TL/OSL studies of Li$_2$B$_4$O$_7$:Cu dosimetric phosphors

Talat Aydin a,*, Hayrünnisa Demirtaş a, Samet Aydin b

a Turkish Atomic Energy Authority, Sarayköy Nuclear Research and Training Centre, 06983 Saray-Kazan, Ankara, Turkey

b Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey

Highlights
- Li$_2$B$_4$O$_7$:Cu as a personal dosimetry was firstly investigated by OSL techniques.
- Prepared phosphor has good OSL repeatability.
- Beta dose can be determined with less than 3–4% error by using OSL technique.
- This is the first study on dose measurement of Li$_2$B$_4$O$_7$:Cu using OSL technique.

Abstract
Dosimetric phosphors of Cu-doped lithium tetraborate (Li$_2$B$_4$O$_7$:Cu) were produced using a sintering technique in a laboratory environment and characterized using Scanning Electron Microscopy (SEM) and X-ray Diffractometry (XRD). The thermoluminescence (TL) and optically stimulated luminescence (OSL) properties of powdered (Li$_2$B$_4$O$_7$) phosphor doped with copper at different concentrations (0.020–0.025 wt %) were studied. The Cu-doped Li$_2$B$_4$O$_7$ phosphor material has two dominant TL glow peaks, and the maximum TL responses of the peaks are at 115°C and 243°C in the range of 0°C–310°C. The TL response of the Cu-doped lithium tetraborate is approximately 900 times more sensitive than undoped lithium tetraborate. The TL and OSL signal intensities increase as the beta radiation doses increase up to approximately 150.00 Gy and 76.50 Gy, respectively. The OSL dose-response curve is linear up to a dose range of 12.00 Gy for Cu-doped Li$_2$B$_4$O$_7$ dosimetric phosphors. The time-dependent fading behavior of the Cu-doped lithium tetraborate was found to be quite stable over long time durations. In addition, the repeatability of the OSL dose measurements were determined to be 2/3 lower compared to the TL measurements. The reproducibility of the OSL measurements was approximately 5%. Based on the TL and OSL results, the prepared phosphors can be used to measure beta doses ranging from 10 μGy to 150.00 Gy and 76.50 Gy, respectively, by using the TL and OSL techniques, with confidence limits of approximately 7% and 3–4%, respectively.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The optically stimulated luminescence (OSL) technique has found widespread application in a variety of radiation dosimetry fields, including personal monitoring, environmental monitoring, retrospective dosimetry, and space dosimetry (Botter-Jensen et al., 2003). The use of OSL for personal dosimetry was first suggested several decades ago by Antonov-Romanovskii et al. (1956).

OSL only measures the component of the trapped electron population that is most sensitive to light (Botter-Jensen and Murray, 2001).

The use of OSL instead of thermoluminescence (TL) enables precise and real-time measurements to be performed (McKeever, 2001).

Various TL materials (e.g., lithium fluoride, calcium sulfate, and lithium borate) are currently in use as dosimeters in medical, personnel and environmental applications (McKeever, 1985; Yoshimura and Yukihara, 2006).

Li$_2$B$_4$O$_7$ is often used as a material for personal dosimetry due to its low effective atomic number ($Z_{eff} = 7.26$) and its similarity in density (2.44 g/cm³) to that of biological tissues ($Z_{eff} = 7.4$) (Furetta et al., 2001). Li$_2$B$_4$O$_7$ is used in practice for personnel dosimetry. Lithium tetraborate has been used in different forms (powder, single crystal, pellet and glass) in radiation therapy used in clinical practice involving X-ray and gamma rays.
with energies between 20 and 100 keV, and it is widely used as a radiation dosimeter.

The majority of previous studies have been focused on the photoluminescence (PL), thermoluminescence and dosimetric properties of various starting materials (copper, silver, magnesium or any combination of these dopants) doped Li$_2$B$_4$O$_7$ (El-Faramawy et al., 2000a, b; Huy et al., 2008; Prokic, 2001; Manam and Das, 2010; Laksmanan et al., 1981; Annalakshmi et al., 2011; Doull et al., 2013; Pekpak et al., 2011; Patra et al., 2013).

To our knowledge, OSL studies and the dosimetric properties of Cu-doped Li$_2$B$_4$O$_7$ dosimetric phosphors by beta irradiation have not been reported in the literature. In addition, there have been no published results concerning the optical stimulation readout of this phosphor material.

In the present work, we first report the OSL and dosimetric properties by beta radiation of undoped and Cu-doped Li$_2$B$_4$O$_7$ using the OSL technique.

The aim of this work was to study the TL and OSL properties of Li$_2$B$_4$O$_7$:Cu dosimetric phosphor material, which was prepared using a sintering technique; the samples were studied for their dosimetric properties in terms of the TL and OSL response to irradiation with different beta radiation doses, such as the linear relationship between beta exposure and fading behaviors. OSL under blue LED stimulation was observed for both doped and undoped Li$_2$B$_4$O$_7$ phosphors.

The repeatability and reproducibility of the characteristics of the Li$_2$B$_4$O$_7$ crystal after annealing were investigated using the TL and OSL techniques. The crystal structures of the samples were investigated using SEM and XRD methods. In addition, the OSL decay constants (t_1 and t_2) of the Cu-doped Li$_2$B$_4$O$_7$ samples were determined for different beta doses.

2. Experimental details

The Cu-doped Li$_2$B$_4$O$_7$ thermoluminescent material was prepared using a sintering technique in our laboratory according to a procedure given in the literature (Takenega et al., 1977, 1983). The prepared powdered phosphors were used for TL and OSL measurements. Each sample was measured three times. Each data point was the average of three measurements. The sample weight was 8 mg for all the TL and OSL measurements. Undoped and Cu-doped Li$_2$B$_4$O$_7$ crystals were annealed after each of the TL and OSL measurements. The heat treatment was performed in a RISO Model DA-20 TL/OSL reader.

XRD analysis, SEM analysis, and TL and OSL spectrometric analyses were performed during the course of the study.

All the measurements were performed in the dark to avoid the influence of the room light in the TL and OSL responses.

2.1. Preparation of the Li$_2$B$_4$O$_7$:Cu phosphors

The optimal activator concentration for preparing Li$_2$B$_4$O$_7$:Cu was found to be 0.020–0.025 wt % Cu (El-Faramawy et al., 2000a, b). Cu (0.020 wt %) was added as an activator to the Li$_2$B$_4$O$_7$ powder (99.998%, Alfa Aesar). The Cu and Li$_2$B$_4$O$_7$ powder materials were mixed with alcohol. Then, the mixture was stirred and dried for 1 h at 100 °C using a Thermolyne oven and sintered by heating in a platinum crucible to 920 ± 1 °C for 2 hours under a nitrogen atmosphere. The mixture was then rapidly cooled to room temperature. The resultant glassy mass was heated to 650 °C and maintained at this temperature for 1 h to ensure complete crystallization. The prepared powdered phosphor sample was soft and white in color, with a very large grain size. The phosphor was ground, and the resultant powder was used for the TL and OSL dosimetric studies. Polycrystalline Li$_2$B$_4$O$_7$:Cu was then powdered using an agate mortar and pestle and sieved to obtain grain sizes of 74–100 μm.

To completely erase the TL signal and to restore the original TL sensitivity of the phosphors, fresh powdered samples were annealed in an oven at 300 °C for 30 min.

2.2. Irradiations

Irradiations of all the samples were performed at room temperature using a calibrated 90Sr/90Y beta source at the Sarayköy Nuclear Research Center of the Turkish Atomic Energy Authority in Ankara. A 90Sr/90Y beta source, which can be used together with a DA-20 Model RISO TL/OSL Reader, was used for beta irradiations. The activity of the source was 40 mCi, and the dose rate was 0.153 Gy/sec. All irradiated and unirradiated powdered samples were stored at room temperature in the dark until the OSL and TL measurements were performed. The room temperature storage conditions were 30% relative humidity at a temperature of 22 ± 3 °C.

2.3. TL measurements

All TL measurements were performed at room temperature using an automated RISO Model TL/OSL-DA-20 TL/OSL Luminescence Reader (Risø National Laboratory, Roskilde, Denmark), which allows up to 48 samples to be both individually heated to any temperature between room temperature and 700 °C and individually irradiated by a radioactive beta source (90Sr/90Y). The heating system is able to heat the samples up to 700 °C at linear heating rates from 0.1 to 10 °C/s. The heating strip is cooled by a nitrogen flow, which also protects the heating system from oxidation at high temperatures. Thermal stimulation is achieved using the heating element, which heats the sample and lifts the sample into the measurement position. Nitrogen was flushed in the heating chamber to reduce spurious TL arising from the presence of oxygen.

The glow curve is the most important property for the production of the TL dosimeters. The TL glow curves, which are plotted by software connected to TL measurement systems, illustrate the thermoluminescence intensity versus temperature.

All the undoped and Cu-doped Li$_2$B$_4$O$_7$ powder phosphors were subjected to an annealing treatment at 300 °C for 30 min before the TL measurements were performed to erase the residual TL signal and to restore the original TL sensitivity of the powdered samples (Furetta et al., 2001). The TL glow curves were collected up to a temperature of 310 °C in a nitrogen gas atmosphere and were recorded by setting the linear heating rate of the TL reader at 4 °C/s. (TL 310 °C, m = 8 mg, no preheating). All the undoped and Cu-doped Li$_2$B$_4$O$_7$ powdered samples were stored at room temperature before and after the TL measurements, and the samples were not preheated. The measurements were performed 24 h after the irradiation process to eliminate the effects of the low temperature peak.

2.4. OSL measurements

The OSL measurements were performed using the same RISO TL/OSL (TL/OSL-DA-20) luminescence reader. All luminescence emissions were detected with a bi-alkali EMI 9235QA photomultiplier tube (PMT), which has an extended UV response with a maximum detection efficiency between 300 and 400 nm. To prevent scattered stimulation light from reaching the PMT, the reader is equipped with a 7.5 mm Hoya U-340 detection filter, which has a peak transmission at approximately 340 nm. Internal blue light emitting diodes (LEDs) (470 nm, 40 mW/cm2) were
used for stimulation, and the OSL signal was detected through Hoya U-340 filters. A detachable beta irradiator located above the sample carousel accommodates a 1.48 GBq (40 m Ci) 90Sr/90Y beta source, which emits beta particles with a maximum energy of 2.27 MeV. A 90Sr/90Y beta source provided a dose rate of 0.153 Gy/s. A 90Sr/90Y beta source provided a dose rate of 0.153 Gy/s. All the OSL measurements were performed in the continuous wave (CW-OSL) mode, and the power level was software controlled and set at 90% of the maximum stimulation power for the blue LEDs. The OSL measurements were performed at room temperature. The weight of the disc is 8 mg. The samples were irradiated with beta doses in the range of 0 Gy to 76.50 Gy to obtain the dose response of the phosphor. Then, the prepared powdered crystals were stimulated with OSL blue LEDs under the following conditions: duration of 350 s, no preheat, and 90% of maximum stimulation power.

2.5. XRD studies

The characterization of the prepared pure and Cu-doped Li$_2$B$_4$O$_7$ powdered phosphors was performed using X-ray diffraction. The XRD measurements were performed at room temperature for the pure and Cu-doped Li$_2$B$_4$O$_7$ powdered phosphors. The phosphor grains were only sieved before the measurements were performed. In all our XRD experiments, powdered phosphor grains in the size range of 74—210 μm were used. The XRD patterns were obtained over a wide range of Bragg angle 20 values (10° ≤ 2θ ≤ 90°) using a Bruker AXS D8 Advance X-ray powder diffractometer (operated at 40 kV) with a Cu-K$_\alpha$ radiation source with a wavelength of 1.54056 Å. Scanning was performed in the 2θ mode with a step size 0.05° and 1.5 s per step. The determination of the phase structure and the unit cell parameters of the produced samples, along with the numerical calculations, were performed using the PDF 2009. 4 cA analysis program.

In this study, the crystal sizes of the prepared samples were calculated using the Debye-Scherrer equation.

$$D = \frac{(0.9\lambda)}{(\beta \cos \theta)} \quad (1)$$

where D is the average grain size of the crystallites, λ is the incident wavelength (1.54056 Å), β is the Bragg angle, and θ is the diffracted full width at half maximum (FWHM). The hkl and 20 values of the undoped and doped Li$_2$B$_4$O$_7$ were determined by analyzing the measured XRD patterns.

2.6. SEM studies

The structural and morphological characteristics (particle size and shape of undoped and Cu-doped Li$_2$B$_4$O$_7$ powdered samples) were studied using a Scanning Electronic Microscope (SEM) operated at 5—10 kV. In this study, samples in powder form (74—125 μm) were placed directly into a SEM for imaging. The measurements were performed using a JEOL-JSM7000F scanning electron microscope. SEM images of the undoped and Cu-doped Li$_2$B$_4$O$_7$ samples were recorded at both 100× and 2500× magnifications.

3. Results and discussion

3.1. XRD results

The formation of doped and undoped Li$_2$B$_4$O$_7$ crystals was confirmed by studying the X-ray diffraction (XRD) patterns shown in Fig. 1 (a) and (b). The Cu-doped Li$_2$B$_4$O$_7$ pattern of the undoped crystals matches with PDF 2009. 4 cA data (Card No. 076—0768). The undoped and Cu-doped Li$_2$B$_4$O$_7$ powdered samples have tetragonal crystal structures with lattice parameters of $a = b = 9.477$ Å, $c = 10.286$ Å and $\alpha = \beta = \gamma = 90^\circ$, having the space group I41cd (110). Pelpak et al. (2011) also obtained similar results for Li$_2$B$_4$O$_7$ samples. The results indicate that the lattice size of the crystal changed with the addition of the Cu dopant.

The average grain sizes of the undoped and doped Li$_2$B$_4$O$_7$ were calculated to be approximately 29.13 nm and 68.59 nm, respectively. The crystallite size of Cu-doped lithium tetraborate is larger than that of undoped lithium tetraborate. The values of the grain sizes, reflections, and 2-theta values of the prepared phosphors based on the XRD patterns are listed in Table 1. The crystal size directly provides information about the crystalline quality, and the diffraction peak obtained by the XRD peak width is inversely proportional to the half-height. The diffraction peaks are very narrow, indicating that the crystals in this case exhibit good crystalline quality.

<table>
<thead>
<tr>
<th>Crystal type</th>
<th>2-Theta (degrees)</th>
<th>Reflection (hkl)</th>
<th>a (nm)</th>
<th>b (nm)</th>
<th>c (nm)</th>
<th>Crystallite sizes (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure Li$_2$B$_4$O$_7$</td>
<td>21.670</td>
<td>112</td>
<td>947.7</td>
<td>947.7</td>
<td>1028.0</td>
<td>29.13</td>
</tr>
<tr>
<td>Cu doped Li$_2$B$_4$O$_7$</td>
<td>21.760</td>
<td>112</td>
<td>947.9</td>
<td>947.9</td>
<td>1028.0</td>
<td>68.59</td>
</tr>
</tbody>
</table>
3.2. SEM results

The crystal sizes of the undoped and Cu-doped Li$_2$B$_4$O$_7$ powdered samples were determined using SEM, as shown in Fig. 2. The luminescence efficiencies are related to the phosphor material with a crystallite size in the range of 74–125 μm. According to the SEM images, the Cu-doped Li$_2$B$_4$O$_7$ powdered samples apparently form clusters.

3.3. TL results

One of the important aspects to be investigated for any TL dosimetry material is its glow curve. TL glow curves were not observed in the unirradiated Li$_2$B$_4$O$_7$ powdered samples. The TL glow curves of the undoped and Cu-doped Li$_2$B$_4$O$_7$ powdered samples irradiated with beta radiation doses of 1.50 Gy are shown in Fig. 3 (a) and (b), respectively. The TL glow curve of the pure Li$_2$B$_4$O$_7$ phosphor in powdered form irradiated with a beta dose of 1.50 Gy has one TL glow peak at approximately 103 °C, while the Cu-doped Li$_2$B$_4$O$_7$ phosphor exposed to the same dose has two dominant TL glow peaks, with the maximum TL response of the peaks at 115 °C and 243 °C in the range of 0 °C–310 °C. The lower temperature peak of the Cu-doped Li$_2$B$_4$O$_7$ occurs at approximately 103 °C, which is too low for use in practical TLDs. The peak activated with Cu occurs at 243 °C, which is sufficiently high for routine TL dosimetry applications. The dosimetric peak of the Cu-doped Li$_2$B$_4$O$_7$ was also observed to be approximately 205 °C by Takenega et al. (1983).

The TL response of the Cu-doped lithium tetraborate is approximately 900 times more sensitive than that of the undoped lithium tetraborate.

3.4. OSL results

The OSL signal is set to the background level after 350 s. The stimulation is very efficient, with no long tail observed. The Li$_2$B$_4$O$_7$ powdered phosphor OSL signal was read out two or three times, with the last read out, being considered the background of the system (reader and crystal), subtracted from the first one to obtain the background-free signal.

The CW-OSL decay curves of Li$_2$B$_4$O$_7$:Cu dosimetric crystal in powdered form is shown in Fig. 4 for a beta dose of 3.06 Gy. The best correlation is obtained for second-order exponential decay functions $[I = I_{0a} \exp (-D_{t1}) + I_{0b} \exp (-D_{t2})]$. The OSL decay curve is composed of the sum of two exponential functions. In this function, I and D represent the signal intensity and the beta radiation dose (in Gy), respectively. The parameters t_1 and t_2 are decay constants. The parameters t_1 and t_2 were calculated as 31.87 and 145.79 (see Table 2.), respectively, with a correlation coefficient of $R^2 = 0.99973$ and Chi$^2 = 8.145 \times 10^{-8}$ from the fitting procedure. The amplitudes I_{0a} and I_{0b} of the fitting exponential components were calculated to be 0.04725 a.u. and 0.03486 a.u., respectively. Of the total OSL signal, 57.54% is composed of component t_1 and 42.46% is composed of component t_2 for a beta dose of 3.06 Gy.

The analysis of the OSL signal indicates that it is composed of two components: a fast component, assigned to electrons that recombine directly with holes, and a slow component due to the presence of shallow traps in the structure, in which electrons are retrapped for several seconds before being recombined with holes. Table 2 also indicates that the decay constants (t_1 and t_2) become faster at the low beta doses and become slower with increasing beta dose.

The OSL luminescence intensity is proportional to the trapped charge, and the trapped charge is related to the radiation dose (energy deposited). The normalized OSL decay curves of the Cu-doped Li$_2$B$_4$O$_7$ phosphor for various absorbed doses using a 90Sr/90Y beta source are shown in Fig. 5a and b. The OSL intensity increases with the increase of different beta doses.

After irradiation with the 90Sr/90Y beta source, poor OSL signal was observed from the pure compound.

3.5. Dose response

To study the TL response, the Li$_2$B$_4$O$_7$ phosphor was investigated over the beta dose range from 0.20 Gy to 150.00 Gy. The TL responses of the Cu-doped lithium tetraborate with beta doses of up to 150.00 Gy are shown in Fig. 6. The relative TL intensity increased with increasing beta doses. In Fig. 6, a fit to the data using a 3rd degree polynomial $y = 1.77073 + 1.25927x - 0.07609x^2 - 0.03387x^3$ and correlation coefficient of $R^2 = 0.9994$ from the fitting procedure is shown. The slope of the line of 0.996 (between 0.20 Gy and 10.00 Gy) indicates a linear dependence of the TL response (in Gy), respectively. The parameters t_1 and t_2 are decay constants. The parameters t_1 and t_2 were calculated as 31.87 and 145.79 (see Table 2.), respectively, with a correlation coefficient of $R^2 = 0.99973$ and Chi$^2 = 8.145 \times 10^{-8}$ from the fitting procedure. The amplitudes I_{0a} and I_{0b} of the fitting exponential components were calculated to be 0.04725 a.u. and 0.03486 a.u., respectively. Of the total OSL signal, 57.54% is composed of component t_1 and 42.46% is composed of component t_2 for a beta dose of 3.06 Gy.

Among the many TL phosphors exhibiting a supralinear response for doses over 10.00 Gy (Furetta et al., 2001), the prepared Cu-doped Li$_2$B$_4$O$_7$ phosphor exhibits an exceptional behavior. For beta radiation doses above 150.00 Gy, the TL output saturates.

![Fig. 2. a, b) SEM image of undoped Li$_2$B$_4$O$_7$; c, d) SEM image of Cu doped Li$_2$B$_4$O$_7$ samples at room temperature.](image-url)
indicating a saturation of traps related to the TL response in the crystals.

To construct the OSL dose response curves of the Cu-doped Li$_2$B$_4$O$_7$ in powdered form, dosimetric crystals having a mass of 8 mg were irradiated using different beta doses up to 76.50 Gy. The OSL dose response curves of Cu-doped Li$_2$B$_4$O$_7$ samples are presented in Fig. 7(a) and (b).

The OSL dose response curve of the powder-form Li$_2$B$_4$O$_7$:Cu dosimetric crystal irradiated at 0 Gy with a beta source and stimulated by $\lambda = 470$ nm blue LEDs (blue light) (350 s, 90% of maximum stimulation power) is presented in Fig. 7(a). A straightforward linear relationship between the OSL integrated intensity and the applied beta radiation dose in Gy was observed up to 11.48 Gy. The OSL dose response curve of Cu-doped Li$_2$B$_4$O$_7$ was best described by a linear function $y = a + bD$. In this function, y and D represent the OSL signal intensity and the applied beta radiation dose in Gy, respectively, and the parameters a and b, which are calculated from fitting procedures for Cu-doped Li$_2$B$_4$O$_7$, were found to be -75051 and 481863 (correlation coefficient $R^2 = 0.9994$), respectively. In other words, this material exhibits excellent linearity in this dose range.

To present the OSL dose response curves of Cu-doped Li$_2$B$_4$O$_7$, the powder-form dosimetric crystals were irradiated over a dose range of 1.07 Gy to 76.50 Gy at different beta doses and stimulated by $\lambda = 470$ nm blue LEDs (blue light). The OSL dose response curves of the Cu-doped Li$_2$B$_4$O$_7$ are presented in Fig. 7(b) using a logarithmic scale. The OSL intensity increased with increasing beta irradiation doses between 1.07 Gy and 60.00 Gy; Fig. 7(b) shows a fit of a 3rd degree polynomial ($y = 10.898x^3 - 4539.7x^2 + 512149x - 94329$, $R^2 = 0.9997$) to the data. For beta radiation doses above 60.00 Gy, the OSL output saturates, indicating a saturation of the traps.

3.6. TL repeatability studies

The repeatability measurements of the prepared phosphor are an important topic of dosimetric studies. In the TL repeatability studies, the Li$_2$B$_4$O$_7$:Cu powder phosphors were first annealed at 300 °C for 30 min. Then, the annealed Li$_2$B$_4$O$_7$ materials were irradiated with beta doses of 7.50 Gy for the measurements. The TL measurements were performed for 20 cycles at $t = 310$ °C and at a heating rate of 4 °C/s. The dosimetric peak intensities, which were

Table 2

<table>
<thead>
<tr>
<th>Beta dose (Gy)</th>
<th>t_1 (s$^{-1}$)</th>
<th>t_2 (s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.153</td>
<td>21.09</td>
<td>105.95</td>
</tr>
<tr>
<td>0.306</td>
<td>24.64</td>
<td>116.04</td>
</tr>
<tr>
<td>0.765</td>
<td>27.33</td>
<td>126.58</td>
</tr>
<tr>
<td>1.530</td>
<td>29.12</td>
<td>131.08</td>
</tr>
<tr>
<td>3.060</td>
<td>31.87</td>
<td>145.79</td>
</tr>
<tr>
<td>4.590</td>
<td>36.07</td>
<td>161.75</td>
</tr>
<tr>
<td>15.300</td>
<td>37.84</td>
<td>173.22</td>
</tr>
<tr>
<td>30.000</td>
<td>38.12</td>
<td>175.28</td>
</tr>
<tr>
<td>45.900</td>
<td>38.12</td>
<td>175.28</td>
</tr>
<tr>
<td>76.500</td>
<td>37.89</td>
<td>173.55</td>
</tr>
</tbody>
</table>

Fig. 3. TL glow curve of Li$_2$B$_4$O$_7$ powder irradiated with 1.50 Gy at room temperature with beta source ($m = 8$ mg, no preheat, TL 310 °C, heating rate: 4 °C/s). a) TL glow curve of undoped Li$_2$B$_4$O$_7$ b) TL glow curve of Cu doped Li$_2$B$_4$O$_7$.

Fig. 4. CW-OSL decay curves of Li$_2$B$_4$O$_7$:Cu in powder form dosimetric crystal for a beta dose of 3.06 Gy.
obtained at 243 °C, were used for the repeatability measurements. Fig. 8(a) shows the glow curve variation with the number of repeating cycles. Neither the shape of the TL glow curve nor any shift in the glow peak temperature was observed at the end of the 20 cycles in the studied dose range. The TL repeatability obtained of the Cu-doped Li₂B₄O₇ crystal was 7.0% ($\pm 2\sigma$) for 20 sequential measurements. The slight variation in the maximum TL intensity during the 20 cycles indicates that both phosphors are reusable in the TL studies.

3.7. OSL repeatability studies

If the sensitivity of the phosphors does not change after several cycles of exposure and readouts, then it is considered to be as a good dosimetric phosphor. The repeatability of the OSL measurements of the undoped and Cu-doped Li₂B₄O₇ crystals, which were irradiated at 7.50 Gy with the beta source, was obtained by taking 20 measurements for each of samples (7.50 Gy beta doses, m = 8 mg, OSL blue LEDs 350 s, no preheat, 90% of the maximum stimulation power). The variation of the normalized OSL signal intensity vs. cycle number for undoped Li₂B₄O₇ crystal is shown in Fig. 8(b). The repeatability obtained for the undoped Li₂B₄O₇ crystal was 7.8% ($\pm 2\sigma$). The repeatability of the OSL measurements was determined to be 2/3 lower than that of the TL measurements.

3.8. OSL and TL reproducibility studies

The batch uniformity of the prepared dosimetric phosphors was also investigated. To determine the reproducibility of the preparation procedure, different batches (4 batches) of the Cu-doped Li₂B₄O₇ powdered phosphor was used for the OSL sensitivity measurements. The reproducibility of the OSL response of
Cu-doped Li$_2$B$_4$O$_7$ phosphors was obtained from three measurements for each sample. First, the annealed Li$_2$B$_4$O$_7$ materials were irradiated using beta doses of 7.50 Gy for the measurement of the OSL sensitivity. The OSL signal intensities were used for the reproducibility measurements. The reproducibility characterized by the standard deviation of the results was good for the four samples. The results from the reproducibility experiments indicate that the changes of the OSL sensitivities of the Cu-doped Li$_2$B$_4$O$_7$ crystals were in the range of approximately 5.0% ($\pm2\sigma$) for the four batches. Our experimental measurements indicated that the changes of OSL sensitivity were within the error bars of the measurements.

3.9. Fading studies

An ideal TL and OSL material should have deep thermally stable traps for the long-term storage of dosimetric information without significant fading. To determine the room temperature stability of the glow peaks for the Cu-doped Li$_2$B$_4$O$_7$ phosphors, the samples were investigated after different periods.

To increase the sensitivity of the Cu-doped Li$_2$B$_4$O$_7$ crystal in powdered form, the samples were heated at 300 °C in an oven for 30 min. TL measurements were performed on the samples immediately after the heat treatment. The Cu-doped Li$_2$B$_4$O$_7$ crystals were ready for use again after the heat treatment. The variations in the TL intensity could be neglected for the cases of measurements immediately after the annealing procedure and before the irradiation process.

The samples were stored under dark conditions at room temperature until the completion of the measurements. The results of the studies on fading were normalized to 100% with the first measurements taken 64 h after irradiation for the low temperature peak. Fading of the TL intensity of the dosimetric peak was investigated for 40 days.

A decrease of the TL intensity was observed relative to the maximum values measured at the end of the storage time for undoped Li$_2$B$_4$O$_7$.

Fig. 9(a) and (b) show the fading of the TL glow curve and the variations of the % TL intensity of Cu-doped Li$_2$B$_4$O$_7$ samples, which were stored at room temperature, irradiated with a beta radiation dose of 1.50 Gy as function of temperature and storage time, respectively.

The first peak (low-temperature peak) of the TL glow curve of the Li$_2$B$_4$O$_7$:Cu samples irradiated with 1.50 Gy fades completely when stored at room temperature in the dark for 24 h, whereas the second peak (dosimetric peak) slowly decreased over the storage time. In other words, fading of the second temperature TL peak is negligible over the time of storage, and the TL peaks did not shift with storage time ($m = 8$ mg, no preheat, TL 310 °C).

The % TL intensity decreased due to the time-dependent changes in the TL intensity of the first TL peak after 16 h. The first TL peak intensity of the Li$_2$B$_4$O$_7$:Cu sample decreased rapidly after 2.6 h. In contrast, the intensity of the dosimetric TL peak (second peak) only decreased by approximately 8—10% after 40 days. As expected from the very low temperature of the peak, the peak itself is affected by rapid fading at the end of the study period.

3.10. Minimum detectable dose

The lowest level of detection, known as the minimum detectable dose, was calculated from the following relation (McKeever et al., 1995).

\[
D_0 = 2.26 \cdot \sigma \cdot S
\]

where σ is the standard deviation of the background reading value of unirradiated samples in units of nC, and S represents the conversion factor (~2.310) in units of mGy/nC. The experimentally determined minimum detectable dose (M.D.D) is defined as three times the standard deviation of the zero dose readings of the dosimeters, and it has a value of approximately 10 μGy for the Li$_2$B$_4$O$_7$ phosphor. At the end of the readout, there are no residual TL and OSL signals.
4. Conclusions

This work investigated the TL and OSL dosimetric properties of Li$_2$B$_4$O$_7$:Cu phosphors synthesized using a sintering technique. From detailed Cu doping studies, the TL response was found to be approximately 900 times more sensitive than that of undoped lithium tetraborate.

The TL and OSL intensities of the prepared crystalline samples increased with increasing beta radiation doses. The OSL dose response curve is linear up to a dose range of 12 Gy for the Cu-doped Li$_2$B$_4$O$_7$ dosimetric phosphors, with a correlation coefficient of 0.9994.

The OSL and TL peak intensities exhibited the same reduction from the time-dependent changes and were not dependent on the irradiated beta doses. In contrast, the main dosimetric peak occurred at a higher temperature ($t=243^\circ$C) for the Cu-doped Li$_2$B$_4$O$_7$ and was found to exhibit little fading with storage time; its fading properties are satisfactory for use in dosimetry applications.

Using TL measurements repeated 20 times on the copper-doped lithium tetraborate phosphors irradiated at a beta irradiation dose of 7.50 Gy, the measurement error was found to be 7%; this error was measured to be 3–4% by for the OSL technique. The repeatability of the OSL dose measurements was determined to be 2/3 lower than the TL measurements. The reproducibility of the OSL measurements was found to be approximately 5%. Beta doses as low as 10 μGy can be measured using the prepared phosphors, and 76.50 Gy can be measured with a precision on the order of 3–4% error by using the OSL technique. The TL and OSL signal intensities of lithium tetraborate have a dosimetric peak that could be neglected under room temperature storage conditions.

The results indicate that the crystal parameters were not changed with the addition of Cu dopants. The size of the crystal changed with the addition of Cu dopants.

The studied Li$_2$B$_4$O$_7$ dosimetric phosphors can provide high sensitivity, linear response, good repeatability and reproducibility, batch uniformity, low fading and low read error in dosimetry applications, and it may be used as an OSL personal dosimetry monitor to measure beta radiation doses.

Acknowledgments

The authors thank Dr. Ş. ÇAVDAR, Dr. H. KORALAY and Dr. E. AKSU (Turkish Atomic Energy Authority, Technology Department) for their help with the XRD and SEM studies. This work was supported by TAEA, project no: A3.H3.P1.01.

References

