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Bounds on the Capacity of Random Insertion and
Deletion-Additive Noise Channels
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Abstract—We develop several analytical lower bounds on the
capacity of binary insertion and deletion channels by considering
independent uniformly distributed (i.u.d.) inputs and computing
lower bounds on the mutual information between the input and
output sequences. For the deletion channel, we consider two
different models: i.i.d. deletion–substitution channel and i.i.d.
deletion channel with additive white Gaussian noise (AWGN).
These two models are considered to incorporate effects of the
channel noise along with the synchronization errors. For the
insertion channel case, we consider Gallager’s model in which the
transmitted bits are replaced with two random bits and uniform
over the four possibilities independently of any other insertion
events. The general approach taken is similar in all cases, however
the specific computations differ. Furthermore, the approach yields
a useful lower bound on the capacity for a wide range of deletion
probabilities of the deletion channels, while it provides a beneficial
bound only for small insertion probabilities (less than 0.25) of
the insertion model adopted. We emphasize the importance of
these results by noting that: 1) our results are the first analytical
bounds on the capacity of deletion-AWGN channels, 2) the results
developed are the best available analytical lower bounds on the
deletion–substitution case, 3) for the Gallager insertion channel
model, the new lower bound improves the existing results for small
insertion probabilities.

Index Terms—Achievable rates, channel capacity, inser-
tion/deletion channels, synchronization.

I. INTRODUCTION

I N modeling digital communication systems, we often
assume that the transmitter and receiver are completely

synchronized; however, achieving a perfect time-alignment
between the transmitter and receiver clocks is not possible in
all communication systems and synchronization errors are un-
avoidable. A useful model for synchronization errors assumes
that the number of received bits may be more or less than the
number of transmitted bits. In other words, insertion/deletion
channels may be used as appropriate models for communi-
cation channels that suffer from synchronization errors. Due
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to the memory introduced by the synchronization errors, an
information theoretic study of these channels proves to be very
challenging. For instance, even for seemingly simple models
such as an i.i.d. deletion channel, an exact calculation of the
capacity is not possible and only upper/lower bounds (which
are often loose) are available.
In this paper, we compute analytical lower bounds on the ca-

pacity of the i.i.d. deletion channel with substitution errors and
in the presence of AWGN, and i.i.d. random insertion channel,
by lower bounding the mutual information rate between the
transmitted and received sequences for i.u.d. inputs. We particu-
larly focus on the small insertion/deletion probabilities with the
premise that such small values are more practical from an appli-
cation point of view, where every bit is independently deleted
with probability or replaced with two randomly chosen bits
with probability , while neither the transmitter nor the receiver
have any information about the positions of deletions and in-
sertions, and undeleted bits are flipped with probability and
bits are received in the correct order. By a deletion–substitution
channel, we refer to an insertion/deletion channel with ;
by a deletion-AWGN channel we refer to an insertion/deletion
channel with (deletion-only channel) in which
undeleted bits are received in the presence of AWGN, that can
be modeled by a combination of a deletion-only channel with
a binary input AWGN (BI-AWGN) channel such that every bit
first goes through a deletion-only channel and then through a
BI-AWGN channel. Finally, by a random insertion channel we
refer to an insertion/deletion channel with .

A. Review of Existing Results

Dobrushin [1] proved under very general conditions that for
a memoryless channel with synchronization errors, Shannon’s
theorem on transmission rates applies and the information
and transmission capacities are equal. The proof hinges
on showing that information stability holds for the inser-
tion/deletion channels and, as a result [2], capacity per bit
of an i.i.d. insertion/deletion channel can be obtained by

, where and are the trans-
mitted and received sequences, respectively, and is the
length of the transmitted sequence. On the other hand, there
is no single-letter or finite-letter formulation which may be
amenable for the capacity computation, and no results are
available providing the exact value of the limit.
Gallager [3] considered the use of convolutional codes over

channels with synchronization errors, and derived an expres-
sion which represents an achievable rate for channels with in-
sertion, deletion, and substitution errors (whose model is spec-
ified earlier). The approach is to consider the transmission of
i.u.d. binary information sequences by convolutional coding and
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modulo-2 addition of a pseudorandom binary sequence (which
could be considered as a watermark used for synchronization
purposes), and computation of a rate that guarantees a successful
decoding by sequential decoding. The achievable rate, or the ca-
pacity lower bound, is given by the expression

(1)

where is the channel capacity, is
the probability of correct reception, and
is the probability that a flipped version of the transmitted bit is
received. The logarithm is taken base 2 resulting in transmis-
sion rates in bits/channel use. By substituting in (1), for

, a lower bound on the capacity of the deletion–substi-
tution channel can be obtained as

(2)

where is the binary
entropy function. It is interesting to note that for
( ) and ( ), a lower bound on the ca-
pacity of the random insertion channel (deletion-only channel)
with insertion (deletion) probability of ( ) is equal to the ca-
pacity of a binary symmetric channel (BSC) with a substitution
error probability of ( ).
In [4] and [5], authors argue that, since the deletion channel

has memory, optimal codebooks for use over deletion channels
should have memory. Therefore, in [4]–[7], achievable rates are
computed by using a random codebook of rate with
codewords of length , while each codeword is generated inde-
pendently according to a symmetric first-order Markov process.
Then, the generated codebook is used for the transmission over
the i.i.d. deletion channel. In the receiver, different decoding al-
gorithms are proposed, e.g., in [4], if the number of codewords
in the codebook that contain the received sequence as a subse-
quence is only one, the transmission is successful, otherwise an
error is declared. The proposed decoding algorithms result in an
upper bound for the incorrect decoding probability. Finally, the
maximum value of that results in a successful decoding as

is an achievable rate, hence a lower bound on the trans-
mission capacity of the deletion channel. The lower bound (1),
for , is also proved in [4] using a different approach
compared to the one taken by Gallager [3], where the authors
computed achievable rates by choosing codewords randomly,
independently, and uniformly among all possible codewords of
a certain length.
In [8], a lower bound on the capacity of the deletion channel

is directly obtained by lower bounding the information capacity
. In [8], input sequences are con-

sidered as alternating blocks of zeros and ones (runs), where the
length of the runs are i.i.d. random variables following a par-
ticular distribution over positive integers with a finite expecta-
tion and finite entropy ( where and )
denote the expected value and entropy, respectively).
In [9] and [10], Monte Carlo methods are used for computing

lower bounds on the capacity of the insertion/deletion channels
based on reduced-state techniques. In [9], the input process is
assumed to be a stationary Markov process and lower bounds

on the capacity of the deletion and insertion channels are ob-
tained via Monte Carlo simulations considering both the first
and second-order Markov processes as input. In [10], informa-
tion rates for i.u.d. input sequences are computed for several
channel models using a similar Monte Carlo approach where in
addition to the insertions/deletions, effects of intersymbol inter-
ference (ISI) and AWGN are also investigated.
There are several papers deriving upper bounds on the ca-

pacity of the insertion/deletion channels as well. Fertonani and
Duman in [11] present several novel upper bounds on the ca-
pacity of the i.i.d. deletion channel by providing the decoder
(and possibly the encoder) with some genie-aided information
about the deletion process resulting in auxiliary channels whose
capacities are certainly upper bounds on the capacity of the i.i.d.
deletion channel. By providing the decoder with appropriate
side information, a memoryless channel is obtained in such a
way that Blahut–Arimoto algorithm can be used for evaluating
the capacity of the auxiliary channels (or, at least computing a
provable upper bound on their capacities). They also prove that
by subtracting some value from the derived upper bounds, lower
bounds on the capacity can be derived. The intuition is that the
subtracted information is more than extra information added by
revealing certain aspects of the deletion process. A nontrivial
upper bound on the deletion channel capacity is also obtained in
[12] where a different genie-aided decoder is considered. Fur-
thermore, Fertonani and Duman in [13] extend their work [11]
to compute several upper and lower bounds on the capacity of
channels with insertion, deletion, and substitution errors as well.
In two recent papers [14], [15], asymptotic capacity expres-

sions for the binary i.i.d. deletion channel for small deletion
probabilities are developed. In [15], the authors prove that

(where represents the standard
Landau (big-O) notation) which clearly shows that for small
deletion probabilities, is a tight lower bound on the
capacity of the deletion channel. In [14], an expansion of the
capacity for small deletion probabilities is computed with sev-
eral dominant terms in an explicit form. The interpretation of
our result for i.i.d. deletion-only channel case is parallel to the
one in [15].

B. Contributions of the Paper

In this paper, we focus on small insertion/deletion proba-
bilities and derive analytical lower bounds on the capacity of
the insertion/deletion channels by lower bounding the mutual
information between i.u.d. input sequences and resulting output
sequences. Since as shown in [1], for an insertion/deletion
channel, the information and transmission capacities are equal
justifying our approach in obtaining an achievable rate.
We note that our idea is somewhat similar to the idea of di-

rectly lower bounding the information capacity instead of lower
bounding the transmission capacity as employed in [8]. How-
ever, there are fundamental differences in themainmethodology
as will become apparent later. For instance, our approach pro-
vides a procedure that can easily be employed for many dif-
ferent channel models with synchronization errors as such we
are able to consider deletion–substitution, deletion-AWGN, and
random insertion channels. Other differences include adopting
a finite-length transmission which is proved to yield a lower
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bound on the capacity after subtracting some appropriate term,
and the complexity in computing the final expression numeri-
cally is much lower in many versions of our results.
Finally, we emphasize that by utilizing the new approach, we

improve upon the obtained results in the existing literature in
several different aspects. In particular, the contributions of the
paper include:
1) development of a new approach for deriving achievable
information rates for insertion/deletion channels,

2) the first analytical lower bound on the capacity of the dele-
tion-AWGN channel,

3) tighter analytical lower bounds on the capacity of the dele-
tion–substitution channel for all values of deletion and sub-
stitution probabilities compared to the existing analytical
results,

4) tighter analytical lower bounds on the capacity of the
random insertion channels for small values of insertion
probabilities ( ) compared to the existing lower
bounds,

5) very simple lower bounds on the capacity of several cases
of insertion/deletion channels.

Regarding the final point, we note that by employing
in the results on the deletion–substitution channel, we arrive at
lower bounds on the capacity of the deletion-only channel which
are in agreement with the asymptotic results of [14], [15] in the
sense of capturing the dominant terms in the capacity expan-
sion. Our results, however, are provable lower bounds on the
capacity, while the existing asymptotic results are not amenable
for numerical calculation (as they contain big-O terms).

C. Notation

We denote a binary sequence of length with runs by
, where denotes the first run type

and . For example, the sequence 001111011000
can be represented as (0;2,4,1,2,3). We use four different
ways to denote different sequences; represents
every sequence belonging to the set of sequences of length
with runs and by the first run of type ,
represents a sequence which has runs of length
one ( with denoting the Kronecker
delta function), represents every sequence of length ,
and represents every possible sequence. The set of all input
sequences is shown by , and the set of output sequences of
the deletion-only, and random insertion channels are shown by
and , respectively. and denote the set of output

sequences resulting from deletions and random insertions,
respectively, and and denote the set of
output sequences resulting from deletions from and random
insertions into, the input sequence , respectively. We denote
the deletion pattern of length in a sequence of length with
runs by , where denotes

the number of deletions in the th run and . The
outputs resulting from a given deletion pattern

(without any other error) are denoted by
. The

set represents the set of all deletion patterns of length
of a sequence of length and with runs.

D. Organization of the Paper

In Section II, we introduce our general approach for lower
bounding the mutual information of the input and output se-
quences for insertion/deletion channels. In Section III, we apply
the introduced approach to the deletion–substitution and dele-
tion-AWGN channels and present analytical lower bounds on
their capacities, and compare the resulting expressions with ear-
lier results. In Section IV, we provide lower bounds on the ca-
pacity of the random insertion channels and comment on our
results with respect to the existing literature. In Section V, we
compute the lower bounds for a number of insertion/deletion
channels, and finally, we provide our conclusion in Section VI.

II. MAIN APPROACH

We rely on lower bounding the information capacity of mem-
oryless channels with insertion or deletion errors directly as jus-
tified by [1], where it is shown that, for a memoryless channel
with synchronization errors, the Shannon’s theorem on trans-
mission rates applies and the information and transmission ca-
pacities are equal, and thus every lower bound on the informa-
tion capacity of an insertion/deletion channel is a lower bound
on the transmission capacity of the channel. Our approach is dif-
ferent than most existing work on finding lower bounds on the
capacity of the insertion/deletion channels where typically the
transmission capacity is lower bounded using a certain code-
book and particular decoding algorithms. The idea we employ
is similar to the work in [8] which also considers the informa-
tion capacity and directly lower
bounds it using a particular input distribution to arrive at an
achievable rate result.
Our primary focus is on the small deletion and insertion prob-

abilities. As also noted in [14], for such probabilities it is nat-
ural to consider binary i.u.d. input distribution. This is justified
by noting that when , i.e., for a binary symmetric
channel, the capacity is achieved with independent and sym-
metric binary inputs, and hence we expect that for small inser-
tion/deletion probabilities, binary i.u.d. inputs are not far from
the optimal input distribution.
Our methodology is to consider a finite length transmission of

i.u.d. bits over the insertion/deletion channels, and to compute
(more precisely, lower bound) the mutual information between
the input and the resulting output sequences. As proved in [11]
for a channel with deletion errors, such a finite length transmis-
sion in fact results in an upper bound on the mutual informa-
tion supported by the insertion/deletion channels; however, as
also shown in [11], if a suitable term is subtracted from the mu-
tual information, a provable lower bound on the achievable rate,
hence the channel capacity, results. The following theorem pro-
vides this result in a slightly generalized form compared to [11].
Theorem 1: For binary input channels with i.i.d. insertion or

deletion errors, for any input distribution and any , the
channel capacity can be lower bounded by

(3)

where
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with the understanding that for the deletion channel case
and in the insertion channel case, and is the length of
the input sequence .

Proof: This is a slight generalization of a result in [11]
which shows that (3) is valid for the i.i.d. deletion channel. It
is easy to see that [11], for any random process and for any
input distribution , we have

(4)

where is the capacity of the channel, is the length of the
input sequence , and , i.e., the input bits in both
insertion and deletion channels are divided into blocks of
length ( ). We define the random process
in the following manner. For an i.i.d. insertion channel,
is formed as the sequence which denotes the
number of insertions that occur in transmission of each block of
length . For a deletion channel, represents
the number of deletions occurring in transmission of each block.
Since insertions (deletions) for different blocks are independent,
the random variables ( ) for are i.i.d.,
and transmission of different blocks are independent. Therefore,
we can rewrite (4) as

(5)

Noting that the random variable denoting the number of dele-
tions or insertions as a result of bit transmission is binomial
with parameters and (or, ) the result follows.
Several comments on the specific calculations involved are

in order. Theorem 1 shows that for any input distribution and
any transmission length, (3) results in a lower bound on the ca-
pacity of the channel with deletion or insertion errors. There-
fore, employing any lower bound on the mutual information rate

in (3) also results in a lower bound on the capacity
of the insertion/deletion channel. Due to the fact that obtaining
the exact value of the mutual information rate for any is infea-
sible, we first derive a lower bound on the mutual information
rate for i.u.d. input sequences and then employ it in (3). Based
on the formulation of the mutual information, obviously

(6)

thus by calculating the exact value of the output entropy or lower
bounding it and obtaining the exact value of the conditional
output entropy or upper bounding it, the mutual information is
lower bounded. For themodels adopted in this paper, we are able
to obtain the exact value of the output sequence probability dis-
tribution when i.u.d. input sequences are used, hence the exact
value of the output entropy (the differential output entropy for
the deletion-AWGN channel) is available.
In deriving the conditional output entropies (the conditional

differential entropy of the output sequence for the dele-
tion-AWGN channel), we cannot obtain the exact probability of
all the possible output sequences conditioned on a given input
sequence. For deletion channels, we compute the probability
of all possible deletion patterns for a given input sequence,

Fig. 1. Deletion–substitution channel as a cascade of an i.i.d. deletion channel
and a BSC.

and treat the resulting sequences as if they are all distinct to
find a provable upper bound on the conditional entropy term.
Clearly, we are losing some tightness, as different deletion
patterns may result in the same sequence at the channel output.
For the random insertion channel, we calculate the conditional
probability of the output sequences resulting from at most
one insertion, and derive an upper bound on the part of the
conditional output entropy expression that results from the
output sequences with multiple insertions.

III. LOWER BOUNDS ON THE CAPACITY OF NOISY DELETION
CHANNELS

As mentioned earlier, we consider two different variations
of the binary deletion channel: i.i.d. deletion and substitution
channel (deletion–substitution channel), and i.i.d. deletion
channel in the presence of AWGN (deletion-AWGN channel).
The results utilize the idea and approach of the previous section.
We first give the results for the deletion–substitution channel,
then for the deletion-AWGN channel. We note that the pre-
sented lower bounds can be also employed on the deletion-only
channel if (or for the deletion-AWGN channel).

A. Deletion–Substitution Channel

In this section, we consider a binary deletion channel with
substitution errors in which each bit is independently deleted
with probability , and transmitted bits are independently
flipped with probability . The receiver and the transmitter
do not have any information about the position of deletions or
the substitution errors. As shown in Fig. 1, this channel can
be considered as a cascade of an i.i.d. deletion channel with a
deletion probability and output sequence , and a BSC with
a cross-over error probability and output sequence . For
such a channel model, the following lemma is a lower bound
on the capacity.
Lemma 1: For any , the capacity of the i.i.d. dele-

tion–substitution channel , with a substitution probability
and a deletion probability , is lower bounded by

(7)

where

(8)

and .
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Before proving the lemma, we would like to emphasize that
the only existing analytical lower bound on the capacity of dele-
tion–substitution channels is derived in [3] ((2)). In comparing
the lower bound in (2) with the lower bound in (7), we ob-
serve that the new lower bound improves the previous one by

, which is guaranteed to
be positive.
A simplified form of the lower bound for small values of dele-

tion probability can also be presented. By invoking the inequal-
ities and

, and ignoring some positive terms ( for
), we can write

By utilizing in (7), we can obtain a lower bound on the
capacity of the deletion-only channel as given in the following
corollary.
Corollary 1: For any , the capacity of an i.i.d. deletion

channel , with a deletion probability of is lower bounded
by

(9)

We also would like to make a few comments on the result of
the Corollary 1. First of all, the lower bound (9) is tighter than
the one proved in [3] ((1) with ) which is the
simplest analytical lower bound on the capacity of the deletion
channel. The amount of improvement in (9) over the one in (1)
is , which is guaranteed
to be positive.
In [14], it is shown that

(10)

where . A similar result in
[15] is provided, that is , which
shows that is a tight lower bound for small deletion
probabilities. If we consider the new capacity lower bound in
(9), and represent by its Taylor series ex-
pansion, we can readily write

where is a polynomial function. On the other hand for
, if we let go to infinity, we have

(11)

Therefore, we observe that the lower bound (9) captures the
first-order term of the capacity expansion (10). This is an im-
portant result as the capacity expansions in [14] and [15] are

asymptotic and do not lend themselves for a numerical calcula-
tion of the transmission rates for any nonzero value of the dele-
tion probability.
We need the following two propositions in the proof of

Lemma 1. In Proposition 1, we obtain the exact value of the
output entropy in the deletion–substitution channel with i.u.d.
input sequences, while Proposition 2 gives an upper bound
on the conditional output entropy with i.u.d. bits transmitted
through the deletion–substitution channel.
Proposition 1: For an i.i.d. deletion–substitution channel

with i.u.d. input sequences of length , we have

(12)

where denotes the output sequence of the deletion–substitu-
tion channel and is as defined in (3).

Proof: By using the facts that all the elements of the set
are identically distributed, which are input into the BSC

channel, and a fixed length i.u.d. input sequence into a BSC
result in i.u.d. output sequences, all elements of the set are
also identically distributed. Hence,

(13)

where is the probability of exactly deletions
occurring in use of the channel. Therefore, we obtain

(14)

which concludes the proof.
Proposition 2: For a deletion–substitution channel with i.u.d.

input sequences, the entropy of the output conditioned on the
input of length bits, is upper bounded by

(15)

where is given in (8).
Proof: To obtain the conditional output entropy, we need

to compute the probability of all possible output sequences re-
sulting from every possible input sequence , i.e., . For
a given and for a specific deletion pat-
tern in which denotes the number
of deletions in the th run, we can write

(16)

Furthermore, for every , we can write

(17)
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where , and is
the Hamming distance between two sequences and . On the
other hand, for every output sequence of length , condi-
tioned on a given input , we have

However, there is a difficulty as two different possible dele-
tion patterns, and

, under the same substitution error pattern,
i.e., the substitution errors occur at the same positions on

and , may con-
vert a given input sequence into the same output
sequence, i.e., .
This occurs when successive runs are completely deleted, for
example, in transmitting , if
the second, third, and fourth runs are completely deleted,
by deleting one bit from the first run,

, or from the last
run, ,
the same output sequences are obtained. This difficulty can be
addressed using

(18)

which is trivially valid for any set of probabilities
. Therefore, we can write

(19)

Hence, for a specific , we ob-
tain (for more details see Appendix B)

Therefore, by considering i.u.d. input sequences, we have

(20)

On the other hand, we can write

(21)

where denotes the probability of having a run of length
in an input sequence of length . It is obvious that
. Due to the fact that, for , there are

possibilities of having a run of length in a sequence with
runs, we can write

(22)

Finally, by substituting (21) and (22) in (20), (15) results, com-
pleting the proof.
We can now complete the proof of the main lemma of the

section.
Proof of Lemma 1: In Theorem 1, we showed that for any

input distribution and any transmission length, (3) results in a
lower bound on the capacity of the channel with i.i.d. deletion
errors. On the other hand, any lower bound on the information
rate can also be used to derive a lower bound on the capacity.
Due to the definition of themutual information, (6), by obtaining
the exact value of the output entropy (Proposition 1) and upper
bounding the conditional output entropy (Proposition 2) the mu-
tual information is lower bounded. Finally, by substituting (12)
and (15) into (3), Lemma 1 is proved.
At this point, we digress to point out that the result in the

above lemma can also be obtained using a simpler approach
as pointed out by one of the reviewers (details are given in
Appendix A). That is, a lower bound on the deletion–substi-
tution channel capacity can be provided in terms of the dele-
tion-only channel capacity as (this is also a special case of a
result in [16])

(23)

Therefore, computing the mutual information rate of the dele-
tion-only channel for i.u.d. input sequences and substituting it
in the above inequality results in a lower bound on . It can
be verified that the same procedure as in the proof of Lemma 1
gives

and substituting this into (23) concludes the proof of Lemma 1.

B. Deletion-AWGN Channel

In this section, a binary deletion channel in the presence
of AWGN is considered, where the bits are transmitted using
BPSK and the received signal contains AWGN in addition to
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Fig. 2. Deletion-AWGN channel as a cascade of an i.i.d. deletion channel and
a BI-AWGN channel.

the deletion errors. As illustrated in Fig. 2, this channel can be
considered as a cascade of two independent channels where the
first channel is an i.i.d. deletion channel and the second one is
a BI-AWGN channel. We use to denote the input sequence
to the first channel which is a BPSK modulated version of the
binary input sequence , i.e., , and to denote
the output sequence of the first channel input to the second one.
is the output sequence of the second channel that is the noisy

version of , i.e., , in which s are i.i.d. Gaussian
random variables with zero mean and a variance of , and
and are the th received and transmitted bits of the second
channel, respectively. Therefore, for the probability density
function of the th channel output, we have

(24)

In the following lemma, an achievable rate is provided over this
channel.
Lemma 2: For any , the capacity of the deletion-AWGN

channel with a deletion probability of and a noise variance
of is lower bounded by

(25)

where is as given in (8), is statistical expectation,
and .
Before giving the proof of the above lemma, we provide

several comments about the result. First, the desired lower
bound in (25) is the only analytical lower bound on the capacity
of the deletion-AWGN channel. In the current literature, there
are only simulation-based lower bounds, e.g., [10], which
employs Monte-Carlo simulation techniques. Furthermore, the
procedure employed in [10] is only useful for deriving lower
bounds for small values of deletion probability, e.g., ,
while the lower bound in (25) is useful for a much wider range.
For , the lower bound in (25) is equal to

which is the capacity of the BI-AWGN
channel [17, p. 362]. Finally, we note that the term in (25)
which contains can be easily computed by
numerical integration with an arbitrary accuracy (it involves
only an 1-D integral).
We need the following two propositions in the proof of

Lemma 2. In the following proposition, the exact value of the
differential output entropy in the deletion-AWGN channel with
i.u.d. input bits is calculated.

Proposition 3: For an i.i.d. deletion-AWGN channel with
i.u.d. input sequences of length , we have

(26)

where denotes the differential entropy function, denotes
the output of the deletion-AWGN channel, , and

is as defined in (3).
Proof: For the differential entropy of the output sequence,

we can write

(27)

where the first equality results by using the fact that by knowing
the received sequence, the number of deletions is known and
is determined, i.e., , and the last equality is

obtained by using a different expansion of . On the other
hand, we can write

(28)

Due to the fact that all the elements of the set are i.i.d., we
have .
Therefore, we can write

(29)

and as a result
(for ). By employing this result in (24), we have

(30)

where denotes the probability density function (PDF) of
the continuous random variable . Noting also that the deletions
happen independently and s are i.i.d., we can write

By substituting the above equation into (28), we obtain

(31)

and by using (31) and (27), (26) is obtained.
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In the following proposition, we derive an upper bound on
the differential entropy of the output conditioned on the input
for deletion-AWGN channel.
Proposition 4: For a deletion-AWGN channel with i.u.d.

input bits, the differential entropy of the output sequence
conditioned on the input of length , is upper bounded by

(32)

where is given in (8).
Proof: For the conditional differential entropy of the

output sequence given the length input , we can write

(33)

where the first equality follows since by knowing and ,
the number of deletions is known, i.e., . The
second equality is obtained by using a different expansion of

and also using the fact that the deletion process is
independent of the input , i.e., . Further-
more, we have

To obtain , we need to compute for
any given input sequence and different
values of . As in the proof of Proposition 2, if we consider the
outputs of the deletion channel resulting from different deletion
patterns of length from a given , as if they are distinct and
also use the result in (18), an upper bound on the differential
output entropy conditioned on the input sequence results. We
relegate the details of this computation and completion of the
proposition proof to Appendix C.
We can now state the proof of the main lemma of the section.
Proof of Lemma 2: By substituting the exact value of the

differential output entropy in (26), and the upper bound (32) on
the differential output entropy conditioned on the input in (6),
a lower bound on the mutual information rate of the deletion-
AWGN channel is obtained, hence the lemma is proved.

IV. LOWER BOUNDS ON THE CAPACITY OF RANDOM
INSERTION CHANNELS

We now turn our attention to the random insertion channels
and derive lower bounds on the capacity of random insertion
channels by employing the approach proposed in Section II. We
consider the Gallager model [3] for insertion channels in which
every transmitted bit is independently replaced by two random
bits with probability of while neither the receiver nor the
transmitter have any information about the position of the in-
sertions. The following lemma provides the main result of this
section.

Lemma 3: For any , the capacity of the random inser-
tion channel , is lower bounded by

(34)

where

To the best of our knowledge, the only analytical lower bound
on the capacity of the random insertion channel is derived in [3]
(i.e., (1) for ). Our result improves upon this result
for small values of insertion probabilities as will be apparent
with numerical examples.
Similar to the deletion–substitution channel case, we can

write a simpler lower bound as

(35)

For instance, for , (35) evaluates to

(36)

To prove the above lemma, we need the following two propo-
sitions. The output entropy of the random insertion channel with
i.u.d. input sequences is calculated in the first one.
Proposition 5: For a random insertion channel with i.u.d.

input sequences of length , we have

(37)

where denotes the output sequence and is as defined
in (3).

Proof: Similar to the proof of Proposition 1, we use the
fact that

(38)
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Therefore, by employing (38) in computing the output entropy,
we obtain

(39)

In the following proposition, we present an upper bound on
the conditional output entropy of the random insertion channel
with i.u.d. input sequences for a given input of length .
Proposition 6: For a random insertion channel with input and

output sequences denoted by and , respectively, with i.u.d.
input sequences of length , we have

(40)

where is given in (34).
Proof: For the conditional output sequence distribution for

a given input sequence, we can write

where ( , ),
( , ), and represents for given
with . Furthermore, since there are possibilities of

having , and possibilities
of having , we obtain

where is the term related to the outputs resulting from
more than one insertion. Therefore, by considering i.u.d. input

sequences, since there are input sequences of length
with runs, we have

(41)

where and

which can be written as

(42)

Here we have used the same approach used in the proof of
Proposition 2, and considered the fact that there are se-
quences of length with or .
If we assume that all the possible outputs resulting from

insertions ( ) for a given are equiprobable, since

(43)

we can upper bound . That is

where is the prob-
ability of insertions in transmission of bits, and the last in-
equality follows since , where
denotes the number of output sequences resulting from in-
sertions into a given input sequence . After some algebra, we
arrive at
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TABLE I
LOWER BOUNDS ON THE CAPACITY OF THE DELETION–SUBSTITUTION CHANNEL (IN THE LEFT-HAND SIDE TABLE “1-LOWER BOUND” IS REPORTED)

Finally, by substituting the above upper bound into (41), the
upper bound (40) is obtained.

Proof of Lemma 3: By substituting the exact value of the
output entropy (37) and the upper bound on the conditional
output entropy (40) of the random insertion channel with i.u.d.
input sequences into (6), a lower bound on the achievable infor-
mation rate is obtained, hence the lemma is proved.

V. NUMERICAL EXAMPLES

We now present several examples of the lower bounds on the
insertion/deletion channel capacity for different values of and
compare them with the existing ones in the literature.

A. Deletion–Substitution Channel

In Table I, we compare the lower bound (7) for and
with the one in [3]. We observe that the new bound

improves the result of [3] for the entire range of and , and
also as expected, by increasing from 100 to 1000, a tighter
lower bound for all values of and is obtained.

B. Deletion-AWGN Channel

We now compare the derived analytical lower bound on
the capacity of the deletion-AWGN channel with the simula-
tion-based bound of [10] which is the achievable information
rate of the deletion-AWGN channel for i.u.d. input sequences
obtained by Monte-Carlo simulations. As we observe in Fig. 3,
the lower bound (25) is very close to the simulation results
of [10] for small values of deletion probability but it does not
improve them. This is not unexpected, because we further
lower bounded the achievable information rate for i.u.d. input
sequences while in [10], the achievable information rate for
i.u.d. input sequences is obtained by Monte-Carlo simulations
without any further lower bounding. On the other hand, new
bound is provable, analytical, and very easy to compute while
the result in [10] requires lengthy simulations. Furthermore, the
procedure employed in [10] is only useful for deriving lower
bounds for small values of deletion probability, e.g., ,
while the lower bound (25) holds for a much wider range.

C. Random Insertion Channel

We now numerically evaluate the lower bounds derived on
the capacity of the random insertion channel. Similar to the
previous cases, different values of result in different lower
bounds. In Table II and Fig. 4, we compare the lower bound in
(34) with the lower bound due to Gallager [3] ,

Fig. 3. Comparison between the lower bound (25) for with the
lower bound in [10] versus SNR for different deletion probabilities.

where the reported values are obtained for the optimal value
of . We observe that for larger , smaller values of give
the tightest lower bounds. This is not unexpected since in upper
bounding , we computed the exact value of for
at most one insertion, i.e., or , and upper
bounded the part of the conditional entropy resulting from more
than one insertion. Therefore, for a fixed by increasing , the
probability of having more than one insertion increases and as
a result the upper bound becomes loose. We also observe that
the lower bound (34) improves upon the lower bound in [3] for

, e.g., for , we achieve an improvement of
0.0392 bits/channel use.

VI. CONCLUSION

We have presented several analytical lower bounds on the
capacity of the insertion/deletion channels by lower bounding
the mutual information rate for i.u.d. input sequences. We have
derived the first analytical lower bound on the capacity of the
deletion-AWGN channel which for small values of deletion
probability is very close to the existing simulation-based lower
bounds. The lower bound presented on the capacity of the
deletion–substitution channel improves the existing analytical
lower bound for all values of deletion and substitution prob-
abilities. For random insertion channel, the presented lower
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TABLE II
LOWER BOUNDS ON THE CAPACITY OF THE RANDOM INSERTION CHANNEL (IN THE LEFT-HAND SIDE TABLE “1-LOWER BOUND” IS REPORTED)

Fig. 4. Comparison of the lower bound (34) with lower bound presented in [3].

bound improve the existing ones for . For ,
the presented lower bound on the capacity of the deletion–sub-
stitution channel results into a lower bound on the capacity of
the deletion-only channel which for small values of deletion
probability, is very close to the tightest presented lower bounds,
and is in agreement with the first order expansion of the channel
capacity for , while our result is a strict lower bound
for the entire range of .

APPENDIX A
DELETION–SUBSTITUTION CHANNEL CAPACITY IN TERMS OF

THE DELETION CHANNEL CAPACITY

In this appendix, we relate the deletion–substitution and dele-
tion-only channel capacities through an inequality (as pointed to
us by one of the reviewers) which is a special case of a result
obtained by the authors in [16]. This inequality can provide a
tool to provide simpler proof for Lemma 1.

Claim 1: For any possible input distribution , we
have

(44)

Proof: In Fig. 1, form a Markov chain.
Let be the “flipping” process of the BSC channel, consisting
of bits drawn from i.i.d. Bernoulli( ), where

1 represents a flip, and 0 represents a location that is unaf-
fected, and is some constant we can choose later. Clearly,

with high probability for the obvious function
which does for all bits in . (There is a prob-

lematic event corresponding to more than bits
passing through the deletion channel, but the probability of this
event goes to 0 as . This event can be dealt with and we
ignore it below, simply assuming . Note that we
also have at the same time).
Hence, for the mutual information , we have

Now, since
and form a Markov

chain. Further,
. It follows that

Since is arbitrary, the result follows.
Corollary 2: Let and denote the deletion-only and

deletion–substitution channel capacities, respectively, then

(45)

Proof: Since (44) holds for any possible input distribution,
it holds for capacity achieving input distribution for the dele-
tion-only channel as well. Therefore, by dividing both sides by
and letting go to infinity the proof follows.

APPENDIX B
PART OF PROOF OF PROPOSITION 2
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where the inequality is obtained from the expression in (19).
Furthermore, by employing the results from (16) and (17) and
using the fact that there are , distinct output sequences of
length resulting from substitution errors into a given
input , i.e., , we ar-
rive at

Using the generalized Vandermonde’s identity, that is,

and the result

we obtain

APPENDIX C
PROOF OF PROPOSITION 4

For an i.i.d. deletion-AWGN channel, for a given
and a fixed , defining , i.e.,

, yields

where the last equality follows the fact that the noise samples
are independent and are also independent. By em-

ploying

and , we can write

Therefore, by defining

we obtain
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where we used the result of the generalized Vandermonde’s
identity and also the fact that . By using
the inequality

which holds for every , we can write

By considering i.u.d. input sequences, we have

(46)

where is given in (8), and the result is obtained by fol-
lowing the same steps as in the computation leading to (20).
Therefore, by substituting (46) into (33), (32) is obtained which
concludes the proof.
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