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PRODUCTS OF PAIRS OF DEHN TWISTS

AND MAXIMAL REAL LEFSCHETZ FIBRATIONS

ALEX DEGTYAREV AND NERMİN SALEPCİ

Abstract. We address the problem of existence and uniqueness of a factor-

ization of a given element of the modular group into a product of two Dehn
twists. As a geometric application, we conclude that any maximal real elliptic

Lefschetz fibration is algebraic.

1. Introduction

1.1. Motivation. An object repeatedly occurring in algebraic geometry is a fibra-
tion with singular fibers. If the base is a topological disk D2 and the number of
singular fibers is finite, the topology (and, in some extremal cases, the analytic
structure as well) can adequately be described by the so-called monodromy factor-
ization of the monodromy at infinity (the boundary of D2).

More precisely, consider a proper smooth map p : X → B ∼= D2 and let ∆ :=
{b1, b2, . . . , br} be the set of the critical values of p, which are all assumed in the
interior of B. The restriction of p to B] := B r ∆ is a locally trivial fibration and
one can consider its monodromy m : π1(B], b)→ AutFb, where Fb is the fiber over
a fixed base point b ∈ B] and G := AutFb is an appropriately defined group of
classes of automorphisms of Fb. (The precise nature of the automorphisms used
and their equivalence depend on a particular problem.) The monodromy at infinity
m∞ := m[∂B] ∈ G is usually assumed fixed in advance.

Warning. Throughout the paper, all group actions are right. (It is under this con-
vention that monodromy is a homomorphism.) This convention applies to matrix
groups as well: our matrices act on row vectors by the right multiplication. Given
a right action X ×G→ X, we denote by x ↑ g the image of x ∈ X under g ∈ G.

Consider a system of lassoes, one lasso γi about each critical value bi, i = 1, . . . , r,
disjoint except at the common base point b and such that γ1 · . . . · γr ∼ ∂B. (Such
a system is called a geometric basis for π1(B], b).) Evaluating the monodromy m
at each γi, we obtain a sequence mi := m(γi).

Definition 1.1. Given a group G, a G-valued monodromy factorization of length
r is a finite ordered sequence m̄ := (m1, . . . ,mr) of elements of G. The product
m∞ := m1 · . . . · mr is called the monodromy at infinity of m̄, and m̄ itself is often
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2 ALEX DEGTYAREV AND NERMİN SALEPCİ

referred to as a monodromy factorization of m∞. The subgroup of G generated by
m1, . . . ,mr is called the monodromy group of m̄.

The ambiguity in the choice of a geometric basis leads to a certain equivalence
relation. According to Artin [2], if b ∈ ∂B, any two geometric bases are related by an
element of the braid group Br. Hence, the corresponding monodromy factorizations
are related by a sequence of Hurwitz moves

(1.2) σi : (. . . ,mi,mi+1, . . .) 7→ (. . . ,mimi+1m
−1
i ,mi, . . .), i = 1, . . . , r − 1.

If the base point is not on the boundary or if the identification between Fb and the
‘standard’ fiber is not fixed, one should also consider the global conjugation

g−1m̄g = (g−1m1g, . . . , g
−1mrg)

by an element g ∈ G.

Definition 1.3. Two monodromy factorizations are said to be strongly (weakly)
Hurwitz equivalent if they can be related by a finite sequence of Hurwitz moves
(respectively, a sequence of Hurwitz moves and global conjugation). For brevity,
we routinely simplify this term to just strong/weak equivalence.

It is immediate that both the monodromy at infinity and the monodromy group
are invariant under strong Hurwitz equivalence, whereas their conjugacy classes are
invariant under weak Hurwitz equivalence.

The most well known examples where this machinery applies are

• ramified coverings, with G = Sn the symmetric group;
• algebraic or, more generally, pseudo holomorphic curves in C2, with G = Bn

the braid group;
• (real) elliptic surfaces or, more generally, (real) genus one Lefschetz fibra-

tions, with G = Γ̃ := SL(2,Z) the mapping class group of a torus.

(Literature on the subject is abundant, and we direct the reader to [6] for further
references.) Typically, the topological type of a singular fiber Fi := p−1(bi) is de-
termined by the conjugacy class of the corresponding element mi, and it is common
to restrict the topological types by assuming that all mi should belong to a certain
preselected set of conjugacy classes. Thus, in the three examples above, ‘simplest’
singular fibers correspond to, respectively, transpositions in Sn, Artin generators in
Bn, and Dehn twists in Γ̃, see subsection 2.1.

A monodromy factorization satisfying this additional restriction is often called
simple, and a wide open problem with a great deal of possible geometric impli-
cations is the classification, up to strong/weak Hurwitz equivalence, of the simple
monodromy factorizations of a given element m∞ ∈ G and of a given length.

1.2. Principal results. Geometrically, our principal subject is elliptic Lefschetz
fibrations, and the algebraic counterpart is the classification of the factorizations
of a given element m∞ ∈ Γ̃ into products of Dehn twists. At this point, it is
worth mentioning that there are cyclic central extensions Γ̃ � Γ and B3 � Γ,
where Γ := PSL(2,Z) is the modular group, and each Dehn twist in Γ lifts to a

unique Dehn twist in Γ̃ or, respectively, to a unique Artin generator in B3; hence,
the problems of the classification of simple monodromy factorizations in all three
groups are equivalent. For this reason, we will mainly work in Γ. To simplify the
further exposition, we introduce the following terminology: an r-factorization (of
an element g ∈ Γ) is a monodromy factorization m̄ = (m1, . . . ,mr) with each mi a
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Dehn twist and such that m∞ = g. To shorten the notation, we will often speak
about an r-factorization g = m1 · . . . ·mr.

Even with the group as simple as B3 (the first non-abelian braid group), sur-
prisingly little is known. On the one hand, according to Moishezon–Livné [11], a
6k-factorization of a power (σ1σ2)3k of the Garside element is unique up to strong
Hurwitz equivalence. This result was recently generalized by Orevkov [14] to any
element positive in the standard Artin basis σ1, σ2. On the other hand, a series
of exponentially large (in r) sets of non-equivalent r-factorizations of the same
element gr := L5r−6 ∈ Γ (depending on r) was recently constructed in [6]; further-
more, these factorizations are indistinguishable by most conventional invariants.
(For some other examples, related to the next braid group B4, see [8].)

Thus, it appears that, in its full generality, the problem of the classification
of the r-factorizations of a given element is rather difficult and quite far from its
complete understanding. In this paper, we confine ourselves to 2-factorizations
only, addressing both their existence and uniqueness. Even in this simplest case,
the results obtained seem rather unexpected.

Algebraically, our principal results are the three theorems below. For the state-
ments, we briefly recall that the elements of the modular group are commonly
divided into elliptic, parabolic, and hyperbolic, the former being those of finite or-
der, and the two latter being those that, up to conjugation, can be represented by
a word in positive powers of a particular pair L,R of generators of Γ, see subsec-
tion 2.1 for further details. (Whenever speaking about words in a given alphabet,
we mean positive words only; if negative powers are allowed, they are listed in the
alphabet explicitly.) We use At for the transpose of a matrix A. One has Lt = R;
hence, the transpose At of a word A in {L,R} is again a word in {L,R}: it is
obtained from A by interchanging L↔ R and reversing the order of the letters.

Theorem 1.4. An element g ∈ Γ admits a 2-factorization if and only if either

(1) g ∼ X = RL−1 (g is elliptic), or
(2) g ∼ R2 or g ∼ L4 (g is parabolic), or
(3) g ∼ L2AL2At for some word A 6= ∅ in {L,R} (g is hyperbolic).

Theorem 1.5. The number of weak equivalence classes of 2-factorizations of g ∈ Γ
is at most one if g is elliptic or parabolic, and at most two if g is hyperbolic.

Theorem 1.6. The single weak equivalence class of 2-factorizations of an element
g ∼ L4 splits into two strong equivalence classes:

L4 = R · (R−1L2)R(R−1L2)−1 = LRL−1 · (LR−1L2)R(LR−1L2)−1.

In all other cases, each weak equivalence class of 2-factorizations constitutes a single
strong equivalence class.

Theorems 1.4, 1.5, 1.6 are proved in subsections 3.1, 3.2, 3.3, respectively. The
proofs are based on a relation between subgroups of the modular group and a certain
class of Grothendieck’s dessins d’enfants. A refinement of Theorem 1.5, namely a
detailed description of the elements admitting more than one 2-factorization, is
found in subsection 3.4, see Theorem 3.12.

Another interesting phenomenon related to the modular group is the fact that
some of its elements are real, i.e., they can be represented as a product of two
involutive elements of PGL(2,Z) r Γ. (For a geometric interpretation and fur-
ther details, see [19] and subsection 2.3.) The relation between this property and
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the existence/uniqueness of a 2-factorization, as well as the existence of real 2-
factorizations, are discussed in Theorem 3.13.

Geometrically, 2-factorizations are related to real relatively minimal Jacobian
elliptic Lefschetz fibrations over the sphere S2 with two pairs of complex conjugate
singular fibers; an important class of such fibrations are some maximal ones. In-
tuitively, an elliptic Lefschetz fibration is a topological counterpart of an algebraic
elliptic surface (see section 4 for the precise definitions), and one of the major ques-
tions is the realizability of a given real elliptic Lefschetz fibration by an algebraic
one. (In the complex case, the answer to this question is trivially in the affirmative
due to the classification found in [11], see Theorem 4.1; in the real case, examples
of non-algebraic fibrations are known, see [17, 18].) A real Lefschetz fibration is
maximal if its real part has the maximal Betti number with respect to the Thom–
Smith inequality (4.3). A maximal real Lefschetz fibration may have 0, 1 or 2 pairs
of complex conjugate singular fibers, see 4.5. In the former case, the fibration is
called totally real, and such a fibration is necessarily algebraic due to the following
theorem.

Theorem 1.7 (see [17, 18]). Any totally real maximal Jacobian Lefschetz fibration
is algebraic. B

Amongst the most important geometric applications of the algebraic results of
the paper is an extension of Theorem 1.7 to all maximal Jacobian fibrations.

Theorem 1.8. Any maximal Jacobian Lefschetz fibration is algebraic.

This theorem is proved in subsection 6.2.
As another geometric application, we settle a question left unanswered in [7].

Namely, we show that the equivariant deformation class of a nonsingular real trigo-
nal M -curve in a Hirzebruch surface (see section 5 for the definitions) is determined
by the topology of its real structure, see Theorems 6.1 and 6.3. Moreover, at most
two such curves may share homeomorphic real parts.

One may speculate that it is the relation to maximal geometric objects, which
are commonly known to be topologically ‘rigid’, that makes 2-factorizations rela-
tively ‘tame’. At present, we do not have any clue on what the general statements
concerning the existence and uniqueness of r-factorizations may look like. One of
the major reasons is the fact that, even though an analogue of Proposition 2.8 holds
for any number of Dehn twists, Lemma 3.2 does not have a literate extension to
free groups on more than two generators, cf. [3].

To our knowledge, even the finiteness of the number of equivalence classes of fac-
torizations of a given element is still an open question. According to R. Matveyev
and K. Rafi (private communication), certain finiteness statements do hold in hy-
perbolic groups; alas, neither Γ nor B3 is hyperbolic. On the other hand, found in
B. Moishezon [10] is an example of an infinite sequence of non-equivalent factoriza-
tions (although non-simple) of the element ∆2 in the braid group B54.

1.3. Contents of the paper. Sections 2, 4, and 5 are of an auxiliary nature: we
recall the basic notions and necessary known results concerning, respectively, the
modular group, (real) elliptic Lefschetz fibrations, and (real) trigonal curves. The
heart of the paper is Section 3: the principal algebraic results and their refinements
are proved here. Section 6 deals with the geometric applications: we establish the
semi-simplicity of real trigonal M -curves and, as an upshot, prove Theorem 1.8.
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We use the conventional symbol � to mark the ends of the proofs. Some state-
ments are marked with C or B: the former means that the proof has already been
explained (for example, most corollaries), and the latter indicates that the proof is
not found in the paper and the reader is directed to the literature, usually cited at
the beginning of the statement.

1.4. Acknowledgment. This paper was essentially completed during the second
author’s stay as a Leibniz fellow and the first author’s visit as a Forschungsgast
to the Mathematisches Forschungsinstitut Oberwolfach; we are grateful to this in-
stitution and its friendly staff for their hospitality and for the excellent working
conditions. We would like to thank Viatcheslav Kharlamov for his encouragement
and interest in the subject, and Alexander Klyachko, who brought to our attention
the Frobenius type formulas counting solutions to equations in finite groups. We
are also grateful to Anton Klyachko and to the anonymous referee of this text, who
drew our attention to Bardakov’s paper [3] and Kulkarni’s paper [9], respectively.

2. The modular group

2.1. Presentations of Γ. Consider H = Za ⊕ Zb, a rank two free abelian group
with the skew-symmetric bilinear form

∧2
H → Z given by a · b = 1. We regard

Γ̃ := SL(2,Z) as a group acting on H. Moreover, Γ̃ is the group of symplectic
auto-symmetries of H; it is generated by the matrices

X =

[
1 −1
1 0

]
, Y =

[
0 1
−1 0

]
such that X3 = − id, Y2 = − id.

The modular group Γ := PSL(2,Z) is the quotient SL(2,Z)/± id. When it does

note lead to a confusion, we use the same notation for a matrix A in Γ̃ and its
projection to Γ. It is known that Γ ∼= Z3 ∗ Z2; we will work with the following two
presentations of this group:

Γ =
〈
X,Y : X3 = Y2 = id

〉
=
〈
L,R : RL−1R = L−1RL−1, (RL−1)3 = id

〉
,

where

L =

[
1 1
0 1

]
= XY, R =

[
1 0
1 1

]
= X2Y,

so that X = RL−1 and Y = LR−1L = R−1LR−1 in Γ. For future references note
that the powers of these matrices are given by

Ln =

[
1 n
0 1

]
, Rn =

[
1 0
n 1

]
, n ∈ Z.

Since Γ is a free product of cyclic groups, we have the following statement.

Lemma 2.1. Two elements f, g ∈ Γ commute if and only if they generate a cyclic
subgroup, or, equivalently, if they are both powers of a common element h ∈ Γ. C

2.2. The conjugacy classes. A simple way to understand the conjugacy classes is
via the action of Γ on the Poincaré disk. The group Γ is known to be the symmetry
group of the Poincaré disk endowed with the so-called Farey tessellation, shown in
Figure 1. The non trivial elements of Γ form three basic families, elliptic, parabolic,
and hyperbolic. These families are distinguished by the nature of their fixed points
on the Poincaré disk, or equivalently, by the absolute value of their traces. Namely,
an elliptic matrix has |trace| < 2, so that it has a single fixed point in the interior
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Figure 1. Poincaré disk endowed with the Farey tessellation

of the Poincaré disk and acts as a rotation with respect to this fixed point. Elliptic
matrices are the only torsion elements of Γ. A parabolic matrix has |trace| = 2; it
has a single rational fixed point (on the boundary of the Poincaré disk) and acts as
a rotation fixing this boundary point. A hyperbolic matrix, defined via |trace| > 2,
has two irrational fixed points on the boundary and acts as a translation fixing the
geodesic connecting these fixed points.

There are three conjugacy classes of elliptic matrices. Representatives of these
classes can be taken as:

Y =

[
0 1
−1 0

]
, X =

[
1 −1
1 0

]
, X−1 =

[
0 1
−1 1

]
.

An element in Γ is called a (positive) Dehn twist if it is conjugate to R (the
geometric meaning of this definition is explained in subsection 2.4). Any parabolic
element is conjugate to a certain nth power of a Dehn twist. Thus, a representative
of a class can be taken as Rn.

Warning. For the experts, we emphasize that, in accordance with our right group
action convention, it is R, not L, that represents a positive Dehn twist.

The conjugacy classes of hyperbolic elements of Γ are determined by sequences
[a1, a2, . . . , a2n], ai ∈ Z+, defined up to even permutations and called cutting period
cycles. Indeed, the fixed points of a hyperbolic matrix are irrational points that are
the zeroes of a quadratic equation, and they have a continued fraction expansion
with the periodic tale

. . . a1 +
1

a2 +
1

. . . 1

a2n
.

Note that [a1, a2, . . . , a2n] is not necessarily the minimal period: all matrices sharing
the same pair of eigenvectors are powers of a minimal one, and the precise multiple
of the minimal period corresponding to a given matrix A can be recovered from its
trace.
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A representative of the conjugacy class corresponding to a cutting period cycle
[a1, a2, . . . , a2n] can be chosen as

Ra1 · La2 · . . . · La2n =

[
1 0
a1 1

]
·
[
1 a2
0 1

]
· . . . ·

[
1 an
0 1

]
.

In the sequel, we will be interested not only in the cutting period cycle but also in
the underlying word, called the cutting word, in two letters {L,R}. Recall that the
cutting word encodes the two types (right/left) of triangles of the Farey tessellation
cut by the invariant geodesic, cf. [20, 19]. In terms of the cutting word, hyperbolic
conjugacy classes can be characterized as those represented by a word in {L,R}
with both L and R present. Since the cutting word is only defined up to cyclic
permutation, it is convenient to represent it in the unit circle, placing the letters
constituting the word at equal angles (cf. Figure 6 on page 13). The resulting circle
marked with a number of copies of L and R is called the cyclic diagram Dg of a
hyperbolic element g. One can also speak about the cyclic diagram of a parabolic
element, with the letters either all R (for a positive power of a Dehn twist) or all L
(for a negative power).

2.3. Real elements. An involutive element of the coset PGL(2,Z) r Γ is called
a real structure on Γ. An element of Γ is called real if, in PGL(2,Z), it has a
decomposition into a product of two real structures. For any real structure τ , let
us define an involutive anti-automorphism τ̂ : Γ→ Γ given by τ̂(g) = τg−1τ . Then,
a real element can also be defined as one fixed by τ̂ for some real structure τ .
The significance of real elements is in their geometric interpretation. For example,
such an element appears as the Γ-valued monodromy at infinity of a real elliptic
Lefschetz fibration over a disk.

The characterization of real elements in Γ, as well as in Γ̃, is known, see [19]: all
elliptic and parabolic matrices are real, and a hyperbolic matrix is real if and only
if its cutting period cycle is odd bipalindromic, i.e., up to cyclic permutation, it is
a union of two palindromic pieces of odd length. This property can be interpreted
in terms of the cyclic diagram as the existence of a symmetry axis such that the
diagram is invariant under the reflection with respect to this axis.

Up to conjugation, there are exactly two real structures on Γ:

(2.2) τ1 =

[
0 1
1 0

]
, τ2 =

[
1 0
0 −1

]
.

In the rest of the paper, τ1 and τ2 refer to these particular matrices. The action of
τ̂i on the generators is as follows:

(2.3)
τ̂1(L) = R−1, τ̂1(R) = L−1, τ̂1(X) = X, τ̂1(Y) = Y,
τ̂2(L) = L, τ̂2(R) = R, τ̂2(X) = YXY, τ̂2(Y) = Y.

We extend the anti-automorphism τ̂ : Γ→ Γ to the set of Γ-valued monodromy
factorizations as follows:

(2.4) τ̂(m1, . . . ,mr) = (τ̂(mr), . . . , τ̂(m1)).

(Note the reverse order.) It is straightforward that the factorizations τ̂(m̄′) and
τ̂(m̄′′) are strongly/weakly equivalent if and only if so are m̄′ and m̄′′. Furthermore,
one has τ̂(m̄)∞ = τ̂(m∞) and the monodromy group of τ̂(m̄) is the image of that
of m̄ under τ̂ .
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With future applications in mind, we will also discuss real 2-factorizations. A 2-
factorization m̄ is said to be real if there is a real structure τ such that either τ̂(m̄) =
m̄ ↑ σ1, see (1.2), or τ̂(m̄) = m̄. The monodromy at infinity of a real 2-factorization
is obviously real; the converse is not true, see [16, 19] and subsection 3.5.

Remark 2.5. Geometrically, a real 2-factorization represents a real Jacobian Lef-
schetz fibration over the unit disk D2 ⊂ C (with the standard real structure z 7→ z̄)
with two singular fibers, see subsection 4.2; in the former case (τ̂(m̄) = m̄ ↑ σ1),
the two singular fibers are real; in the latter case (τ̂(m̄) = m̄), they are complex
conjugate. A specific example of a non-real 2-factorization with real monodromy
at infinity is studied in [16]; this example has interesting geometric implications.

Remark 2.6. Alternatively, a 2-factorization m̄ is real if and only if τ̂(m̄) is strongly
Hurwitz equivalent to m̄ for some real structure τ . Indeed, since an even power σ2k

1

acts via the conjugation by the τ -real element m−k∞ , it can be ‘undone’ by replacing τ
with τ ′ := τmk

∞, which is also a real structure. In particular, it follows that being
real is a property of a whole strong Hurwitz equivalence class.

2.4. The mapping class group. The mapping class group Map+(S) of an ori-
ented smooth surface S is defined as the group of isotopy classes of orientation
preserving diffeomorphisms of S. If S is the 2-torus T 2, one can fix an isomor-
phism H1(T 2,Z) ∼= H = Za⊕Zb, and the map f 7→ f∗ establishes an isomorphism

Map+(T 2)→ Γ̃.
The (positive) Dehn twist along a simple closed curve l ∈ S is a diffeomorphism

of S obtained by cutting S along l and regluing with a twist of 2π. If S ∼= T 2, the
image of the Dehn twist in the mapping class group Γ̃ depends only on the homology
class u := [l] ∈ H and is given by the symplectic reflection x 7→ x+ (u, x)u, where
(u, x) denotes the algebraic sum of the points of intersection of u an x; we denote

this image by tu and call it a Dehn twist in Γ̃. All Dehn twists form a whole
conjugacy class which contains R; they project to the positive Dehn twists in Γ
introduced in subsection 2.2.

2.5. Subgroups of Γ. In this section, we summarize the relation between the
subgroups of Γ and a special class of bipartite ribbon graphs, which we call skeletons.
A similar approach, in terms of special triangulations of surfaces, was developed
in [4]. Our approach is identical to the bipartite cuboid graphs in [9], except that
we are mainly interested in subgroups of infinite index and therefore are forced to
consider infinite graphs supported by non-compact surfaces. We only recall briefly
the few definitions and facts needed in the sequel; for details and further references,
see [6]. Note that, due to our right group action convention, some definitions given
below differ slightly from those in [6].

Recall that a ribbon graph is a graph (locally finite CW -complex of dimension
one), possibly infinite, equipped with a cyclic order (i.q. transitive Z-action) on the
star of each vertex. Typically, a ribbon graph is a graph embedded into an oriented
surface S, and the cyclic order is induced by the orientation of S. In fact, a ribbon
graph G defines a unique, up to homeomorphism, minimal oriented surface S0 (non-
compact if G is infinite) into which it is embedded. The connected components of
the complement S0 rG are called the regions of G.

A bipartite graph is a graph whose vertices are colored with two colors: •, ◦, so
that each edge connects vertices of opposite colors.
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Definition 2.7. A skeleton is a connected bipartite ribbon graph with all •-vertices
of valency 3 or 1 and all ◦-vertices of valency 2 or 1. A skeleton is regular if all its
•- and ◦-vertices have valency 3 and 2, respectively.

Since Γ = {X,Y : X3 = Y2 = id}, the set of edges of any skeleton is a transitive
Γ-set, with the action of X and Y given by the distinguished cyclic order on the stars
of, respectively, •- and ◦-vertices. (Due to the valency restrictions in Definition 5.6,
this action of Z ∗Z does factor through Γ.) Conversely, any transitive Γ-set can be
regarded as (the set of edges of) a skeleton, the •- and ◦-vertices being the orbits
of X and Y, respectively. In the sequel, we identify the two categories.

As a consequence, to each subgroup G ⊂ Γ one can associate the skeleton G\Γ
(the set of left G-cosets, regarded as a right Γ-set). This skeleton is regular if and
only if G is torsion free, i.e., contains no elliptic elements; in this case, G is free.
The skeleton G\Γ is equipped with a distinguished edge e := G\G, which we call
the base point. Conversely, given a skeleton S and a base point e, the stabilizer G
of e is a subgroup of Γ, and one has S = G\Γ. In general, without a base point
chosen, the stabilizer of S is defined as a conjugacy class of subgroups of Γ.

Convention. In the figures, we usually omit most bivalent ◦-vertices, assuming
that such a vertex is to be inserted at the center of each ‘edge’ connecting a pair
of •-vertices. When of interest, the base point is denoted by a grey diamond. For
infinite skeletons, only a compact part is drawn and each maximal Farey branch,
see subsection 2.6 and Figure 2, left, below, is represented by a M-vertex.

A combinatorial path (called a chain in [6]) in a skeleton S can be regarded as a
pair γ := (e′, g), where e′ is an edge, called the initial point of γ, and g ∈ Γ. Then
e′′ := e′ ↑ g is the terminal point of γ, and the evaluation map val : γ 7→ g sends
a path γ = (e′, g) to its underlying element g ∈ Γ. For a regular skeleton S, the
map val establishes an isomorphism π1(S, e) = G. (In the presence of monovalent
vertices, one should replace π1 with an appropriate orbifold fundamental group.)
When the initial point is understood, we identify a path γ and its image val γ ∈ Γ.
The product of two paths is defined as usual: (e′, g′) · (e′′, g′′) = (e′, g′g′′) provided
that e′′ = e′ ↑ g′; the inverse of γ = (e′, g) is γ−1 := (e′ ↑ g, g−1).

In the case of skeletons, a region can be redefined as an orbit of L = XY. In this
definition, a region R is the set of edges in the boundary of the geometric realization
of R whose canonical orientation •→−◦ agrees with the boundary orientation; the
other edges in the boundary are of the form e ↑ Y, e ∈ R. An n-gonal region is an
orbit of length n; intuitively, n is the number of •-vertices in the boundary. The
minimal supporting surface S0 of a skeleton S can be obtained by patching the
boundary of each region R with a disk (if R is finite) or half-plane (if R is infinite).

Given a subgroup G ⊂ Γ, the G-conjugacy classes of the Dehn twist contained
in G are in a canonical one-to-one correspondence with the monogonal regions of
the skeleton G\Γ, see [6]: under the canonical identification G = πorb

1 (G\Γ, G\G)
described above, these classes are realized by the boundaries of the monogons.

2.6. Pseudo-trees. A special class of skeletons can be obtained from ribbon trees
as follows. Consider a ribbon tree with all •-vertices of valency 3 (nodes) or 1
(leaves) and take its bipartite subdivision, i.e., divide each edge into two by inserting
an extra ◦-vertex in the middle. We denote the resulting graph by G. Let us
consider a vertex function ` : {leaves} → {0, M, •, ◦} such that, if two leaves are
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incident to a common node, then ` does not assign M to both. We perform the
following modifications at each leaf v of G:

• if `(v) = •, then no modification is done;
• if `(v) = ◦, then cut out the leaf and the incident edge, so that the resulting

graph have a monovalent ◦-vertex;
• if `(v) = 0, then splice G with a simple loop, see Figure 2, left;
• if `(v) = M, then splice G with a Farey branch, see Figure 2, right.

u u

Figure 2. A simple loop and a Farey branch

Formally, a simple loop is the skeleton Γ1(2)\Γ, where Γ1(2) =

{[
1 0
∗ 1

]
mod 2

}
,

and a Farey branch Y\Γ is the only bipartite ribbon tree regular except a single
monovalent vertex, which is ◦. Given two skeletons S′, S′′, a monovalent •-vertex v
of S′, and a monovalent ◦-vertex u of S′′, the splice is defined as the skeleton
obtained from the disjoint union S′ t S′′ by identifying the edges e′, e′′ incident
to v, u, respectively, to a common edge e, see Figure 3.

S′′u
e′′

S′ v
e′

u

v

e7−→

Figure 3. The splice of two skeletons

A skeleton that can be obtained by the above procedure is called a pseudo-tree.
A pseudo-tree is regular if and only if the images of ` are in {0, M}.

Crucial for the sequel is the following statement, which is an immediate conse-
quence from [6, Proposition 4.4].

Proposition 2.8. A proper subgroup G ⊂ Γ is generated by two distinct Dehn
twists if and only if its skeleton S := G\Γ is a regular pseudo-tree with exactly two
simple loops. In this case, G is freely generated by two Dehn twists. B

Due to the requirement on the M-values of a vertex function, a pseudo-tree S as
in Proposition 2.8 looks as shown in Figure 4. More precisely, S consists of two

A

B = At

Y

Y

Figure 4. An example of a pseudo-tree

monogons connected by a horizontal line segment and a number of Farey branches,
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upward and downward, attached to this segment. Thus, starting from one of the
monogons, one can encode S and, hence, the subgroup G itself by the sequence of
the directions (up/down) of the Farey branches.

Remark 2.9. The monodromy at infinity of a pseudo-tree S is the conjugacy class
m∞ in Γ realized by a large circle encompassing the compact part of S. Let us
choose the base point e next to one of the monogons as shown in Figure 4. Starting
from e, we can realize m∞ by the element L2AL2B, where A and B are the paths
shown in the figure. Namely, A starts at e′ := e ↑ (XY)2 = e ↑ L2 = e ↑ Y and is a
product of copies of R = X2Y and L = XY, each downward M-vertex contributing
an R and each upward M-vertex contributing an L. The other path B can be
described similarly starting from a base point next to the other monogonal region.
However, it is obvious from the figure that the loop (e,YAYB) is contractible.
Hence, B = YA−1Y, and one can easily verify that At = YA−1Y in Γ. Thus, we
arrive at

(2.10) m∞ ∼ L2AL2At,

where the word A in {L,R} (possibly empty) is as described above. As an upshot of
this description we have the converse statement: a representation of the monodromy
at infinity in the form (2.10) determines a pseudo-tree up to isomorphism.

3. The classification of 2-factorizations

3.1. Proof of Theorem 1.4. We precede the proof of this theorem with a few
auxiliary statements.

Lemma 3.1. Two Dehn twists tu, tv, u, v ∈ H, generate Γ if and only if u and v
span H. If this is the case, the pair (tu, tv) is conjugate to (R,L−1).

Proof. If u and v span H, the signs can be chosen so that the matrix M formed
by u, v as rows has determinant 1, i.e., belongs to Γ̃. The conjugation by M takes
(R,L−1) to (tu, tv); hence, tu and tv generate Γ.

For the converse statement, assume that the subgroup H′ ⊂ H spanned by u
and v is proper. Since Dehn twists are symplectic reflections, see subsection 2.4,
the subgroup H′ is obviously invariant under the subgroup Γ′ ⊂ Γ generated by tu
and tv. Thus, there are primitive vectors in H that are not in the orbit u ↑ Γ′.
On the other hand, all primitive vectors are known to form a single Γ-orbit; hence,
Γ′ ⊂ Γ is a proper subgroup. �

Lemma 3.2 (cf. Bardakov [3]). Let G := 〈α, β〉 be a free group, and let α′, β′ ∈ G
be two elements generating G and such that each α′, β′ is conjugate to one of
the original generators α, β. Then the pair (α′, β′) is weakly Hurwitz equivalent
to (α, β).

Proof. After a global conjugation, possibly followed by σ1, one can assume that
α′ = α. Then obviously β′ = T−1βT for some reduced word T in {α±1, β±1}. One
can assume that the first letter of T is not β±1 and, after a global conjugation by
a power of α, one can also assume that the last letter of T is not α±1. Then, after
expressing α′ and β′ in terms of α and β, any reduced word in {(α′)±1, (β′)±1}
results in a reduced word: no cancelation occurs. On the other hand, there is a
word that is equal to β. Hence, one must have T = id and β′ = β. �
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Proof of Theorem 1.4. Let g ∈ Γ be an element together with a 2-factorization
m̄ = (m1,m2). Denote by G the monodromy group of m̄.

If G is Γ, then by Lemma 3.1 the pair (m1,m2) is conjugate to (R,L−1), and
thus g is conjugate to X = R · L−1, which is an elliptic element.

If m1 = m2, then G is a cyclic subgroup of Γ; hence, g is conjugate to R2 = R ·R,
which is a parabolic element.

Otherwise, by Proposition 2.8, G is a proper subgroup such that G\Γ is a regular
pseudo-tree S with two simple loops. On S, choose a base point e next to one of
the monogons and fix generators α, β of G = π1(S, e) as shown in Figure 5. By

α β

Figure 5. Generators of G with respect to the base point

Lemma 3.2, the pair (α, β) is weakly Hurwitz equivalent to (m1,m2). Therefore, we
get g ∼ m∞ ∼ L2AL2At, see (2.10). If A = ∅, we get a parabolic element g ∼ L4;
all other elements obtained in this way are hyperbolic.

To finish the proof, note that the three cases mentioned above give the com-
plete list of subgroups generated by two Dehn twists, and the conditions listed
in the statement are necessary. For the sufficiency, observe that a factorization
g ∼ L2AL2At is not only a necessary condition but also a description of a particu-
lar 2-factorization, with the two Dehn twists as follows:

L2AL2At = (XL−1X−1Y)(A)(XL−1X−1Y)(YA−1Y)(3.3)

= XL−1X−1 · (YAX)L−1(YAX)−1. �

Although the converse statements are contained in the above discussions, let us
underline the relation between the type of an element and the monodromy group
of its 2-factorization.

Corollary 3.4 (of the proof). The monodromy group G of any 2-factorization of
an element g ∈ Γ is as follows:

• g ∼ X (elliptic) if and only if G = Γ;
• g ∼ R2 (parabolic) if and only if G ⊂ Γ is a cyclic subgroup generated by a

single Dehn twist ;
• g ∼ L4 (parabolic) or g is hyperbolic if and only if G ⊂ Γ is a subgroup as

in Proposition 2.8. C

Remark 3.5. Geometrically, a representation of an element g in the form (2.10)
and the factorization (3.3) can be described in terms of a para-symmetry on the
cyclic diagram of g. Let us call the four special copies of L in the word L2AL2At

anchors. On the cyclic diagram, trace an axis passing between the two anchors
constituting each of the two pairs L2, see Figure 6. The reflection with respect to
this axis preserves the four anchors, while reversing the types of all other letters.
A reflection with this properties is called a para-symmetry. We underline that the
anchors are always of type L.

Corollary 3.6 (of the proof and Remark 2.9). The 2-factorizations (3.3) resulting
from two representations L2A1L

2At
1 ∼ L2A2L

2At
2 of the same conjugacy class are

weakly equivalent if and only if A1 = A2 or A1 = At
2. C
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L

L

L
L R

L

L

L

R
LR

R

A

At

axis

Figure 6. Cyclic diagram associated to L2AL2At and its para-symmetry

3.2. Proof of Theorem 1.5. If g is an elliptic element, we can assume that g =
X = R · L−1. Given another 2-factorization X = tu · tv, the two Dehn twists must
generate Γ, see Corollary 3.4. Then, due to Lemma 3.1, we have tu = h−1Rh and
tv = h−1L−1h for some h ∈ Γ. It follows that h centralizes X and hence h is a
power of X, see Lemma 2.1; thus, the second 2-factorization is strongly equivalent
to the first one (as the conjugation by the monodromy at infinity is the Hurwitz
move σ−21 ).

The only 2-factorization of the parabolic element g = R2 is R2 itself, as two
distinct Dehn twists would produce either X, or L4, or a hyperbolic element, see
Corollary 3.4. Finally, the parabolic element g ∼ L4 can be regarded as V0, see (3.7),
and this case is considered below. The two orthogonal para-symmetries of the cyclic
diagram of g result in two conjugate (by L) 2-factorizations, which are not strongly
equivalent, as the corresponding marked skeletons (cf. Figure 8 on page 15) are not
isomorphic, see subsection 2.5.

Now, assume that g is a hyperbolic element and consider its cyclic diagram
D := Dg. By assumption, it has two para-symmetries r1, r2, see Remark 3.5;
these symmetries generate a certain finite dihedral group D2n. Let c := r1r2 be the
generator of the cyclic subgroup Zn ⊂ D2n; it is the rotation through 2α, where α
is the angle between the two axes.

L

L

R
L R L

R

L

L

L

R
LRL

R

Lr1

r2
B

L

L
Bt

R R
B

L

L

Bt

L

L
B

RR
Bt

L

L

r1

r2

Figure 7. Diagrams with two para-symmetries

3.2.1. The two para-symmetries have a common anchor (see Figure 7, left). In this
case, the D2n-action on D is obviously transitive and, starting from an appropriate
anchor, we arrive at g ∼ Vm, where n = 2m+ 1 and

(3.7) Vm := L2(LR)mL2(LR)m ∼ L2(RL)mL2(RL)m, m ≥ 0.
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In particular, n is odd. It is immediate that D has no other para-symmetries, as it
has only four pairs of consecutive occurrences of L, which could serve as anchors.

3.2.2. The two para-symmetries have no common anchors (see Figure 7, right).
Consider the orbits of the Zn-action on D. Call an orbit special or ordinary if it,
respectively, does or does not contain an anchor. Each ordinary orbit is ‘constant’,
i.e., is either Ln or Rn. To analyze a special orbit, start with an anchor a of r1
and observe that c preserves the letter a ↑ ci unless i = 0 mod n (in this case, r1
preserves a and r2 reverses a ↑ r1, so that a ↑ c is an R) or i = k := [n/2] mod n.
In the latter case, if n = 2k is even, then a ↑ ck is an anchor for r1; otherwise, if
n = 2k + 1 is odd, then a ↑ ckr1 is an anchor for r2.

Thus, we conclude that n = 2k + 1 must be odd, as otherwise a ↑ ck, which is
an R, would be an anchor for r1. Furthermore, there are four special orbits of Zn,
each one being of the form LRkLk (in the orbit cyclic order, which may differ from
the cyclic order restricted from D), where the first and the (k + 1)-st letters are
anchors for r1 and r2, respectively.

Assume that there is a third para-symmetry r. Together with r1 and r2, it
generates a dihedral group D2m ⊃ D2n and, since Zn ⊂ D2m is a normal subgroup,
r takes c-orbits to c-orbits, reversing their orbit order. Unless n = 3, a special
orbit is taken to a special one, with one of the two anchors contained in the orbit
preserved and the other elements reversed. If n = 3, a special orbit LRL can be
taken to L3, with the two copies of L preserved. In both cases, r shares an anchor
with r1 or r2 and g ∼ Vm for some m, which is a contradiction. �

Corollary 3.8 (of the proof). In the case of subsection 3.2.2, the union of all
special orbits is symmetric with respect to the two reflections s1, s2 whose axes
bisect the angles between r1 and r2.

Proof. Indeed, since s1cs1 = c′ := r2r1, the orbit {a1 ↑ ci, i ∈ Z} starting from an
anchor a1 of r1 is taken (with the letters preserved) to the orbit {a2 ↑ (r2r1)i, i ∈ Z}
starting from the anchor a2 := a1 ↑ s of r2, and the latter orbit is also special. �

The next corollary refines the statement of Theorem 1.5.

Corollary 3.9 (of the proof). The 2-factorizations corresponding to two distinct
para-symmetries of the cyclic diagram of a hyperbolic element g ∈ Γ are not weakly
equivalent.

Proof. According to Corollary 3.6, the 2-factorizations are weakly equivalent if and
only if the two para-symmetries are isomorphic, i.e., related by a rotation symmetry
of the cyclic diagram. Since the axes cannot be orthogonal, see subsection 3.2.2, this
rotation would give rise to more axes, which would contradict to Theorem 1.5. �

Corollary 3.10. If a hyperbolic 2-factorizable element g is a power hn for some
h ∈ Γ, then n = 1 or 2 and, in the latter case, one has g ∼ (L2A)2 for a word A in
{L,R} such that At = A.

Proof. Under the assumptions, in addition to a para-symmetry r, the diagram Dg

has a rotation symmetry c of order n > 1, and hence also para-symmetries c−irci,
i = 0, . . . , n− 1. In view of subsection 3.2.2, it follows that n ≤ 2, as otherwise Dg

would have two para-symmetries with orthogonal axes (if n = 4) or more than two
para-symmetries (if n = 3 or n ≥ 5). �
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Remark 3.11. From Corollary 3.10, it follows immediately that for such g, the
cutting period cycle is either the minimal period or at worst twice the minimal
period of the continued fraction expansion.

3.3. Proof of Theorem 1.6. If g ∼ X or g ∼ R2, the 2-factorization of g is unique
up to strong equivalence, see the beginning of subsection 3.2.

Let g be a hyperbolic element, and assume that g = f−1gf for some f ∈ Γ
that is not a power of g. Then both f and g are powers of a hyperbolic element
h ∈ Γ, see Lemma 2.1, and, due to Corollary 3.10, we have g = h2 ∼ (L2A)2

and At = A (hence YAY = A−1). Modulo g, we can assume that f = (L2A)−1;
then the 2-factorization (3.3) and its conjugate by f differ by one Hurwitz move.
(Geometrically, one can argue that the skeleton S of the monodromy group has
a central symmetry and the two 2-factorizations are obtained from two symmetric
markings of S.)

Figure 8. The skeleton corresponding to g = L4

Finally, if g ∼ L4, the corresponding skeleton S is as shown in Figure 8. It
has four markings with respect to which the monodromy at infinity is L4, see the
figure, and the corresponding marked skeletons split into two pairs of isomorphic
ones, resulting in two strong equivalence classes of 2-factorizations:

L4 = R · (R−1L2)R(R−1L2)−1 = LRL−1 · (LR−1L2)R(LR−1L2)−1.

Note that the two classes are conjugate by L. �

3.4. Elements admitting two 2-factorizations. Let n = 2k + 1 and consider
the word w1/n := l(lr)kl(lr)k in the alphabet {l, r}. Denote by w[i], i ≥ 0, the i-th
letter of a word w, the indexing starting from 0. Pick an odd integer 1 ≤ m < n
prime to n and let wq, q := m/n, be the word in {l, r} of length 2n defined by

wq[i] = w1/n[mi mod 2n], i = 0, . . . , 2n− 1.

Given a word B in {L,R}, let wq{B} be the word obtained from wq by inserting a
copy of B between wq[2i] and wq[2i+ 1] and a copy of Bt between wq[2i+ 1] and
wq[2i + 2], i = 0, . . . , n − 1. Finally, let Wq(B) be the word obtained from wq{B}
by the substitution l 7→ L2, r 7→ R2.

Theorem 3.12. An element g ∈ Γ admits two distinct strong equivalence classes
of 2-factorizations if and only if either g ∼ Vm, m ≥ 0, see (3.7), or g ∼ Wq(B),
where 0 < q < 1 is a rational number with odd numerator and denominator and B
is any word in {L,R}, possibly empty.

Proof. It has been explained in subsection 3.2 that each element g ∼ X or g ∼ R2

admits a unique 2-factorization, whereas an element g ∼ Vm, m ≥ 0, admits two
2-factorizations (which are weakly equivalent if g ∼ L4 = V0, see subsection 3.3 for
more details on this case). Thus, it remains to consider a hyperbolic element g that
is not conjugate to any Vm, m ≥ 0.

Consider the cyclic diagram D = Dg. According to subsection 3.2.2, the two
para-symmetries r1 and r2 of D have no common anchors and their axes are at an
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angle α of the form πm/n, where n = 2k + 1 ≥ 3 is odd and m is prime to n.
Choosing for α the minimal positive angle and replacing it, if necessary, with π−α,
we can assume that m is also odd and 0 < m < n, so that q := m/n is as in the
statement. Consider the orbits of the rotation c := r1r2. The union of the special
orbits, see subsection 3.2.2, is uniquely determined by the angle α: if m = 1, then
g ∼W1/n(∅) (with the ordinary orbits disregarded), cf. Figure 7, right; otherwise,
each orbit is ‘stretched’ m times and ‘wrapped’ back around the circle, so that
g ∼ Wq(∅). In the union of the special orbits, adjacent to each semiaxis of each
symmetry contained in D2n is a pair of equal letters, either both L or both R; these
pairs are encoded by, respectively, l and r in the word w1/n used in the definition
of Wq. These pairs divide the circle into 2n arcs, which are occupied by the ordinary
orbits and, taking into account the full D2n-action, one can see that the union of all
ordinary orbits has the form B,Bt, . . . , B,Bt, where B is the portion of this union
in one of the arcs, see Figure 7, right; it can be any word in {L,R}. �

3.5. Relation to real structures. Here, we discuss the elements of Γ that admit
both a 2-factorization and a real structure.

Clearly, an elliptic element g ∼ X and a parabolic element g ∼ R2 have this
property. In both cases, the only 2-factorization is real. Furthermore, in both cases
we have both types of real structures (or real Lefschetz fibrations, see Remark 2.5):
for X = R · L−1, the action of τ̂1 preserves the 2-factorization, whereas that of τ̂
with τ = τ2R

−1 changes it by the Hurwitz move σ1; for R2 = R · R, the action of
τ̂2 can be regarded as either preserving the 2-factorization or changing it by σ1.

A parabolic element g ∼ L4 has two strong equivalence classes of 2-factoriza-
tions and four real structures, as can be easily seen from its cyclic diagram. Both 2-
factorizations are real with respect to two of the real structures and are interchanged
by the two others.

Theorem 3.13. Assume that a hyperbolic element g ∈ Γ is real and admits a 2-
factorization m̄. If m̄ is real, then it is unique, and g has a unique real structure.
Otherwise, g has two 2-factorizations, both non real, which are interchanged by the
real structure.

Proof. Under the assumptions, the cyclic diagram D := Dg has a para-symmetry
(the 2-factorization) r and a symmetry (the real structure) s. Then r′ := srs is
also a para-symmetry and, unless r′ = r, the two 2-factorizations corresponding
to r and r′ are interchanged by the real structure.

If r′ = r, i.e., r is real, the axes of r and s are orthogonal. (Since g 6∼ L4, the two
axes cannot coincide.) If there were another para-symmetry r1 6= r, then r, r1, and
r′1 := sr1s would define three distinct 2-factorizations, which would contradict to
Theorem 1.5. Similarly, another symmetry s1 6= s would generate, together with s,
a dihedral group D2n, n ≥ 3, giving rise to n distinct para-symmetries. �

Remark 3.14. The proof of Theorem 3.13 gives us a complete characterization of
real hyperbolic elements g admitting a 2-factorization m̄.

The 2-factorization m̄ of g is real if and only if g ∼ L2AL2At for a palindromic
word A in {L,R}.

Otherwise, there are two 2-factorizations and we have either g ∼ Vm, m ≥ 1,
or g ∼ Wq(B), see Theorem 3.12. In the former case, g has two real structures,
the corresponding symmetries of the cyclic diagram having orthogonal axes. In the
latter case, due to Corollary 3.8, the union of the special orbits, i.e., the part Wq(∅),
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is symmetric with respect to two reflections s1, s2 whose axes are distinguished as
those bisecting the ‘odd’ and ‘even’ angle between the axes of the para-symmetries
(respectively, the horizontal and vertical axes in Figure 7). The symmetry s1 is
a real structure on Wq(B) if and only if B is palindromic, whereas s2 is a real
structure if and only if B = ∅. (It is worth mentioning that the two non-equivalent
factorizations of Vn or Wq(B) with B palindromic differ by a global conjugation in
the group PGL(2,Z).)

Remark 3.15. If τ̂(m̄) is strongly equivalent to m̄, then τ̂ preserves the monodromy
group G of m̄ and; hence, induces an orientation reversing symmetry of the skeleton
G\Γ. Clearly, any such symmetry of a skeleton S as in Proposition 2.8 with at least
one Farey branch must interchange the two monogons of S. Hence, any real 2-
factorization m̄ of a hyperbolic element of Γ represents a real Lefschetz fibration
with a pair of complex conjugate singular fibers, see Remark 2.5; in other words, it
is real in the sense τ̂(m̄) = m̄ for some real structure τ .

3.6. Further observations. For practical purposes the following observation is
useful, as it eliminates most matrices as not admitting a 2-factorization.

Proposition 3.16. If an element g ∈ Γ̃ factors into a product of two Dehn twists,
then (2− trace g) is a perfect square.

Remark 3.17. This is definitely not a sufficient condition; for a counterexample
one can take the element R3LR2 = (L2RL3)t of trace 7.

Proof. Up to conjugation, we can assume that the two Dehn twists constituting the
product are R = ta and A := t[p,q] for some [p, q] ∈ H, gcd(p, q) = 1. Since

A =

[
1− pq −q2
p2 1 + pq

]
,

one has traceRA = 2− q2; on the other hand, trace is a class function. �

As a consequence of the proof, we conclude that, for each integer q, there does
exist an element g ∈ Γ̃ of trace 2 − q2 which is a product of two Dehn twists in
Γ̃. For an element g ∈ Γ, one should check whether 2± trace g is a perfect square.
Proposition 3.16 has a geometric meaning: the number 2− trace g is the square of
the symplectic product of the eigenvectors of the two Dehn twists.

For another necessary condition, consider a finite group G and fix an ordered
sequence of conjugacy classes represented by elements g1, . . . , gr ∈ G. Then the
number N(g1, . . . , gr) of solutions to the equation x1 · . . . · xr = id, xi ∼ gi, i =
1, . . . , r, is given by the following Frobenius type formula, see [1]:

N(g1, . . . , gr) =
|g1| . . . |gr|
|G|

∑ χ(g1) . . . χ(gr)

χ(id)r−2
,

where | · | stands for the size of the conjugacy class and the summation runs over all
irreducible characters of G. Applying this formula to the images of g1 = g2 = R,
g3 = g−1 in a finite quotient of Γ̃, we have the following statement.

Proposition 3.18. If an element g ∈ Γ̃ factors into a product of two Dehn twists,
then, for each positive integer n, one has∑

χ(R)2χ(g−1)χ(id)−1 6= 0,

the summation running over all irreducible characters of the group SL(2,Zn). C
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Note that all irreducible characters of the groups SL(2,Zp) for p prime are known,
see, e.g., [12], and, for each prime p, the condition in Proposition 3.18 can be
checked effectively in terms of certain Gauss sums. At present, we do not know
whether an analogue of the Hasse principle holds for the 2-factorization problem,
i.e., whether Propositions 3.16 and 3.18 together constitute a sufficient condition
for the existence of a 2-factorization.

4. Real elliptic Lefschetz fibrations

4.1. Lefschetz fibrations. Let X be a compact connected oriented smooth 4-
manifold and B a compact connected smooth oriented surface. A Lefschetz fibration
is a surjective smooth map p : X → B with the following properties:

• p(∂X) = ∂B and the restriction p : ∂X → ∂B is a submersion;
• p has finitely many critical points, which are all in the interior of X, and

all critical values are pairwise distinct;
• about each critical point x of p, there are local charts (U, x) ∼= (C2, 0) and

(V, b) ∼= (C1, 0), b = p(x), in which p is given by (z1, z2) 7→ z21 + z22 .

The restriction of a Lefschetz fibration to the set B] of regular values of p is a locally
trivial fibration with all fibers closed connected oriented surfaces; the genus of p is
the genus of a generic fiber. Lefschetz fibrations of genus one are called elliptic.

An isomorphism between Lefschetz fibrations is a pair of orientation preserving
diffeomorphisms of the total spaces and the bases commuting with the projections.
The monodromy of a Lefschetz fibration is the monodromy of its restriction to B].
As it follows from the local normal form in the definition, the local monodromy
(in the positive direction) about a singular fiber is the positive Dehn twist about
a certain simple closed curve, well defined up to isotopy; this curve is called the
vanishing cycle. The singular fiber itself is obtained from a close nonsingular one
by contracting the vanishing cycle to a point to form a single node. A singular
fiber is irreducible (remains connected after resolving the node) if and only if its
vanishing cycle is not null-homologous. If the vanishing cycle bounds a disk, the
singular fiber contains a sphere, which necessarily has self-intersection (−1), i.e., is
a topological analogue of a (−1)-curve. As in the analytic case, such a sphere can
be blown down. The fibration is called relatively minimal if its singular fibers do
not contain (−1)-spheres, i.e., none of the vanishing cycles is null-homotopic.

From now on, we only consider relatively minimal elliptic Lefschetz fibrations over
the sphere B = S2. After choosing a base point b ∈ B] and fixing an isomorphism
H1(p−1(b)) = H, the monodromy of such a fibration becomes a homomorphism

π1(B], b) → Γ̃, and it is more or less clear (see [11] for a complete proof) that, up
to isomorphism, the fibration is determined by its monodromy. By the Riemann–
Hurwitz formula, χ(X) = r, where r is the number of singular fibers.

Theorem 4.1 (Moishezon, Livné [11]). Up to isomorphism, a relatively minimal
elliptic Lefschetz fibration X → S2 is determined by the Euler characteristic χ(X),
which is subject to the restrictions χ(X) ≥ 0 and χ(X) = 0 mod 12. B

Since for any k ≥ 0 there exists an elliptic surface E(k) with χ(E(k)) = 12k, it
follows that any elliptic Lefschetz fibration p : X → S2 is algebraic, i.e., X and S2

admit analytic structures with respect to which p is a regular map.
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Definition 4.2. A Jacobian Lefschetz fibration is a relatively minimal elliptic Lef-
schetz fibration p : X → B ∼= S2 equipped with a distinguished section s : B → X
of p. Isomorphisms of such fibrations are required to commute with the sections.

According to Theorem 4.1, any elliptic Lefschetz fibration over S2 admits a
section, which is unique up to automorphism.

4.2. Real Lefschetz fibrations. Mimicking algebraic geometry (cf. subsection 5.2
below), define a real structure on a smooth oriented 2d-manifold X as an involutive
autodiffeomorphism cX : X → X with the following properties:

• cX is orientation preserving (reversing) if d is even (respectively, odd);
• the real part XR := Fix cX is either empty or of pure dimension d.

A real Lefschetz fibration is a Lefschetz fibration p : X → B equipped with a pair
of real structures cX : X → X and cB : B → B commuting with p. Such a fibration
is totally real if all its singular fibers are real. (Auto-)homeomorphisms of real
Lefschetz fibrations are supposed to commute with the real structures. A Jacobian
Lefschetz fibration is real if the distinguished section is real, i.e., commutes with
the real structures.

Recall that for any real structure c on X one has the Thom–Smith inequality

(4.3) β∗(XR) ≤ β∗(X),

where β∗ stands for the total Betti number with Z2-coefficients. If (4.3) turns into
an equality, the real structure (or the real manifold X) is called maximal. If X is
a closed surface of genus g, we have β0(XR) ≤ g + 1.

From now on, we assume that the base B is the sphere S2 and the real part BR
is a circle S1, i.e., cB is maximal; sometimes, BR is referred to as the equator.
A real Lefschetz fibration equipped with a distinguished orientation of BR is said
to be directed ; a directed (auto-)homeomorphism of such fibrations is an (auto-)
homeomorphism preserving the distinguished orientations. The fibers over BR in-
herit real structures from cX ; they are called real fibers.

A large supply of real Jacobian Lefschetz fibrations is provided by real Jacobian
elliptic surfaces, see subsection 5.3. Such fibrations are called algebraic; formally,
a real (Jacobian) Lefschetz fibration p : X → B is algebraic if X and B admit
analytic structures with respect to which p (and s) are holomorphic and cX , cB are
anti-holomorphic. It turns out that some (in a sense, most) Lefschetz fibration are
not algebraic; the realizability of a given fibration by an elliptic surface is one of
the principal questions addressed in this paper, see subsection 6.2.

4.3. Necklace diagrams. Define a broken necklace diagram as a nonempty word
in the stone alphabet {©,�, >,<}. Associate to each stone its dual and inverse
stones and its monodromy (an element of Γ) as shown in Table 1. Then, given a

Table 1. Necklace stones

Segment Stone Dual Inverse Monodromy

◦⇒=◦ © � © YX2YX2Y
×⇒=× � © � X2YX2

×⇒=◦ > < < XY
◦⇒=× < > > YX
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broken necklace diagram N, we can define its

• monodromy m(N) ∈ Γ, which is obtained by replacing each stone with its
monodromy and evaluating the resulting word in Γ,
• dual diagram N∗, obtained by replacing each stone with its dual, and
• inverse diagram N−1, obtained by replacing each stone with its inverse and

reversing the order of the stones.

Note that the operations of dual and inverse commute with each other and that for
any diagram N one has m(N∗) = Y·m(N)·Y and m(N−1) = τ̂1(m(N)). Furthermore,
the symmetric group Sn acts on the set BND(n) of broken necklace diagrams of
length n. For any cyclic permutation σ ∈ Sn one has (N ↑ σ)∗ = N∗ ↑ σ and
(N ↑ σ)−1 = N−1 ↑ σ−1; thus, on BND(n) there is a well defined action of the group
Z2 × D2n generated by the dual, inverse, and cyclic permutations.

Definition 4.4. An oriented necklace diagram N is an element of the quotient set
BND(n)/Zn by the subgroup Zn of cyclic permutations or, equivalently, a cyclic
word in the stone alphabet. A (non-oriented) necklace diagram is an element of
the quotient BND(n)/D2n by the subgroup generated by the cyclic permutations
and the inverse.

With real trigonal curves in mind, define also oriented flat and twisted necklace
diagrams as elements of the quotients BND(n)/Z2 × Zn and BND(n)/Z2 × Z̃2n,
respectively. Here, Z2 acts via N 7→ N∗, Zn is the subgroup of cyclic permutation,
and Z̃2n acts via the twisted shifts S1S2 . . . Sn 7→ S2 . . . SnS

∗
1 . In both cases, the

non-oriented versions are defined by further identifying the orbits of N and N−1.
Consider a directed Jacobian Lefschetz fibration p : X → B and assume that it

has at least one real singular fiber. The restriction pR : XR → BR can be regarded
as an S1-valued Morse function, and one can assign an index 0, 1, or 2 to each real
singular fiber, i.q. critical point of pR. The real part of each real nonsingular fiber
is nonempty (as there is a section); hence it consists of one or two circles, see (4.3),
and the number of circles alternates at each singular fiber. Define the uncoated
necklace diagram of p as the following decoration of the oriented circle BR:

• each singular fiber of index 0 or 2 is marked with a ◦, and each singular
fiber of index 1 is marked with a ×;
• each segment connecting two consecutive singular fibers over which nonsin-

gular fibers have two real components is doubled.

A typical real part XR and its uncoated necklace diagram are shown in Figure 9,
middle and bottom, respectively.

Definition 4.5. The oriented necklace diagram N(p) of a directed Jacobian Lef-
schetz fibration p : X → B is the cyclic word in the stone alphabet obtained by
replacing each double segment of its uncoated necklace diagram with a single stone
as shown in Table 1. In the presence of a base point b inside one of the simple
segments of BR, one can also speak about the broken necklace diagram Nb(p) of p,
with the convention that the first stone S1 is the immediate successor of b.

For example, the necklace diagram of the fibration shown in Figure 9 is

−�−©−©−<−−−>−−−©−>−−−©−<−−−�−>−−−©−.
(In [17], necklace diagrams are drawn in the oriented circle BR, and we respect this
convention by drawing a ‘broken’ necklace. For long diagrams we will also use the
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Figure 9. A non-hyperbolic trigonal curve (top), a covering Jaco-
bian surface (middle), and its uncoated necklace diagram (bottom);
the horizontal dotted lines represent the distinguished sections

obvious multiplicative notation for associative words.) According to the following
theorem, a totally real fibration is uniquely recovered from its necklace diagram.

Theorem 4.6 (see [17, 18]). Given k > 0, the map p 7→ N(p) establishes a bijection
between the set of isomorphism classes of (directed) totally real Jacobian Lefschetz
fibrations with 12k singular fibers and the set of (oriented) necklace diagrams of
length 6k and monodromy id ∈ Γ. B

The classification of totally real Lefschetz fibrations for the small values of k is
also found in [17, 18]. For k = 1, there are 25 undirected isomorphism classes,
among which four are maximal. For k = 2, the number of classes is 8421.

4.4. Generalizations. Let N be a broken necklace diagram. A w-pendant on N is
a strong Hurwitz equivalence class of w-factorizations m̄ of m(N). The (Z2 ×D2n)-
action on the set BND(n) is extended to pairs (N, m̄) as follows:

• the inverse (N, m̄)−1 is (N−1, τ̂1(m̄));
• the dual (N, m̄)∗ is (N∗,Ym̄Y);
• the cyclic permutation 1 7→ 2 7→ . . . acts via N = S1 . . . Sn 7→ S2 . . . SnS1

and m̄ 7→ P−11 m̄P1, where P1 is the monodromy of S1.

An oriented w-pendant necklace diagram is an orbit of the cyclic permutation action
on the set of pairs (N, m̄) as above; a (non-oriented) w-pendant necklace diagram
is obtained by the further identification of the orbits of (N, m̄) and (N, m̄)−1. The
length of a w-pendant necklace diagram represented by (N, m̄) is the length |N|, the
number of stones on N.

Remark 4.7. An oriented flat w-pendant necklace diagram is defined as an orbit of
the further action (N, m̄) 7→ (N, m̄)∗. In the case of twisted necklace diagrams, both
the monodromy and the notion of w-pendant should be defined slightly differently.
Namely, given a broken necklace diagram N, let m̃(N) := m(N)Y. The twisted shift
by the cyclic permutation σ : 1 7→ 2 7→ . . . acts via m̃(N ↑σ) = P−11 m̃(N)P1, and we
can define a twisted w-pendant as a strong equivalence class of w-factorizations m̄
of m̃(N). The twisted action of Z2× Z̃2n extends to pairs (N, m̄) in the same way as
above, and an oriented twisted w-pendant necklace diagram is defined as an orbit
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set of this action. The non-oriented analogues are defined as above, by the further
identification of the orbits of (N, m̄) and (N, m̄)−1.

Let p : X → B be a directed Jacobian Lefschetz fibration with r > 0 real and
w ≥ 0 pairs of complex conjugate singular fibers. Denote by B+ ⊂ B the closed
hemisphere inducing the chosen orientation of the equator BR. Decorate BR as
explained in subsection 4.3 and remove from B+ the union of some disjoint regular
neighborhoods of the stones, i.q. double segments; denote the resulting closed disk
by Ω and let Ω] = Ω ∩ B]. Choose a base point b ∈ Ω ∩ BR and pick a geometric
basis {δ1, . . . , δw} for the group π1(Ω], b), see Figure 10 (where black dots denote
non-real singular fibers).

The real structure c := cX |Fb
in the real fiber Fb over b is conjugate to τ1;

it gives rise to a distinguished pair of opposite bases ±(a,b) in the homology
H1(Fb), which are defined by the condition that a±b should be a (±1)-eigenvector
of c∗. Thus, there is a canonical, up to sign, identification H1(Fb) = H and the
monodromies m(δi) project to well defined elements mi ∈ Γ, i = 1, . . . , w. Let
m̄b(p) = (m1, . . . ,mw).

Lemma 4.8. The strong equivalence class of the w-factorization m̄b(p) is indeed
a w-pendant on the broken necklace diagram Nb(p). A change of the base point b
used in the definition results in a cyclic permutation action on the pair (Nb, m̄b).

Proof. According to [18], the monodromy Pi of a stone Si is the Γ-valued mon-
odromy along a path γi connecting two points bi and bi+1, right before and right
after Si, and circumventing Si in the clockwise direction, see Figure 10. (To ob-

δ1 δw

b = b1

bn

b2

b3

S1

S2 Sn

. . .

B+
BR

γ1

γ2

Figure 10. The monodromy of a real Lefschetz fibration

tain a well defined element of Γ, in the fibers over both points one should use the
canonical bases described above.) Hence, the first statement of the lemma follows
from the obvious relation γ1 · . . . · γn ∼ [∂Ω]. For the second statement, it suffices
to notice that, changing the base point from b = b1 to b2, one can take for a new
geometric basis for π1(Ω], b2) the set {γ−11 δiγ1}, i = 1, . . . , w. �

Theorem 4.9. The map sending p : X → B to the class of the pair (Nb(p), m̄b(p))
establishes a bijection between the set of isomorphism classes of (directed) Jacobian
Lefschetz fibrations with 2n > 0 real and w pairs of complex conjugate singular fibers
and the set of (oriented) w-pendant necklace diagrams of length n.
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Proof. Due to Lemma 4.8, the map in question is well defined, and to complete
the proof it suffices to show that a Lefschetz fibration can be recovered from a
pair (N, m̄) uniquely up to isomorphism. The necklace diagram N gives rise to a
unique, up to isomorphism, totally real directed Jacobian Lefschetz fibration over
an equivariant regular neighborhood U of the equator BR (see [18] for details;
this statement is an essential part of the proof of Theorem 4.6). The complement
BrU consists of two connected components B◦±, and m̄ is a w-factorization of the
monodromy m(∂B◦+) = m(N); due to [11], this factorization determines a unique
extension of the fibration from ∂B◦+ to B◦+. The extension to the other half B◦− is
defined by symmetry. �

Remark 4.10. It is not easy to decide whether a given necklace diagram N admits
a w-pendant. There are simple criteria for w = 0 (one must have m(N) = id), w = 1
(m(N) must be a Dehn twist), and w = 2 (the criterion is given by Theorem 1.4).
In general, one can lift m(N) to a degree w element in the braid group B3 and
apply S. Orevkov’s quasipositivity criterion [15]: a w-pendant exists if and only if
the lift is quasipositive. A lift of degree w exists (and then is unique) if and only
if degm(N) = w mod 6, where deg : Γ � Z6 is the abelianization epimorphism,
with the convention that degR = 1. Obviously, this condition is necessary for the
existence of a w-pendant.

Remark 4.11. If w = 0 or 1, a necklace diagram N obviously admits at most one
w-pendant. If w = 2, there are at most two w-pendants, see Theorems 1.5 and 3.12.
It follows that at most two isomorphism classes of real Jacobian Lefschetz fibrations
with two pairs of complex conjugate singular fibers may share the same necklace
diagram (equivalently, fibered topology of the real part).

We used Maple to compute the numbers of undirected isomorphism classes of
real Jacobian Lefschetz fibrations for some small values of k and w (where 12k is the
total number of singular fibers and w is the number of pairs of complex conjugate
ones). For k = 1, the numbers are 25 (w = 0), 28 (w = 1), and 24 (w = 2); for
k = 2, they are 8421 (w = 0) and 15602 (w = 1). (For k = w = 2, the computation
is too long.) In all examples, a fibration with w > 0 pairs of conjugate singular
fibers can be obtained from one with (w − 1) pairs by converting the pair of real
fibers constituting an arrow type stone to a pair of conjugate ones. We do not know
how general this phenomenon is.

4.5. Counts. We conclude this section with a few simple counts. Let p : X → B
be a real Jacobian Lefschetz fibration, χ(X) = 12k > 0, and let N = N(p). We
assume that N 6= ∅, so that 0 < |N| ≤ 6k. Denote by #� := #�(N) the number of
stones of type �, � ∈ {©,�, >,<}. Then one has

(4.12) β∗(X) = χ(X) = 12k

and

(4.13) β∗(XR) = 2(#© + #�) + 4, χ(XR) = 2(#© −#�),

see [17, 18] or Figure 9. In particular, #© + #� ≤ 6k − 2, see (4.3), and X is
maximal if and only if #© + #� = 6k− 2. Alternatively, X is maximal if and only
if

(4.14) #< + #> + w = 2,

where w ≤ 2 is the number of pairs of complex conjugate singular fibers.
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5. Real trigonal curves

5.1. Trigonal curves. A Hirzebruch surface Σd, d > 0, is a geometrically ruled
rational surface with a (unique) exceptional section E of self-intersection −d. We
denote the ruling by p : Σd → B ∼= P1; its fibers are called the fibers of Σd. A
(proper) trigonal curve is a reduced curve C ⊂ Σd disjoint from the exceptional
section and intersecting each fiber at three points (counted with multiplicities); in
other words, the restriction p : C → B is a map of degree three. A singular fiber
of a trigonal curve is a fiber of Σd intersecting the curve geometrically at fewer
than three points; equivalently, singular are the fibers over the critical values of the
restriction p|C . In this paper, we consider almost generic trigonal curves only, i.e.,
we assume that all critical points of p|C are simple. Such a curve is nonsingular
and irreducible; hence it has genus g(C) = 3d− 2 (the adjunction formula) and the
number of singular fibers is 6d (the Riemann–Hurwitz formula).

Given a point b ∈ B, let Fb be the fiber p−1(b) and let F ◦b be the affine fiber
Fb rE. It is an affine complex line. Hence, in the presence of a trigonal curve, one
can speak about the zero section Z sending each point b ∈ B to the barycenter of
the three points C ∩ F ◦b , and about the fiberwise convex hull convC ⊂ Σd r E.

5.2. Real trigonal curves. Recall that a real structure on an algebraic (analytic)
variety X is an anti-holomorphic involution cX : X → X. A pair (X, cX) is called a
real algebraic variety ; usually, the real structure c is understood and we speak about
a real algebraic variety X. Given a real structure, the fixed point set XR := Fix cX
is called the real part of X. A maximal real algebraic variety, see (4.3), is usually
called an M -variety.

Up to isomorphism, a Hirzebruch surface Σd admits a unique real structure cd
with nonempty real part (Σd)R, the latter being a torus or a Klein bottle for d even
or odd, respectively. This real structure cd descents to a certain real structure cB
on the base B, so that the ruling p is real. In what follows, when speaking about
a real Hirzebruch surface, we assume such a pair (cd, cB) fixed. Any real automor-
phism ϕ : Σd → Σd induces a cB-equivariant autohomeomorphism (in fact, a real
automorphism) ϕB : B → B. Such an autohomeomorphism ϕB (and the original
automorphism ϕ) is said to be directed if it preserves the orientation of BR. More
generally, a directed autohomeomorphism of a real Hirzebruch surface p : Σd → B
is an orientation preserving cd-equivariant fiberwise autohomeomorphism whose
descent to B preserves the orientations of B and BR, cf. subsection 4.2.

A trigonal curve C ⊂ Σd is real if it is cd-invariant; then, the restriction of cd
to C is a real structure on C. In affine coordinates, such a curve is given by a
polynomial with real coefficients. By a deformation of real trigonal curves we mean
an equivariant deformation (a path in the space of real polynomials) in the class of
almost generic curves. Two curves are said to be (directedly) deformation equivalent
if they differ by a deformation and/or (directed) real automorphism of Σd.

Fix a real trigonal curve C ⊂ Σd and consider the restriction pR : CR → BR. If
each fiber of pR consists of three points, the curve C is called hyperbolic. In this
case, the real part CR consists of three (if d is even) or two (if d is odd) components;
in the former case, each component is mapped onto BR homeomorphically; in the
latter case, one ‘central’ component is mapped homeomorphically and the other is
a double covering. It can be shown that all hyperbolic curves (in a given surface)
are deformation equivalent, see, e.g., [7]. If C is not hyperbolic, its real part looks
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like shown in Figure 9, top. More precisely, CR has one long component that is
mapped onto BR and, possibly, a number of ovals, necessarily unnested. The long
component may contain some zigzags (the Z-shaped fragments in the figure). For
a formal definition, consider a maximal, with respect to inclusion, segment I ⊂ BR
with the property that each point b ∈ I has at least two pull-backs under pR. If the
pull-back p−1R (I) is disconnected, one of its components is an oval; otherwise, the
pull-back is called a zigzag. With a certain abuse of the language, the projections
of the ovals and zigzags to BR (i.e., maximal segments I ⊂ BR as above) are also
referred to as ovals and zigzags, respectively, cf. subsection 5.5 below.

5.3. The covering elliptic surface. Let C ⊂ Σd be a real trigonal curve. If d is
even, the double covering X → Σd ramified at C + E is a Jacobian elliptic surface
(E being the section), and the real structure cd lifts to two opposite real structures
c± : X → X that differ by the deck translation of the covering. Disregarding the
analytic structure, one can consider the corresponding real varieties X± as real
Jacobian Lefschetz fibrations.

The necklace diagrams N(X±) are dual to each other, and each of them deter-
mines the embedded topology of the real part CR ⊂ (Σd)R. Hence, the latter can
be encoded by the pair N(X±), i.e., by a flat necklace diagram.

If d is odd, a covering elliptic surface only exists over the complement of the
fiber Fb over a point b ∈ B. In this case, choosing for b a generic real point with
one preimage under pR and analyzing the dependence of XR on b, one can see that
the real part CR ⊂ (Σd)R is encoded by a twisted necklace diagram.

In both cases, the ovals of CR correspond to the � and © type stones, whereas
the zigzags correspond to the arrow type stones, see Figure 9.

5.4. Dessins. In appropriate (real) affine coordinates (x, y), a (real) trigonal curve
C ⊂ Σd can be given by its Weierstraß equation

(5.1) y3 + g2(x)y + g3(x) = 0,

where g2 and g3 are some (real) polynomials in x of degree at most 2d and 3d,
respectively, and the discriminant ∆(x) := −4g32−17g23 is not identically zero. The
j-invariant of C is defined as the meromorphic function

(5.2) jC : B → P1 = C ∪ {∞}, jC := −4g32
∆
.

If C is real, so is jC .
If C is almost generic, by a small equisingular deformation it can be made generic,

i.e., such that the j-invariant jC has generic branching behavior in the sense of [11];
the latter means that all zeroes of jC are triple, all zeroes of (jC−1) are double, all
poles of jC are simple, and all critical values of jC other than 0 or 1 are also simple.
(We emphasize that these properties are highly non-generic for a map B → P1,
but they do correspond to truly generic trigonal curves.) For generic real trigonal
curves we define (directed) strict deformation equivalence as the equivalence relation
generated by the (directed) real automorphisms of Σd and equivariant equisingular
deformations in the class of generic curves.

Fix a generic trigonal curve C and define its dessin D := DssnC as the embedded
graph j−1C (P1

R) ⊂ B decorated as follows:

• the pull-backs of 0, 1, and ∞ are •-, ◦-, and ×-vertices, respectively;
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• an edge is colored solid, bold, or dotted if its image belongs to (−∞, 0),
(0, 1), or (1,∞), respectively and is directed according to the canonical
orientation of P1

R, i.e., the standard linear order on R;
• the critical points of jC with real critical values distinct from 0, 1, or ∞

are considered monochrome vertices, respectively solid, bold, or dotted.

If C is real, its dessin D is invariant with respect to the real structure c on B and
the real part BR is a union of edges and vertices of D. The properties of the graph
thus obtained are summarized in the following definition.

Definition 5.3. Let B be the sphere S2 and c : B → B the reflection against the
equator. A (real) dessin is a c-invariant embedded directed graph D ⊂ B decorated
with the following additional structures (referred to as the colorings of the edges
and vertices of D, respectively):

• each edge of D is of one of the three kinds: solid, bold, or dotted;
• each vertex of D is of one of the four kinds: •, ◦, ×, or monochrome (the

vertices of the first three kinds being called essential),

and satisfying the following conditions:

(1) the equator of B is a union of edges and vertices of D, and each monochrome
vertex is at the equator;

(2) each •-, ◦-, ×-, or monochrome vertex has valency 6, 4, 2, or 4, respectively;
(3) the orientations of the edges of D induce an orientation of the boundary of

the complement B rD;
(4) all edges incident to a monochrome vertex are of the same kind;
(5) ×-vertices are incident to incoming dotted edges and outgoing solid edges;
(6) •-vertices are incident to incoming solid edges and outgoing bold edges;
(7) ◦-vertices are incident to incoming bold edges and outgoing dotted edges;
(8) D has no directed monochrome cycles, i.e., directed cycles with all edges

of the same kind and all vertices monochrome.

In items 5–7, the lists are complete, i.e., vertices cannot be incident to edges of
other kinds or with a different orientation.

The equator Fix c is called the real part of the dessin; the edges and vertices of D
that are in the equator are called real, whereas the other vertices are called inner.

Two dessins are said to be (directedly) homeomorphic if they are related by
a (directed) orientation preserving c-equivariant autohomeomorphism of B. Note
that directedly homeomorphic dessins are, in fact, equivariantly isotopic.

If C is a generic curve in Σd, then deg jC = 6d and, hence, the numbers of •-, ◦-,
and ×-vertices of the dessin DssnC are 2d, 3d, and 6d, respectively. The number
3d of ◦-vertices is called the degree of the curve C and dessin DssnC.

Convention. In view of the symmetry, in the figures we only draw the portion of
a dessin contained in one of the two hemispheres, which is represented by a disk.
The real part of the dessin (the boundary of the disk) is shown by a thick grey line,
cf., for example, Figure 11 on page 29. When speaking about directed dessins, we
choose the closed hemisphere B+ whose orientation induces the fixed orientation of
the equator BR.

Theorem 5.4 (see [7, 13]). The map C 7→ DssnC establishes a bijection between
the set of (directed) strict deformation equivalence classes of generic real trigonal
curves and that of (directed) homeomorphism classes of dessins. B
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Remark 5.5. The notion of strict deformation equivalence is not very meaningful
from the topological point of view, as some codimension one degenerations of the j-
invariant do not affect the topology of the curve. It is shown in [7] that deformation
equivalence classes of almost generic curves are in a one-to-one correspondence with
certain equivalence classes of dessins, where two dessins are considered equivalent if
they are related by a sequence of homeomorphisms and certain elementary moves.
We omit the description of these moves as they are not essential in the case of
M -curves, which are only considered in this paper.

Definition 5.6. The union of the bold edges and •- and ◦-vertices of the dessin
DssnC is called the skeleton of C and is denoted by SkC. If DssnC has no bold
monochrome vertices, SkC is a regular skeleton in the sense of the definition given
in subsection 2.5.

5.5. Topology in terms of dessins. The topology of the real part CR ⊂ (Σd)R
is easily recovered from the dessin D := DssnC. It is immediate from (5.1), (5.2),
and the definition of D that

(1) the singular fibers of C are those over the ×-vertices of D,
(2) the points of intersection C ∩ Z are over the ◦-vertices of D, and
(3) a point b inside a real edge e of D has three preimages under pR if and only

if e is dotted.

It follows that the ovals and zigzags of CR, regarded as subsets of BR, are the
maximal dotted segments in BR; any such segment is bounded by two ×-vertices
and is allowed to contain a number of ◦- or monochrome vertices inside. In view of
item 2 above, a maximal dotted segment in BR is an oval (zigzag) if and only if it
contains an even (respectively, odd) number of ◦-vertices.

The uncoated necklace diagram N of the covering elliptic surface X of C is also
recovered from D. (If the degree of C is odd, we should fix a base point b inside a
solid or bold real edge of D and speak about the uncoated diagram broken at b.)
The ×- and ◦-points of N are the ×-vertices of D, and the double segments of N
are the maximal dotted segments of D. (At this point, we need to apologize for the
notation clash. Unfortunately, both notation sets are quite well established and it
seems unwise to change them.) Since X has two opposite real structures, we cannot
distinguish between the ×- and ◦-type critical points, but we can compare pairs of
points: two critical points are of the same type (both × or both ◦) if and only if
they are separated by an even number of ◦-vertices of D. All assertions are simple
consequences of elementary Morse theory; they are obvious from Figure 9.

Given a necklace diagram N, denote by #ess the number of simple segments of
the corresponding uncoated diagram connecting pairs of critical points of opposite
types, i.e., those of the form ◦→−× or ×→−◦. (Such segments are called essential.)
Since any real Jacobian elliptic surface X is the double covering of the Hirzebruch
surface Σd = X/± id ramified at E and a certain real trigonal curve C, we have the
following necessary condition for a necklace diagram N to be algebraic.

Proposition 5.7 (see [17, 18]). Let X → B be a real Jacobian elliptic surface with
χ(X) = 12k > 0. Then its necklace diagram N is subject to the inequalities

#ess ≤ 2k, #ess + #< + #> ≤ 6k.

Proof. The second statement follows from the fact that each zigzag (an arrow type
stone) and each essential segment contains an odd number, hence at least one, of
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◦-vertices of the dessin, and #◦ = 6k. For the first one, observe that a ◦-vertex
inside an essential segment is separated from each of the two ×-vertices bounding
the segment by at least one •-vertex (as the type of the edges must change from
bold to solid, cf. Figure 11 on page 29), and #• = 4k. �

5.6. The monodromy. Let Ω ⊂ B be a closed disk. A continuous section s : Ω→
Σd of p is called proper (with respect to a fixed trigonal curve C) if its image is
disjoint from both E and convC. Since the disk Ω is contractible and all fibers
Fbr(E∪convC) are connected, a proper section exists and is unique up to homotopy
in the class of proper sections.

Fix a trigonal curve C, a disk Ω, and a proper section s. Assume that the
boundary ∂Ω contains no singular fibers of C and denote by Ω] the disk Ω with
all singular fibers removed. The restriction p : p−1(Ω]) r (C ∪E)→ Ω] is a locally
trivial fibration, and one can consider the associated bundle with the discrete fibers
Autπ1(Fxr(C∪E), s(x)), x ∈ Ω]. This bundle is a covering and, fixing a base point
b ∈ Ω] and lifting loops starting from the identity over b, we obtain a homomorphism
m̃ : π1(Ω], b)→ Autπb, where πb := π1(Fb r (C ∪E), s(b)). This homomorphism is
called the monodromy ; since the section s is proper, it actually takes values in the
braid group B3 ⊂ Autπb, where πb is identified with the free group F3 by means of
a geometric basis.

In the sequel, we ‘downgrade’ the monodromy to the modular group Γ and
consider the composition m : π1(Ω], b)→ B3 � Γ, called the reduced monodromy. If
d is even, m coincides with the Γ-valued reduction of the monodromy (homological
invariant) of the covering elliptic surface. The following statement is essentially
contained in [5], although the conventions and notation in [5] differ slightly from
those accepted in this paper.

Theorem 5.8 (see [5]). Consider a connected component S0 of the intersection
SkC ∩ Ω, and assume that the base point b is in an edge e of S0. Then, under an
appropriate choice of a geometric basis in the reference fiber Fb, the diagram

π1(S0, e)
i∗−−−−→ π1(Ω], b)

j∗

y ym

π1(SkC, e)
val−−−−→ Γ

commutes, where i : S0 ↪→ Ω] and j : S0 ↪→ SkC are the inclusions. B

Now, assume that the curve C is real. Orient the real part BR and consider the
positive hemisphere B+. Choose some disjoint regular neighborhoods Ui ⊂ B of
the singular fibers of C and let Ω = B+ r

⋃
Ui, the union running over the real

singular fibers only (cf. similar construction in subsection 4.4 and Figure 10). Pick
a base point b in the boundary ∂Ω, make the other necessary choices, and consider
the reduced monodromy m : π1(Ω], b)→ Γ.

Definition 5.9. The image MG(C) := Imm ⊂ Γ is called the monodromy group
of C; the element m∞ := m[∂Ω] ∈ MG(C) is called the monodromy at infinity.

The following statement is straightforward.

Proposition 5.10. The pair (MG,m∞), m∞ ∈ MG ⊂ Γ, is determined by the
curve C and orientation of BR up to conjugation. The conjugacy class of the pair
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(MG,m∞) is invariant under directed autohomeomorphisms of the pair (Σd, C); in
particular, it is a directed deformation invariant of real trigonal curves. C

The conjugacy class of the monodromy at infinity depends on the real part CR
only. Indeed, choose the base point b real and outside the zigzags and ovals and
represent the real part by a broken (at b) necklace diagram N, flat or twisted, see
subsection 5.3. Then, up to conjugation, one has m∞ = m(N) if d is even and
m∞ = m̃(N) if d is odd. (Note that the conjugacy class of m̃(N) is preserved by the
twisted shifts used in the definition of twisted diagrams, see Remark 4.7.)

5.7. Real trigonal M-curves. In view of (4.3), the real part CR of an M -curve
C ⊂ Σd has 3d − 1 connected components. Hence, unless d = 1, such a curve is
non-hyperbolic, its real part has 3d− 2 ovals, and, since each oval and each zigzag
consume two real singular fibers, one has z+w = 2, where z is the number of zigzags
and w is the number of pairs of complex conjugate singular fibers; in particular,
z, w ≤ 2. Comparing this to (4.14), we conclude that C is an M -curve if and only
if any/both covering elliptic surfaces X± are M -varieties. (This statement trivially
holds for hyperbolic curves as well.)

For d = 1 (essentially, plane cubics), there are four deformation families of M -
curves: one hyperbolic and three non-hyperbolic, denoted by Iz, z = 0, 1, 2: a curve
of type Iz has one oval and z zigzags, see Figure 11 for z = 1 and 2.

(a) I2 (b) I1

Figure 11. Dessins of M -cubics

To describe the other M -curves, we need the operation of junction. Consider
two directed dessins Di ⊂ Bi, i = 1, 2. Choose a pair of zigzags Zi of Di with a
single ◦-vertex vi in each, and let Ii ⊂ ∂Bi

+ be a segment contained in the interior

of Zi and containing vi inside. Pick a homeomorphism ϕ : I1 → I2 and consider
the connected boundary sum B+ := B1

+ tϕ B2
+ and the graph

D+ := (D1 ∩B1
+) tϕ (D2 ∩B2

+) ⊂ B+.

Finally, double B+ to form a new sphere B ∼= S2 and double D+ to form a graph
D ⊂ B; the two real ◦-vertices v1, v2 are replaced with a pair of complex conjugate
◦-vertices, and the common endpoints of I1, I2 become monochrome vertices of D.
The resulting graph D ⊂ B is a dessin; it is called the junction of D1 and D2

along the pair of zigzags Z1, Z2. Up to isotopy, the junction depends only on the
pair of dessins D1, D2, pair of zigzags Z1, Z2, and whether the homeomorphism ϕ
is orientation preserving or reversing. The zigzags Z1, Z2 are ‘consumed’ by the
junction, being replaced by a pair of ovals. It follows that an iterated junction of
several dessins does not depend on the order of the individual operations: one can
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start with the disjoint union of all dessins involved and identify all pairs of segments
(which are all disjoint) simultaneously.

An example of junction is shown in Figure 12 on page 31, where only some
essential parts of the dessin are drawn.

Theorem 5.11 (see [7, 13]). Each directed deformation class of real trigonal M -
curves C ⊂ Σd, d ≥ 2, contains a representative whose dessin is an iterated junction
of d copies of cubic dessins I2, I1 shown in Figure 11. Conversely, any such junction
is the dessin of an M -curve. Two (directed) deformation classes are equal if and
only if their corresponding dessins as above are (directedly) homeomorphic. B

According to the number of zigzags, a dessin of type I1 participates in exactly
one junction (consuming its only zigzag), whereas a dessin of type I2 can participate
in one or two junctions. Furthermore, a dessin of type I1 has a ‘horizontal’ axis
of symmetry preserving the zigzag, see Figure 11, whereas a dessin of type I2 does
not. It follows that, after the junction as in Theorem 5.11, the individual blocks
form a linear chain, which can be encoded by a word in the alphabet {↑, ↓, ∗},
with the convention that ∗ can only appear as the first and/or last letter. Here, ∗
represents a dessin of type I1, and ↑ and ↓ represent a dessin of type I2, oriented,
respectively, as shown in Figure 11 or upside down. (For an example, see Figure 12
on page 31.) On the set Md of such words of length d, there is an action of the group
Z2 × Z2 generated by the vertical flip v, reversing the order of the letters, and the
horizontal flip h, interchanging ↑ and ↓. Each flip is realized by a homeomorphism
of dessins reversing the orientation of the equator. In these terms, one can restate
Theorem 5.11 as follows.

Corollary 5.12. The directed (undirected) deformation classes of real trigonal M -
curves in Σd are in a natural one-to-one correspondence with the orbit set Md/vh
(respectively, the orbit set Md/〈v, h〉). C

The number of ∗ type letters in the word representing an M -curve C equals the
number w ≤ 2 of pairs of complex conjugate singular fibers of C.

As explained at the beginning of this section, an M -curve C has at most two
zigzags. If C has at least one zigzag, the appropriate (flat or twisted) necklace
diagram of C determines the representation of the dessin DssnC in the form of
iterated junction and, hence, the deformation class of C, see [7] for details. If C
has no zigzags, this assertion is no longer true. The shortest example is the pair of
degree 12 curves represented by ∗↑↓∗ and ∗↓↑∗ : they share the same oriented flat
necklace diagram ©5�5, but are not related by a directed deformation equivalence.
The two degree 30 curves represented by

(5.13) ∗↓↑↓↓↑↑↓↑∗ and ∗↓↑↑↓↑↓↓↑∗
share the same oriented diagram (©5�5©�3)2, but are not deformation equivalent,
directedly or not. An explanation of this phenomenon is given in Remark 6.7 below.
In more details, we address this (non-)uniqueness question in the next section, see
Corollaries 6.5 and 6.6.

6. Geometric applications

6.1. Real trigonal M-curves are quasi-simple. Recall that a deformation fam-
ily of complex algebraic varieties is called quasi-simple if, within this family, the
equivariant deformation class of a real variety is determined by the topology of
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its real structure. The first geometric application of our algebraic results is the
quasi-simplicity of real trigonal M -curves.

Theorem 6.1. Two real trigonal M -curves C1, C2 ⊂ Σd are in the same (directed)
deformation class if and only if the quadruples (Σd, Ci, p, cd), i = 1, 2, are related
by a (directed) homeomorphism.

The case where each curve has at least one zigzag is settled in [7]; in this case,
non-equivalent curves differ by their real parts (more precisely, appropriate necklace
diagrams, flat or twisted). Thus, we need to consider curves without zigzags only
(equivalently, those with two pairs of conjugate singular fibers), and for such curves
Theorem 6.1 follows from a much stronger statement, Theorem 6.3 below.

Definition 6.2. A word w in the alphabet {L,R} is called even if all letters occur
in w in pairs or, equivalently, if w can be represented as a word in {L2, R2}. A
parabolic or hyperbolic element g ∈ Γ is even if, up to conjugation, g is represented
by an even word in {L,R}. For a hyperbolic element, this condition is equivalent
to the requirement that all entries of the cutting period cycle of g should be even.
Finally, a regular pseudo-tree S with two loops, cf. Proposition 2.8, is even if its
monodromy at infinity is even. Informally, S is even if its Farey branches pointing
upwards/downwards appear in pairs, see Remark 2.9.

Theorem 6.3. Two real trigonal M -curves C ′ ⊂ Σd′ and C ′′ ⊂ Σd′′ without
zigzags are directedly deformation equivalent (in particular, d′ = d′′) if and only if
the monodromy groups MG(C ′) and MG(C ′′) are conjugate in Γ. Furthermore, a
subgroup G ⊂ Γ is the monodromy group of a real trigonal M -curve without zigzags
if and only if the skeleton G\Γ is an even regular pseudo-tree with two loops.

Proof. Let C be a trigonal curve as in the statement. According to Theorem 5.11,
we can assume that the dessin of C is a junction of two cubic dessins I1 and several
cubic dessins I2, see Figure 12. (To simplify the figure, we only show the real

Figure 12. A junction of six M -cubics (∗↑↑↓↑∗)

part BR, maximal real dotted segments, which are all ovals, junctions, and the
portion of the skeleton SkC that is in B+.) We extend the graph SkC ∩ B+ to
a regular skeleton S′ by attaching, at each real •-vertex, a Farey branch reaching
beyond the boundary to B− (shown in dotted bold lines in Figure 12). Then, the
following statements are straightforward:

• S′ is an even regular pseudo-tree with two loops, cf. Proposition 2.8;
• any even regular pseudo-tree with two loops can be obtained in this way,

starting from a certain junction of M -cubics;
• the monodromy group MG(C) is the stabilizer of S′ (see Theorem 5.8);
• the dessin DssnC is uniquely recovered from S′.

The first two statements imply the last assertion of the theorem. The fact that a
curve is uniquely determined by its monodromy group follows from the last two
statements and Theorem 5.11. �
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In view of our previous results concerning 2-factorizations, we have the following
corollaries of Theorem 6.3.

Corollary 6.4 (cf. Theorem 1.4). A necklace diagram N (flat or twisted) without
arrow type stones is the diagram of a real trigonal M -curve if and only if the
monodromy m(N) has the form L2AL2At for some even word A in {L,R}. C

Corollary 6.5 (cf. Theorem 1.5). A necklace diagram N as in Corollary 6.4 is the
diagram of at most two, up to equivalence, real trigonal M -curves. In other words,
at most two equivalence classes of curves may have homeomorphic real parts. C

Corollary 6.6 (cf. Theorem 1.5). A necklace diagram N as in Corollary 6.4 gives
rise to two equivalence classes of real trigonal M -curves if and only if the mon-
odromy m(N) has the form Wq(B) for some even word B in {L,R}. C

Remark 6.7. The two M -curves given by (5.13) which share the same topology
of the real part (i.q. flat necklace diagram) correspond to the two non-equivalent
2-factorizations of the element W1/3(L2R2), see subsection 3.4 and Theorem 3.12.

6.2. Maximal Lefschetz fibrations are algebraic. As stated in the introduc-
tion, one of the major questions in the theory of real elliptic Lefschetz fibrations is
whether a given fibration can be realized by an algebraic one. Unlike the complex
case, there do exist non-algebraic real Lefschetz fibrations. Thus, amongst the 25
undirected isomorphism classes of totally real fibrations with twelve singular fibers
only seventeen are algebraic, see [17, 18]; the eight others are ruled out by Proposi-
tion 5.7. Out of the 8421 classes of totally real fibrations with 24 singular fibers, at
least 4825 classes are non-algebraic as they violate Proposition 5.7. At present, we
do not know if all 3596 remaining classes are algebraic, nor do we know any simple
criterion that would establish that a given fibration is algebraic. (In the case of
twelve singular fibers, an analytic structure is constructed in [17, 18] by finding a
dessin with the desired flat necklace diagram.)

In this section, we prove Theorem 1.8, closing the question for maximal fibration.
Consider a fibration p : X → B as in the statement of the theorem and let

N := N(p) be its necklace diagram. Let w be the number of pairs of complex
conjugate singular fibers of p; we have w ≤ 2, see (4.14). The case w = 0 is covered
by Theorem 1.7, and it remains to consider the cases w = 1, 2.

Proof of Theorem 1.8: the case w = 2. The diagram N has no arrow type stones,
see (4.14); hence, N is of the form �i1©j1 . . . �is©js (assuming that N has both
© and � type stones and breaking it between a © and a �). Then, using Table 1,
after cancelations we have

m(N) = (RLi1−1R)(RLj1−1R) . . . (RLis−1R)(RLjs−1R).

Thus, in the cyclic diagram D of m(N), the copies of R appear in pairs. On the
other hand, since m(N) admits a 2-factorization, see Theorem 4.9, D has a para-
symmetry, see Remark 3.5. It follows that the copies of L also appear in pairs (two
pairs of anchors and pairs of L symmetric to those of R), i.e., m(N) is an even
element of Γ. Hence, the monodromy group of any 2-factorization of m(N) is as
in Theorem 5.11 and the corresponding flat pendant necklace diagram is realized
by a real trigonal M -curve C. Due to Theorem 4.9, one of the two opposite real
Jacobian elliptic surfaces ramified at C + E is isomorphic to p.
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If all stones of N are of the same type, then, since the monodromy of each ©

or � type stone is conjugate to L, see Table 1, we have m(N) ∼ Lr, where r is
the length of N. Hence, r = 4 and N = ©4 or �4, see Theorem 1.4, and, in view
of Theorem 1.6, N admits two non-equivalent 2-pendants. It is immediate that
the four real Lefschetz fibrations obtained in this way are isomorphic to the four
rational real elliptic surfaces ramified over the two zigzag free trigonal M -curves of
degree six, namely ∗↑↑∗ and ∗↑↓∗ . �

To complete the proof, we need a few observations and a lemma.
Consider a real Jacobian ellipticM -surface p : X → B with two pairs of conjugate

singular fibers. In the class of real Jacobian elliptic surfaces, there are exactly four
ways to collide a pair of conjugate singular fibers to a single real fiber F of type Ã∗∗0
(Kodaira’s type II) and perturb F to produce a pair of real singular fibers (see, e.g.,
[7]; in the realm of real trigonal M -curves, this procedure corresponds to replacing
one of the ∗ type letters at an end of the word representing the junction of M -cubics
with a ↑ or ↓). In two cases, the new necklace diagram has an extra stone of type
>, and in the two other cases, it has an extra stone of type <. Cutting the original
diagram N(p) at a base point b right before the new stone, we conclude that the
pendant necklace diagram of p has two representatives of the form (N′, (R, g′)) (for
some g′ ∈ Γ) and two representatives of the form (N′′, (L−1, g′′)) (for some g′′ ∈ Γ).

Conversely, given a representative of a pendant necklace diagram of the form,
e.g., (N, (R, . . .)), the corresponding real Lefschetz fibration can be modified, in the
topological category, so that a pair of conjugate singular fibers disappears to produce
a > type stone. (Topologically, we merely remove an equivariant disk surrounding
the two fibers and replace it with another disk, with two real singular fibers and the
same monodromy at the boundary, see the discussion of the two real structures on
the 2-factorization X = R·L−1 in subsection 3.5.) The following lemma asserts that,
in the case of a maximal Lefschetz fibration, any such topological modification is
one of the two described above and, hence, can be realized in the algebraic category.

Lemma 6.8. The pendant necklace diagram of a real Jacobian elliptic M -surface
with two pairs of complex conjugate real fibers has exactly two representatives of
the form (N′, (R, g′)) (for some g′ ∈ Γ) and exactly two representatives of the form
(N′′, (L−1, g′′)) (for some g′′ ∈ Γ).

Proof. We consider the representatives of the form (N′, (R, g′)), which result in
the > type stones. According to the discussion above, two such representatives do
exist; they correspond to the two algebraic modifications of the fibration. Fix one
of these representatives. Since the action of σ2

1 is the conjugation by Rg′ = m(N′),
the 2-factorization of any other representative in question is either (P−1RP, . . .)
or (P−1g′P, . . .), where P is a monodromy (not necessarily shortest, i.e., possibly
multiplied by a power of m(N′)) from the original base point b′ to the new base
point b′′. We assert that P−1RP = R if and only if P = id. Indeed, consider the
part SkC∩B+ of the skeleton of the corresponding real trigonal curve and extend it
to a pseudo-tree S as explained in the proof of Theorem 6.3, cf. Figure 12. Assume
that the original base point b′ is contained in the boundary of the leftmost cubic
dessin I1 in the figure and assign to b′ the base point e′ := e ↑ Y of S, where e
is the edge constituting the leftmost monogonal region. Starting from e′, ‘project’
any other base point b′′ to S by assigning to b′′ the edge e′′ := e′ ↑ P . Taking into
account Table 1 and using induction, one can easily show that the edges obtained
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are either as shown in Figure 13 (if the stone S preceding b′ is of type �) or those

Figure 13. Necklace base points in the skeleton

in the figure shifted by Y (if S is of type ©). Crucial is the fact that all these points
are pairwise distinct. On the other hand, e′ ↑Rn = e′ for any n ∈ Z. Hence, unless
P = id, the monodromy P is not a power of R and we have P−1RP 6= R.

It follows, in particular, that the > type stone that may appear in the cubic
dessin I1 at the other end of the junction results in a 2-factorization of the other
form, i.e., (P−1g′P, . . .), and the same argument as above shows that this repre-
sentative is also unique. �

Proof of Theorem 1.8: the case w = 1. According to (4.14), the necklace diagram
N := N(p) has a single arrow type stone S, which we can assume of type >.
(Otherwise, switch to the dual diagram N∗.) Replace the two real singular fibers
contained in S with a pair of conjugate singular fibers (the inverse of the operation
described prior to Lemma 6.8). The new Jacobian Lefschetz fibration is maximal
and, according to the first part of the proof, it is algebraic. Now, due to Lemma 6.8,
there are only two ways to revert the operation and recreate a > type stone; both
result in algebraic Lefschetz fibrations. �

As a consequence of Theorem 1.8, we have a more effective description of the
deformation classes of maximal real Jacobian Lefschetz fibrations: the directed
(undirected) deformation classes of such fibrations are in a natural one-to-one cor-
respondence with the orbit set Md/vh (respectively, the orbit set Md/〈v, h〉), cf.
Corollary 5.12.
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