,n,u) 3, 10−10 542 98 8.1e-11 9.1 27.8 10

0.97 POWER 256 434 9.6e-11 7.3 67.5
GS 340 228 2.3e-11 8.6 43.6
BGS 1 (y ,n,n,u) 3, 10−10 542 85 5.6e-11 9.8 43.0 18
BGS 2 (y ,y ,n,l ) 3, 10−3 663 214 7.7e-11 10.5 47.9 23
BGS 3 (y ,y ,n,l ) 746 210 9.1e-11 18.5 71.8 81
BGS 4 (n,n,n,u) 3, 10−10 542 168 9.2e-11 8.9 40.1 12
BGS 5 (n,n,n,u) 3, 10−10 542 171 9.3e-11 9.9 42.0 19

0.99 POWER 256 1,258 9.9e-11 7.4 182.5
GS 340 634 4.8e-11 8.3 105.9
BGS 1 (y ,n,n,l ) 3, 10−10 542 267 7.0e-11 9.9 115.1 18
BGS 2 (y ,y ,n,l ) 3, 10−3 663 590 8.3e-11 10.5 113.3 22
BGS 3 (y ,y ,n,l ) 746 594 9.5e-11 18.9 169.5 83
BGS 4 (n,n,n,u) 3, 10−10 542 502 9.6e-11 8.9 100.9 11
BGS 5 (n,n,n,u) 3, 10−10 542 511 9.7e-11 8.8 102.8 10

value ofJ , the number of blocks inA, that comes up as a result of the computation. WhenJ is
relatively small, the partitioning time will also be relatively small. Note thatJ equals 42 and
33 with partitioning 3 for theStanfordandWebGooglematrices, respectively. Although the
Cutfind algorithm shortens time per outer iteration, it doesso at the expense of an increased
number of iterations, and this sets back the total solution time. In any case, partitioning
3 is to be recommended for web matrices having nonzero plots as those ofStanfordand
WebGoogle, and the larger partitioning time will be clearly offset when the same web matrix
is used multiple times.

GS is producing minimum total solution time in theWebBasematrix with α = 0.85,
but is a runner–up in eleven other problems. However, if minimum iteration time is consid-
ered, it is never a winner, and a runner–up only in eight problems. GS consistently reduces
the number of iterations with a factor of about 2 over that of POWER and does not have
much overhead associated with preprocessing, which make itcompetitive as observed in the
literature before. BGS with partitioning 4 is producing minimum solution time in three prob-
lems, namelyEu2005with α ∈ {0.95, 0.97, 0.99}, and performs relatively well in all other
problems. When only Tarjan’s algorithm is employed, BGS withpartitioning 1 is producing
minimum total solution time in the remaining sixteen problems (seventeen if minimum itera-
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TABLE 5.4
Results for theWebGooglematrix.

α Solver MB Iterations Residual Setup (s) Total (s) Ratio
0.85 POWER 97 92 8.0e-11 3.2 32.8

GS 127 42 5.7e-11 3.9 19.4
BGS 1 (y ,n,n,l ) 5, 10−10 225 11 4.0e-11 8.0 18.6 15
BGS 2 (y ,n,n,l ) 3, 10−3 225 42 7.4e-11 8.0 21.2 15
BGS 3 (y ,y ,n,l ) 324 41 6.8e-11 9.8 17.5 21
BGS 4 (y ,n,n,u) 3, 10−3 225 42 5.7e-11 5.3 20.3 7
BGS 5 (n,n,n,u) 3, 10−3 225 42 5.7e-11 5.3 20.2 7

0.9 POWER 97 142 8.4e-11 3.4 48.7
GS 127 63 5.8e-11 3.8 26.9
BGS 1 (y ,n,n,l ) 3, 10−10 225 24 7.1e-11 8.0 24.5 14
BGS 2 (y ,y ,n,u) 3, 10−3 295 60 7.5e-11 10.1 26.9 21
BGS 3 (y ,y ,n,l ) 324 61 7.9e-11 10.0 21.4 21
BGS 4 (n,n,n,u) 3, 10−5 225 63 5.8e-11 5.2 27.7 6
BGS 5 (n,n,n,u) 3, 10−3 225 63 5.8e-11 5.3 27.8 6

0.95 POWER 97 291 9.1e-11 3.3 96.2
GS 127 121 7.7e-11 3.9 48.4
BGS 1 (y ,n,n,l ) 3, 10−10 225 46 8.2e-11 8.0 41.3 15
BGS 2 (y ,y ,n,u) 3, 10−3 295 118 8.4e-11 10.3 43.2 22
BGS 3 (y ,y ,n,u) 324 127 8.1e-11 10.0 33.7 21
BGS 4 (n,n,n,u) 3, 10−3 225 121 7.7e-11 5.2 48.5 6
BGS 5 (n,n,n,u) 3, 10−3 225 121 7.7e-11 5.3 48.5 6

0.97 POWER 97 489 9.6e-11 3.3 159.3
GS 127 195 8.2e-11 3.8 75.7
BGS 1 (y ,n,n,l ) 3, 10−10 225 74 8.7e-11 8.1 60.9 15
BGS 2 (y ,y ,n,u) 3, 10−3 295 191 9.1e-11 10.1 63.4 21
BGS 3 (y ,y ,n,u) 324 204 8.9e-11 9.9 48.0 21
BGS 4 (n,n,n,u) 5, 10−3 225 195 8.2e-11 5.4 75.0 7
BGS 5 (n,n,n,u) 5, 10−3 225 195 8.2e-11 5.3 75.0 6

0.99 POWER 97 1481 9.8e-11 3.2 472.9
GS 127 528 9.8e-11 3.9 197.9
BGS 1 (y ,n,n,l ) 3, 10−10 225 198 9.8e-11 8.0 138.5 15
BGS 2 (y ,y ,n,l ) 5, 10−3 295 532 9.8e-11 9.8 158.1 21
BGS 3 (y ,y ,n,u) 324 553 9.2e-11 9.9 112.9 21
BGS 4 (n,n,n,u) 3, 10−5 225 527 9.8e-11 5.3 193.4 7
BGS 5 (n,n,n,u) 3, 10−3 225 528 9.8e-11 5.3 193.5 7

tion time is considered). In fifteen (respectively, sixteen) of those problems, it is the winner
with lower–triangular orientation, the exception beingIn2004 with α = 0.99. Whenever
BGS is the winner with partitioning 1 and parameters (y ,n,n,l ) or (y ,n,n,u), it yields the
smallest number of iterations among the solvers in the tables. In all cases for the winning
solvers, the stopping tolerance for the inner GS iteration for non–triangular diagonal blocks
turns out to be10−10. When BGS 1 (y ,n,n,l ) 5, 10−10 is a winner, it reduces the number
of iterations over that of POWER with a factor ranging between7.8 (In2004with α = 0.95)
to 10.5 (StanfordBerkeleywith α = 0.99). When BGS 1 (y ,n,n,l ) 3, 10−10 is a winner,
it reduces the number of iterations over that of POWER with a factor ranging between 4.6
(StanfordBerkeleywith α = 0.85) to 7.0 (WebBasewith α = 0.97). When BGS is a winner
with partitioning 1 (y ,n,n,l ), the improvements in iteration time compared to POWER are
between 44% and 63%. This corresponds to a speedup between 1.8 and 2.7. In Figures5.1(b)
and5.1(c), we plot the % changes in iteration times of respectivelyBGS 1 (y ,n,n,l ) 3, 10−10

and BGS 1 (y ,n,n,l ) 5, 10−10 over that of GS for the thirty experiments performed. The two
graphs show that the improvement in iteration time is at least 20% in 60% of the experiments
and at least 15% in 70% of the experiments.

We remark that BGS 1 (y ,n,n,l ) 3, 10−10 is faster than BGS 1 (y ,n,n,l ) 3, 10−3 and
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TABLE 5.5
Results for theIn2004matrix.

α Solver MB Iterations Residual Setup (s) Total (s) Ratio
0.85 POWER 252 100 3.8e-10 6.9 21.3

GS 332 57 6.4e-11 8.9 18.3
BGS 1 (y ,n,n,l ) 3, 10−10 551 21 4.9e-11 9.3 17.0 17
BGS 2 (y ,y ,n,l ) 3, 10−3 690 44 6.9e-11 9.7 18.8 19
BGS 3 (y ,y ,n,u) 771 44 2.0e-11 29.7 39.8 158
BGS 4 (n,n,n,u) 3, 10−5 551 52 7.5e-11 8.1 17.5 8
BGS 5 (n,n,n,u) 3, 10−10 551 40 1.4e-11 8.0 17.3 8

0.9 POWER 252 151 4.8e-10 7.1 28.8
GS 332 84 7.2e-11 7.9 21.8
BGS 1 (y ,n,n,l ) 3, 10−10 551 30 6.5e-11 9.4 20.2 16
BGS 2 (y ,y ,n,u) 5, 10−3 690 63 7.3e-11 10.1 23.3 21
BGS 3 (y ,y ,n,u) 771 65 3.2e-11 30.0 44.8 159
BGS 4 (n,n,n,u) 3, 10−10 551 58 1.8e-11 8.7 22.0 11
BGS 5 8n,n,n,u) 5, 10−5 551 58 1.8e-11 8.3 21.8 8

0.95 POWER 252 313 2.6e-10 6.9 51.6
GS 332 159 6.1e-11 7.7 34.0
BGS 1 (y ,n,n,l ) 5, 10−10 551 40 6.9e-11 9.2 28.4 16
BGS 2 (y ,y ,n,u) 5, 10−3 690 124 8.5e-11 10.1 36.0 22
BGS 3 (y ,y ,n,l ) 771 128 8.9e-11 30.6 60.0 166
BGS 4 (n,n,n,u) 3, 10−10 551 110 2.1e-11 8.3 33.3 10
BGS 5 (n,n,n,u) 3, 10−10 551 110 2.3e-11 8.1 33.3 8

0.97 POWER 252 526 1.3e-10 6.9 82.1
GS 332 253 8.7e-11 7.8 49.7
BGS 1 (y ,n,n,l ) 5, 10−10 551 54 9.0e-11 9.0 36.1 15
BGS 2 (y ,n,n,l ) 3, 10−10 551 145 9.4e-11 9.1 51.9 15
BGS 3 (y ,y ,n,l ) 771 207 9.2e-11 30.2 77.5 163
BGS 4 (n,n,n,u) 3, 10−10 551 173 3.1e-11 8.3 47.4 10
BGS 5 (n,n,n,u) 3, 10−10 551 173 3.3e-11 8.4 47.7 10

0.99 POWER 252 1,379 1.8e-10 7.0 204.9
GS 332 757 9.9e-11 7.9 133.0
BGS 1 (y ,n,n,u) 3, 10−10 551 222 9.2e-11 9.2 91.9 15
BGS 2 (y ,n,n,l ) 3, 10−10 551 387 9.7e-11 9.4 126.4 17
BGS 3 (y ,y ,n,l ) 771 556 9.3e-11 30.2 157.3 162
BGS 4 (n,n,n,u) 3, 10−10 551 449 9.7e-11 8.6 108.0 11
BGS 5 (n,n,n,u) 3, 10−10 551 448 9.8e-11 8.4 108.4 10

BGS 1 (y ,n,n,l ) 3, 10−5 in all of the thirty experiments. The improvement in iteration time
with BGS 1 (y ,n,n,l ) 3, 10−10 over both solvers is at least 25% in 50% of the thirty experi-
ments (results not shown). On the other hand, BGS 1 (y ,n,n,l ) 5, 10−10 is slower than BGS
1 (y ,n,n,l ) 5, 10−3 and BGS 1 (y ,n,n,l ) 5, 10−5 in less than 10% of the thirty experiments.
The improvement in iteration time with BGS 1 (y ,n,n,l ) 5, 10−10 over both solvers is at
least 25% in 50% of the thirty experiments (results not shown). If the performances of BGS
1 (y ,n,n,l ) 3, 10−10 and BGS 1 (y ,n,n,l ) 5, 10−10 are compared, they come across as being
similar.

Among the three solvers we consider in this paper, POWER has the minimum memory
requirement, whereas BGS has the highest memory requirement when partitioning 3 is em-
ployed. The memory requirement of BGS with partitioning 1 using only Tarjan’s algorithm
is about twice that of POWER, the memory requirement of BGS with partitioning 3 is about
three times that of POWER, and the memory requirement of GS is comparable to that of
POWER.

Another set of experiments are conducted by considering symmetric permutations of the
six web matrices under study. To this end, ten random permutations for each web matrix is
generated using Matlab, thus giving us altogether sixty experiments forα = 0.85. All of
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TABLE 5.6
Results for theWebBasematrix.

α Solver MB Iterations Residual Setup (s) Total (s) Ratio
0.85 POWER 625 96 7.2e-11 21.3 53.4

GS 826 44 7.4e-11 20.5 37.1
BGS 1 (y ,n,n,l ) 3, 10−10 1,341 18 6.8e-11 24.3 39.8 9
BGS 2 (y ,n,n,u) 5, 10−3 1,341 46 6.7e-11 23.7 45.0 7
BGS 3 (y ,y ,n,l ) 1,858 42 6.1e-11 38.1 63.8 50
BGS 4 (n,n,n,u) 3, 10−5 1,341 44 6.3e-11 20.9 39.8 0
BGS 5 (n,n,n,u) 5, 10−3 1,341 45 6.2e-11 21.0 40.2 0

0.9 POWER 625 147 8.3e-11 18.6 67.8
GS 826 65 7.9e-11 21.3 45.9
BGS 1 (y ,n,n,l ) 5, 10−10 1,341 17 7.9e-11 22.8 44.1 13
BGS 2 (y ,n,n,u) 5, 10−3 1,341 68 7.0e-11 22.8 54.0 13
BGS 3 (y ,y ,n,l ) 1,858 62 7.5e-11 37.4 75.2 56
BGS 4 (n,n,n,u) 3, 10−3 1,341 66 7.4e-11 21.6 49.4 9
BGS 5 (n,n,n,u) 5, 10−5 1,341 66 7.9e-11 20.8 49.1 7

0.95 POWER 625 300 9.4e-11 17.7 119.4
GS 826 126 8.3e-11 20.5 69.1
BGS 1 (y ,n,n,l ) 3, 10−10 1,341 44 9.0e-11 24.2 64.4 19
BGS 2 (y ,y ,n,u) 5, 10−3 1,657 122 9.0e-11 26.2 82.0 25
BGS 3 (y ,y ,n,l ) 1,858 121 7.4e-11 39.3 112.9 64
BGS 4 (n,n,n,u) 3, 10−3 1,341 127 8.3e-11 20.6 73.6 9
BGS 5 (n,n,n,u) 3, 10−5 1,341 127 8.7e-11 21.4 76.5 11

0.97 POWER 625 503 9.5e-11 18.5 185.8
GS 826 205 9.2e-11 21.0 98.7
BGS 1 (y ,n,n,l ) 3, 10−10 1,341 72 9.2e-11 23.1 88.3 14
BGS 2 (y ,y ,n,u) 5, 10−3 1,657 197 9.3e-11 26.1 115.9 23
BGS 3 (y ,y ,n,l ) 1,858 196 8.6e-11 38.0 156.8 59
BGS 4 (n,n,n,u) 3, 10−5 1,341 206 9.2e-11 20.9 110.9 7
BGS 5 8n,n,n,u) 5, 10−3 1,341 206 9.4e-11 20.6 108.3 6

0.99 POWER 625 1,511 9.9e-11 18.1 522.1
GS 826 583 9.7e-11 21.4 242.0
BGS 1 (y ,n,n,l ) 3, 10−10 1,341 221 9.8e-11 23.1 222.5 15
BGS 2 (y ,y ,n,u) 3, 10−3 1,657 559 9.7e-11 25.5 279.8 22
BGS 3 (y ,y ,n,l ) 1,858 563 9.8e-11 37.4 378.3 58
BGS 4 (n,n,n,u) 3, 10−3 1,341 587 9.8e-11 22.1 266.5 12
BGS 5 (n,n,n,u) 3, 10−5 1,341 583 9.8e-11 20.8 265.0 8

the sixty symmetrically permuted matrices are inspected for their nonzero structures and ob-
served to possess nonzero plots that look uniformly distributed (as in the original versions of
theStanfordandWebGooglematrices). Furthermore, the performance of BGS with partition-
ing 3 turns out to be insensitive to random symmetric permutations of the input matrix and
is much better than that of GS under the same symmetric permutation. It is noticed that GS
favors the ordering of web pages in the original versions of theStanfordBerkeley, Eu2005,
In2004, andWebBasematrices. Results of numerical experiments in Figure5.2 show that
BGS with partitioning 3 is always better than BGS 1 (y ,n,n,l ) 3, 10−10, which in turn is
always better than GS, and the % change in iteration time of BGS with partitioning 3 over
that of GS is at least 45%.

To compare the performance of BGS with partitionings 1 (y ,n,n,l ) and 3 (y ,y ,n,l ) and
to test our hypothesis further, two sets of fifty sparse matrices of order 500,000 with densi-
ties of0.625 × 10−5 and1.25× 10−5 are randomly generated using Matlab. The respective
densities yield average numbers of nonzeros of about 4.1 and7.2 per row including the di-
agonal element in each matrix. Furthermore, the sparsity patterns of these matrices follow
the standard uniform distribution and look like those ofStanfordandWebGoogle. Numerical
experiments with our tool forα = 0.85 show that BGS 3 (y ,y ,n,l ) is always faster than
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(a) BGS 3 (y ,y ,n,u) versus GS inStanford andWebGoogle experiments
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(c) BGS 1 (y ,n,n,l ) 5,10−10 versus GS in all experiments

FIG. 5.1.Plots for the % changes in iteration times of various BGS solvers over those of GS.

BGS 1 (y ,n,n,l ) 3, 10−10 and the average improvement in iteration time in the first setof
fifty sparse matrices is about 43% and that in the second set offifty sparse matrices is about
42% (results not shown). These correspond to speedups of 1.8and 1.7, respectively. More
importantly, as depicted in Figures5.3(a) and5.3(b), in 90% of the experiments the % change
in iteration time of BGS 3 (y ,y ,n,l ) over those of POWER and GS are respectively at least
50% and 40% for the lower density case and 35% and 25% for the higher density case.
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FIG. 5.2. Plots for the % changes in iteration times of BGS solvers overthose of GS on 60 experiments (10
symmetric random permutations of 6 web matrices each) withα = 0.85.

6. Conclusion. Various partitionings are considered with block iterativemethods for
the computation of the steady–state vector of Google–like stochastic matrices in a sequential
setting. Some of these partitionings have triangular diagonal blocks, which can be solved
directly. Effects of these block partitionings are analyzed through a set of numerical exper-
iments with different values of the teleportation probability in which, among other things,
memory requirements and solution times are measured. Time spent at the outset for comput-
ing the partitionings are relatively small and can very wellbe justified when the same web
matrix is used multiple times. In general, block Gauss–Seidel with Tarjan’s algorithm used
to symmetrically permute the sparse term in the coefficient matrix of the system of linear
equations to block lower–triangular form, with 3 to 5 point Gauss–Seidel iterations and a
stopping tolerance of10−10 to solve the diagonal blocks yields the fastest solver. Its memory
requirement is about twice that of the power method and it decreases the number of itera-
tions over that of the power method by a factor of more than 4.5. However, for matrices with
nonzero plots that look uniformly distributed, a block partitioning with triangular diagonal
blocks is to be favored with a lower–triangular orientationfor values ofα close to 0.85 and
an upper–triangular orientation for values ofα close to 1. Although requiring about three
times memory as that of the power method and more time consuming to compute, such a
partitioning when accompanying block Gauss–Seidel on suchmatrices yields iteration time
improvements of over 20% compared to the second best solver.Furthermore, it is observed
that the performance of block Gauss–Seidel with this partitioning is insensitive to random
symmetric permutations of the input matrix (which also havenonzero plots that look uni-
formly distributed) and is much better than that of Gauss–Seidel under the same symmetric
permutation. However, as has been repeatedly observed in the literature, Gauss–Seidel is to
be recommended if memory is at a premium. It has comparable memory requirement to that
of the power method and reduces the number of iterations overthat of the power method by
a factor of about 2.
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