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Abstract

QUANTUM STATISTICS OF LIGHT INTERACTING
WITH MATTER

O.E. Miistecaphoglu
M. S. in Physics
Supervisor: Prof. Alexander S. Shumovsky

August 1999

Studies on some systems in which light interacts with matter are performed from
quantum statistical point of view. As a result of these studies a novel effect
which can be utilized for detecting squeezed phonons is predicted; detection of
non-classical states of Bose type excitations in solids and their classification by
Raman correlation spectroscopy are discussed; a new approach to the polarization

of light is developed.

Keywords: Quantum optics, Quantum statistics, squeezing, polarization,

Raman scattering, non-classical excitations, multipole radia-

tion
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MADDE ILE ETKILESEN ISIGIN KUVANTUM
ISTATISTIGI
O.E. Maistecaphoglu
Fizik Yiksek Lisans

Tez Yoneticisi: Prof. Alexander S. Shumovsky
Agustos 1999

Isik ve madde arasindaki etkilesimler ¢egitli sistemler uzerinde kuvantum
istatiksel bakis acisiyla ele alindi. Bu c¢aligmalarin neticesinde sikigtirilmug
fononlarin tesbitine olanak tamiyan yeni bir etki bulundu; Raman korelasyon
spektroskopisi ile katilarda Bose tiirtinden uyarilmalarin klasik olmayan hallerinin
siniflandirilmasina ve tespitine imkan saghyan yeni bir metot geligtirildi; ayrica

1181 polarizasyonu hakkinda yeni bir teori kuruldu.
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sozcukler: Kuvantum optik, klasik olmayan uyarilmalar, Raman

sagilmasi, sikigtirilma, polarizasyon
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Chapter 1

Introduction

1.1 Overview of Light-Matter Interaction

Detector

—

Light |

Matter

Figure 1.1: Basic scheme of light-matter interactions

The dream of enhancing sensitivity in a spectroscopic measurement beyond the
usual quantum limit set by the vacuum fluctuations has come true after the
realization of non-classical states of light. Particularly using squeezed light for
such a purpose provides exciting and rich possibilities. It is possible to say

that where ordinary light remains blind, squeezed light may be sharp eyed.

1



CHAPTER 1. INTRODUCTION 2

For example the Doppler-free resonances in atomic cesium is observed with a
sensitivity higher than the vacuum-limit by using a frequency-tunable squeezed
light.! No doubt in a spectroscopic measurement light interacts with matter
under examination, and transfers us the information we are after. It is therefore
necessary to have a thorough study of this interaction in order to understand
what kind of extra information can be extracted from the matter. Huge number
of studies in the area shows that the field correlation functions involve information
on the source correlation functions. Hence, the examination of the problem of
light-matter interaction from a complete quantum statistical point of view is
essential. Let us also note that the potential applications of non-classical light
is not limited to spectroscopy. There are other technological fields, especially
optical communications, demanding high degree of noise reduction. High sensitive
interferometric methods are also required to detect gravitational waves.

It is possible to classify the studies on the problem of interaction of light with
matter under three main groups as shown in Fig.1.1. First one focuses on the
generation of light by the matter, second one examines the effects of light on the
creation and the statistics of quasiparticles within the matter, and the last one
treats light as the carrier of information about the matter. It must be emphasized
that in reality, those subjects are interwovenly mixed and this classification
scheme does not mean the problem is separable, rather it only reflects the hubs
of attentions of the scientists working in the area. Clearly, the categories are
so broad that one expects a lot of sub-branches related to them. Therefore,
it is beyond a single thesis to cover all of them. In Ref.? we have examined
the problem of Rabi oscillations in an exciton-polariton system prepared in a
high quality microcavity. We have found there some optimum conditions for the
observation of these oscillations. Besides explicit relations between the cavity
damping rate and the form of the oscillations were established. An expression
for the renormalized Rabi frequency was also derived. The agreement of our
results with the experimental ones can be considered as a good example for
demonstrating the success of applying atomic quantum optical models to solid

state systems under special conditions.? Since that analysis might be associated
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with the first group, we have turned our investigations towards the latter two. We
have picked up an important and interesting problem for each group to analyze.
The problem of generation and detection of squeezed phonons and the problem

of polarization of electromagnetic radiation were examined for the second and

third groups, respectively.

1.2 Why do we need statistical studies of that
problem?

We know that all detecting devices absorbs light, and the basic mechanism of
detection is just the light absorption. As a result, a photocurrent is created in
photodetectors, or light absorbed by phosphorus atoms and we see an illumination
on the screen. Even our eyes absorbs light and send signals to the brain
and vision is recorded. Electric field can be written in terms of positive and
negative frequency components. Positive frequency component is associated with
absorption process while the negative frequency component is associated with the

generation of light process.
E=E*+E", E* xeF (1.1)

During the generation or interaction of light with environment, light gathers
parameters related to the interaction and generation. These parameters are
subject to statistical variability. In quantum theory, there is also an unavoidable
background shot noise, associated with the quantum fluctuations in accordance
with the uncertainty principle. In measurements, such fluctuations and statistical
variabilities are usually tried to be minimized by repeated measurements. This
brings the concept of ensemble averaging.

We can summarize some typical measurement schemes shown in Fig.1.2, and

write down what we observe in each of them.
e Screen measures < E~(1)E*(2) >;

e Single photodetector measures < E~(1)E*(1) >
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Figure 1.2: Typical ways of light detection

e Correlator (multiplier) measures < E~(0)E~(ty)E*(¢4)E*(0) >

As we see, it is convenient to define n-th order correlation function :
G (21, 0y Ty Yny -, 1) =< B (21) B (20) EY (30)--E* (11) >, (1.2)

since in measurements, the observable parameters can be expressed in terms of

such correlation functions.

1.3 Quantum statistics or classical statistics?

It is also convenient to define a normalized correlation function

G(2)(td)

g (ta) = TGD(0) P (1.3)

Experimental studies of that correlation function yield an important effect,
namely anti-bunching property of light in resonance fluorescence. Light from
thermal sources (stars) is called as incoherent light. In that case, it is found
that ¢(® > 1. This shows probability of detecting two photon in a short time

interval of detection is higher than detecting photons separately. This preference
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td
Figure 1.3: Second order normalized correlation vs delay time

of becoming together can be considered as typical for bosons. This effect can
be explained in classical physics. On the other hand, light from resonance
fluorescence show anti-bunching effect, with ¢® < 1. These are shown in Fig.1.3.

As an important conclusion we see that quantum effects can be best found in high

order interference experiments.

1.4 Rabi oscillations in an exciton-polariton
system

We review this subject for completeness and as an example of light generation
process. GaAs/Al,Gay_;As short-period superlattice is placed in a cavity
of distributed Bragg reflectors (DBR), and pumped by a Ti-Saphire laser.
Emitted radiation from the cavity is focused on a BBO (Beta-Barium Oxide)
crystal and time-delay spectroscopic analysis is performed to detect Rabi beats.
Experimental set-up and procedure is summarized in Fig.1.4. We considered
an exciton-polariton model to explain the obtained experimental data.

Output light can be generated with desired properties just by controlling external
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Ti:sapphire laser

GaAs/Al, Gap_x As >
MQW

Fabry-Perot microcavity’
DBR DBR

tg

Figure 1.4: Experimental scheme for observing Rabi-oscillations in semiconduc-
tors

parameters. Several conclusions are
e pump frequency, excitonic gap — amplitude, number of beats in output
e The cavity quality — qualitatively different damping regimes.
e Strong pulses as pump — coherent output, coherent polaritons

This study is a good example to demonstrate success of (atomic) quantum optical

models in solid state systems.

1.5 Non-classical states

Let us review also some important states of light.  For classification of states
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Physical

Figure 1.5: Regions in quadrature space

of light it is convenient to define quadratures as the real and imaginary part of

the anhilation operator,

X1 +:1X
E®M v, a= %’ (1.4)
They have the uncretainty relation,
AXiAX, > 1 (1.5)

Uncertainty relation is drawn as Fig.1.5. Coherent and squeezed light is most
common states of light. Their properties are summarized below. They are also

classified on the Fig.1.5.
o Coherent states

ala) = ala), AXi,=1, (1.6)
|a) = explaal —h.c)|0), Hp=ad+he (1.7)

— closest to classical descriptions
— indefinite number of photons, well defined phase

— nonorthogonal, normalized, overcomplete
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e Squeezed States

AXy > 1>AX,, (1.8)
| z) = exp(l/22*a®—h.c)|0), Hi = 2"a’+ h.c. (1.9)

1.6 Quantum Phase and Polarization

Because of the close connection of phase and polarization problem, we review
the quantum phase problem of light here. Since the early years of quantum
mechanics the introduction of amplitude and phase operators especially for the
electromagnetic field is under debate. The first approach to the problem was
based on the direct factorization of ladder operators.!” Unfortunately, the
phase operator constructed by this way yields unphysical fluctuations which
are greater than 27. Besides it contradicts the assumption of Hermiticity
which is the natural expectation for an operator claiming to represent phase
as a physical observable. After noticing the direct approach to the problem
is closed, alternative routes to overcome the problem are considered. In order
to solve the trouble with Hermiticity, Hermitian and periodic cosine and sine
operators were constructed.'®!® However they carry an unpleasant property
of non-commutativity which results in the impossibility of describing a single
phase angle by them. Later, lack of a well-defined Hermitian phase operator is
connected to the boundedness of the spectrum of the number operator which
should be conjugate to the phase operator.?® Following that, many proposals
allowing the negative part of the spectrum have appeared.?! Due to the presence
of non-physical states, they are not widely-accepted. In a more recent proposal
a truncated Hilbert space is used for the description of quantum states of
the electromagnetic field modes.?? According to that prescription the correct
expectation values are evaluated by enhancement of the truncated space to the
standard infinite dimensional Hilbert space by taking the limit over the space
dimension variable after the expectation values are evaluated first in the finite

space. Even though this is the most widely accepted quantum phase theory, it still
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suffers some serious problems like changing the algebraic properties of photons.
Since photons are governed by the Weyl-Heisenberg algebra, the truncation of
the Hilbert space causes a serious change in the commutation relations defining
the algebra. In that sense the limiting procedure involves unclear and unphysical
points. Other than those first-principle attempts there are also theories based
upon quantum estimation theory which give similar results with the finite Hilbert
space method, quasiprobability distributions which might yield negative phase
distributions in some cases, and optical homodyne tomography. Without an

explicitly constructed phase operator some information on the phase properties

3 and

of the field can still be gained within these approaches(For a review see?
references therein). The operational approach to the quantum phase has been
presented recently?® where the phase is defined in terms of the measurement
schemes. In that point of view there cannot be a unique phase operator due to
the dependence on experimental set up. However it has been shown that the phase
distribution of the operational approach is a known quasi probability distribution
and there should be a unique phase operator associated to the experimental
set-up considered in the operational approach. Another contribution to the
problem has been made by considering the Stokes parameters used for description
of the polarization properties of the classical radiation. Quantization of these
parameters lead to the so called Stokes operators which can be decomposed in
polar form to describe the phase properties of radiation quantum mechanically.?
However the lack of unique phase angle still persist in that approach, too. As one
can appreciate there are so many ingenious attempts and proposals to solve the

problem of quantum phase. Even though they have some usefulness in certain

areas and can solve some parts of the problem there is no complete answer to

that old question.



Chapter 2

Squeezed Bosonic Excitations in

Solids

2.1 Squeezed phonons

It has been known for a long time that science of acoustics bears a lot of
similarities to the science of optics so that it is also called as the phonon optics(see
Ref.*® and references therein). While these analogies are based on classical effects,
quite recently some scientists start to ponder upon the possibilities to observe
nonclassical effects of photon optics in the phonon optics. Much of these effects,
like photon antibunching, squeezing and non-classical photon distributions, arise
as a result of the Bose-Einstein statistics of the photons. Since there are a number
of quasi-particles which obey the same statistics in solids, the expectation to
find similar effects in solid state media should not be a poor one. Among these
particles, the phonons have already been known to contribute highly non-classical
effects where the consideration of quantum optical analogies proved to be helpful.
For example, the broad Raman line shape anomaly in the Raman spectra of
some high-T, compounds such as La;CuQO, and Y Ba;Cu3062 at around 3230
and 3080cm ™! respectively, is associated with the quantum fluctuations in the
atomic positions.” There are also attempts to explain some other properties of

high-T, materials including their isotope anomalies by introducing anharmonic

10
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phonon correlations to the conventional Frochlich interactions.® Older examples
in which the phonon correlations play an important role are the Peierls transition
and the Jahn-Teller effect. It is known in quantum optics that anharmonic
correlations may result in the decrease of fluctuations of a dynamic variable below
the quantum limit at the cost of increasing fluctuations of its quantum conjugate
variable. Such phenomena is called as squeezing. Thus, nowadays the above
mentioned effects are usually described in terms of squeezed phonons. While the
squeezing of localized phonons was examined a while ago,” the question of how to
generate phonon squeezed states in solids was tried to be answered only recently
by some proposals including a three-phonon parametric amplification process,*
phonon-photon coupling in polaritons,*® and second order Raman scattering
process® which was very recently demonstrated experimentally.® The mechanism
behind the generating squeezed phonons is based upon application of ultra short
pulses on a second order Raman active crystal. When no light is acted upon the
crystal, phonons are associated with ionic oscillations. [Fluctuations do occur in
the oscillations, which we can imagine as random displacement of ions. Some ions
would be displaced longer than necessary, and some would be displaced less than
necessary for noiseless phonon states. On the other hand, it can be shown that
ultra short pulses ‘kick’ ions regularly so that they apply a force proportional
to displacement. In other words, ions displaced further than necessary would
feel a force stronger than those ions with less displaced. Thus, the ultra short
pulses have a regularization effect which put the ions into an order. In Fig.2.1,
we illustrated this phenomenon.

At the same time, the problem of how to detect non-classical phonons was
considered.!® Since the direct detection schemes via phonon counters'! are almost
impossible due to their low efficiency and wideband characteristics, alternative
detection schemes based on reflectivity measurements* and neutron scattering'®
were discussed. Here, we introduce another indirect way of detecting the presence
of squeezing in phonons. It is based on an effect which is the reduction of the
revival time of Rabi oscillations of the intensity of photons interacting with

squeezed phonons through an indirect radiative transition.'? We also present
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00
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Figure 2.1: Squeezing of amplitude fluctuations of ionic oscillations illustrated

some means of generating such interesting states.

2.1.1 Model System

Description of the indirect radiative transition in a simple way can be
accomplished by modeling it with a generalized Jaynes-Cummings Hamiltonian
with two boson transition. This model is examined in great detail for different
problems of quantum optics.!4 We suppose that the phonons belong to the
longitudinal optical (LO) branch. The upper and lower atomic levels are denoted

by €; and ¢€g, respectively. Then, for the model illustrated in Fig.2.2, we write

the Hamiltonian in units of & as

A A
H = (Q+3)S +(Q+ €)oo+ (Q — €)ala + g(a'blS_ + h.c), (2.1)
w w - w
Q = L’;— =0 A=(a )= 20
Here, wro is the LO-phonon frequency, w is the photon frequency, S; . are
the atomic projection operators, a,b are the photon and phonon operators,
respectively. We have written this Hamiltonian in rotating wave approximation

and ignored the intermediate levels and Stark shifts. Within the manifold
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E, A

A~
VY=

E, V

Figure 2.2: Level structure for indirect atomic transition

M(n,m) spanned by the bare state basis ¢; =| 1;n,m), ¢o =| O;n + 1,m + 1)
where n,m stand for photon and phonon numbers ,respectively and first index

labels the atomic states. Then Eq.2.1 becomes

Eo+ 4 g
H = ( i Eog— s ) where, (2.2)
Eo = Q1 +n+m)+e(m—n), (2.3)
i = gftn+1)(m+1). (2.4)

Diagonalization of eq.2.2 is equivalent to an improper rotation of the bare state
basis into the dressed state basis {14,%_} with the corresponding eigenenergies

Ey = Fy + Qg, where the Rabi frequency Qg is defined as

=+ 5, (25)
el 2 (e (), win 2.6
() = (%) e
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Or - A2

s = gf——
n (2.8)

Then, we evaluate the propagator U = e~ 35
U RemiBit 4 g2e Bt go(emiBat _ gmiB-t) 20
- Sc(e—iE+t . e—'iE_t) s 6—1E+t + CZG—ZE_. ( : )

Since we deal with a field in a mixed state, we consider the density matrix and
its time evolution which is determined by p(t) = U(t)p(0)U?(t). Assuming the

following initial preparation of the system,

p(0) = Z Z FomFy i | n,m)(L;n',m' | (2.10)
we find the reduced density matrix of the fields, given by the partial trace
P"lym(t) = pf,m;n,m(t) = Zk=0,1<k;n7m l p(t) | k;n)m>a as

gsin® Qpt g*nmsin? Qp(n — 1,m — 1)t
an:anOI_"—'—_—"‘ Pn m—1(0
o= PanO1 - PR s p @ e L

(2.11)
Thus, for the intensity of photons I(t) = (n(t)) = 2, m Pn,m(t)n we obtain,

1(t) = (n(0)) +Zan(0)g Sin QRt (2.12)

For the initial distributions of the fields we choose P, ,(0) = P(n)n(m) such that
P(n) = exp (—m)n"™/n! is the Poisson distribution of coherent photons, and n(m)

is the number distribution of squeezed thermal phonons® which is demonstrated

in Fig.2.3, given by

m 0, when |l —m|is odd;
n(m Z ‘l'm_ lim! 1 h m—1 J” l h .
(coshr)2I+#T +,(§tan 7‘) I&( ,m), otherwise.
(2.13)

Here, squeezing parameter r € £, and

o 1 _ (2 Ysinhr)?k 2
™= o= K™ = 2 G e+ (m Ry
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Figure 2.3: Phonon number distriBttion for squeezed thermal state

In Fig.2.4, the chaotic thermal distribution and Poisson distribution are shown.
As one can see, while phonons with coherent distribution can be distinguished
more clearly from chaotic and squeezed ones, the distinction between chaotic
and squeezed ones in qualitative terms is harder. In fact, the only distinction is
the oscillatory character of squeezed distribution, and this is not easy to observe
directly, since tomographic direct construction methods is hard to associate with
phonons. Here,the effect which we will describe will be an indirect way to find an
effect arising from these oscillations.  Since the Poisson distribution is peaked
around 7, we can apply the saddle point analysis3” in Eq.2.12 to calculate the

summation over index n. The result is

1 o0
I=n+ 5 —% Z hiy(m)e=* (7= Tem)*/ATim €08 Bl (2.14)
where,
he = (14 k%)~ (2.15)
gt
S (2.16)
o = (2.17)

3
+
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Figure 2.4: Distributionephbewitof ghanticlesd coherent photons

€km = W(TV m+1— k): (218)
1
bkm = N(2km + dexm + kn2hies, ) — 5 tan~'(k7) + 2hiepm, (2.19)

1 + k2x?
= 2| :
Aty \J T T 1) (2.20)

We now clearly see that the resulting intensity consists of interfering Gaussians
which are revivals of the intensity. They are peaked at revival times 7,
with widths A7g,. Their heights depend on phonon number distribution. The
distribution described in Eq.2.13 shows pairwise oscillations. The oscillations
are much more pronounced at low temperatures and higher r. For r = 0,
n(m) reduces the thermal distribution which is monotonically decreasing with
m. The intensity we found in Eq.2.14 is governed by the first few terms since
the amplitude, hrn(m), of the Gaussian envelopes is a decreasing function of
indices k,m. At 10K, the dominating terms would be (k = 0,m = 0),(k =
I,m = 0,1,2). Among them the term with m = 1 may be negligibly small
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if the amplitude n(1) is small compared to n(0) and 7(2) as in the case of
squeezed thermal distribution. However, it surely dominates the term with
m = 2 for thermal distribution. Since, m also determines the peak positions
of the Gaussians through 7, we have a qualitative way of distinguishing both
distributions from each other by the absence of the revivals associated with odd
m integers in the presence of squeezing. This is illustrated in Fig.2.5. Instead of
the approximate result, Eq.2.14 we have carried out exact numerical summation
to get those figures. However, even using the first four terms of eq.2.14 we can
obtain figures with excellent resemblance to those. We used 20meV for wro
which is typical for GaAs. Therefore, the LO-phonon density is almost zero,
and the phonon number distribution is close to that of vacuum squeezed state
in which probability of having odd number of phonons vanishes for any » > 0.
Thus, even in the case of weak squeezing, the effect can be a valuable tool.
Note that, for any two integers k,m satisfying m = 3k® — 1, the corresponding
Gaussian is peaked at 7x,,. Therefore the best place to estimate the amount
of squeezing is the peak at 7 = 0 where k,m = 0, since only one Gaussian
can be placed there. The corresponding amplitude from which r can be found
is n(0) = 1/\/(1 + 2m) cosh®r 4+ m2. Finally, we note that, since the squeezed

thermal distribution has higher mean value and variance, we may get hints on

the presence of squeezing by the increasing number of revivals before 7 = 1 with
narrower widths through Ay,,, even for the cases in which the oscillations in the

phonon number distributions are weak.

2.1.2 Realization of the effect

To be able to realize the above mentioned effect, we need first of all a solid state
material in which strong radiative indirect transitions are possible. Moreover, it
must be prepared to have squeezed phonons. Then it should be enclosed in a high
quality cavity, since we considered only one cavity mode and ignored the cavity
damping. A promising candidate of such a material is provided by GaAs/AlAs

short period superlattices,® band structure of which is shown in Fig.2.6.
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Figure 2.5: Rabi oscillations of the cavity photons. Upper, and lower graphs
correspond to thermal phonons at 300K, squeezed thermal phonons with r =1
at 10K respectively. Upper graph is shifted by 0.25 for better demonstration.

There, the direct, type-1, transition is accomplished by single photon emission-
absorption, while the indirect, type-II, transition is occurred as an LO-phonon
assisted single photon emission-absorption. Depending on the quantum well
thickness, the I'— X transition is also possible via LO-phonon absorption, emission
and interface scattering. We shall consider thick enough wells to eliminate the
interface scattering and this leaves us only IFrochlich interaction of electrons with
LO-phonons. At low temperatures (T =~ 8K), with high excitation density (laser
power =~ 12mW — excitation density & 3 x 10" crm~?) and with excitation energy
a little higher than the type-I transition resonance (laser energy =~ 1.96eV’), the
dominant transition becomes type-I because of the band-filling effects at X. Thus
we have effectively a A-shaped three level system. Due to the high excitation
densities the electron-subsystem is in the quasi equilibrium regime; besides, the

high density coherent laser field can also be treated classically. Therefore, treating
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only the phonons with operators, we get an effective interaction Hamiltonian
as Hepy = 2% gkb* + h.c., where g;’s depends on carrier concentrations and
Frochlich interaction strengths. Among possible multiphonon interactions, we
can take the quadratic one as the dominant, if the I' — X separation is about
twice the LO-phonon energy (wro = 10 — 30meV, GaAs). Such a Hamiltonian
generates squeezed thermal phonons, if we suppose the phonon sub—systvem is
in thermal equilibrium before the action of the laser field. Since the lifetime
of the electrons in X states is much higher than the type-I recombination (at
8K,tx = 0.7us, tiype—1 = 200ps), we conclude that the system is prepared in the
way described by Eq.2.10 with squeezed thermal phonons. Then, by increasing
the laser energy (> 2.014), decreasing the laser power (< 2.4mW), and providing
a weak probe coherent light to observe the changes in collapse and revivals of its

intensity we should be able to observe this effect.

)1

| I EC

Type I Type Il

[— EV

Figure 2.6: Band structure of GaAs/AlAs superlattice is shown with Type-1 and
Type-II transitions. I' — X transition is not shown, but it is also possible.

2.1.3 Summary

Detection of squeezed phonons through an indirect radiative transition is

discussed. It is shown that lack of certain revivals at low temperatures can
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be considered as the signature of squeezing. At high temperatures, the effect can
still be observed for high squeezing. In any case, squeezing manifest itself also
with narrower and more revivals in the standard collapse region (7 < 1). It is
possible to estimate the squeezing parameter from the amplitude of the revival at
T = 1. GaAs/ AlAs superlattice structures are suggested for the realization of the

proposed scheme considering their analogy to the three level systems discussed

in quantum optics.

2.2 Examination of Non-Classical Quasi-

particles with Raman Correlation
Spectroscopy

We have seen that squeezed states of phonons can have useful application in
optical communications as offering a way to reduce and control revival times.
Higher order squeezing can offer even more reduction in the revival times.
Interaction of such phonons with other quasi-particles as well as electrons would
also be interesting for other electrical and optical effects related with solids. In
fact, squeezed states, or in general non-classical states of other quasi-particles
can also be found. In some case, like polaritons, natural formation of such two
particle bound states are also more readily squeezed or non-classical. Therefore,
it is an important study to examine the problem how to detect and classify such

non-classical quasi-particles. Below, we present a way to do this using Raman

correlation spectroscopy.!?

2.2.1 Overview of the problem

The concept of squeezed state has been established in the language of physics
mainly by the developments in quantum optics. On the other hand, basic
requirement of finding a system in a squcezed state is to have bosons as the

constituents of the system interacting in a pairwise manner and that might be



CHAPTER 2. SQUEEZED BOSONIC EXCITATIONS IN SOLIDS 21

fulfilled not only in optical systems but in some other Bose-type systems as
well. The introduction of squeezed states in optics®® was based .on the previous
consideration of superfluidity® in liquid He* (also see?!). While squeezing of
quantum fluctuations is the most well-known aspect of squeezed states, rich
variety of effects might be expected due to their interesting statistical properties
even at thermal equilibrium. Certain effects like anti-bunching have already been
observed in the realm of quantum optics and this makes it an intriguing question
how to find squeezed states and their effects in other places. In this context, few
proposals have been suggested for the generation and detection of squeezed states
of Bose-type excitations in solids.!®*®12 Quite recently, squeezed phonons have
been produced and detected.®

It is very interesting that, unlike the case of light, the squeezed states
of phonons may arise from different microscopic interactions in solids even
at thermal equilibrium.?? Deviations from typical equiliBrium distribution
of phonons, namely Bose-Einstein distribution, might arise from anharmonic
interactions among phonons or from some other mechanisms such as the polariton
coupling in ionic crystals'®*? or polaron mechanism.* In such cases, equilibrium
distribution of phonons are that of squeezed thermal phonons.!® Therefore, it
seems to be an important question how to determine the equilibrium distribution
of phonons when there is a possibility that phonons can be found to be in
non-classical states. As a particular example of some considerable interest, the
squeezed states of phonons due to the photon - optical phonon interaction in an
ionic crystal*® should be mentioned here. The polariton coupling in such a system

is described by the following Hamiltonian*®

1
H = - Z Hy,
25
Hy = wealar +wiblbi +igel(al — a—g)(b] + b_x) + (aty, — ar)(box + b})]
where wy is the photon frequency, w, is the frequency of transversal oscillations
of optical phonons, gi is the polariton coupling constant and the operators ay, by

describe the annihilation of photons and optical phonons respectively. Since

the Hamiltonian under consideration is the Hermitian bilinear form, it can be
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diagonalized by the Bogolubov canonical transformation?® similar to that used in
the definition of squeezed states.*® As a result, the thermal equilibrium state of
the system is described by the following density matrix
—-BHy
PB) = 7z
where H, denotes the Hamiltonian H in diagonal (polariton) representation and
B is the reciprocal temperature. In analogy to the quantum optics, we consider

the so-called degree of coherence®®

q _ (07F)
(675)
where (...) denotes the average with respect to the density matrix p(g3). It
is straightforward to calculate G® as a function of temperature for typical
parameters of an ionic crystal (see Fig.2.7). One can see that, at low
temperatures, G® = 8, while the same correlation function calculated with the
Bose-Einstein distribution gives Gg)E = 2. It is also seen that the strong quantum
fluctuations can be observed only below T' ~ 50K because they are eroded by

thermal fluctuations with the increase of temperature.

In contrast to the case of non-classical states of photons there is not any
efficient direct method of measurement allowing the characterization of the
quantum state of Bose-type excitations in solids.*® Even though correlation
functions to any order would be demanded to describe fully a quantum state, it
is usually good enough to distinguish quantum states by their number variances.*®
Here, we present a way to determine the number variance of phonons at
equilibrium in a Raman active medium. It is already suggested that correlation
Raman spectroscopy may be used to measure the quantum statistical properties
of a vibration mode for the case of Stokes (S) type Raman scattering through a
measurement of the intensity and the Mandel’s Q-factor of the Rayleigh mode.*®
However, even at low temperatures vacuum fluctuations of the Anti-Stokes (AS)
modes might disturb measurements of high order correlations and thus careful
study of the role of the AS modes in such measurements is demanded. Here,

we follow a similar ideology in more general terms by examining both the S
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Figure 2.7: Phonon degree of coherence G(?) versus temperature for typical
parameters of an ionic crystal: @ = 200K, g = 25K.

and AS components of multi-mode Raman scattering. Even though the problem
becomes analytically intractable when AS modes are included, it is now possible
to establish an interesting connection between the number variance of phonons
and the correlations of S and AS modes. Moreover, due to the removing low
temperature restriction in the exclusion of AS modes, influence of temperature

in the high order quantum correlations can be examined as well.

2.2.2 Correlation of Stokes and anti-Stokes photons

General relations between the correlation function of S and AS modes and the

number variance of phonons is developed in this section for the following Raman-
type Hamiltonian,

H = Zwk,\a}:/\ak,\ + Z (Mksk,qa;r(,sakRaj]V + lek,qa{,AakRaqv + H.C.), (2.21)
kA kk'q

where al,(ax)) are the creation (annihilation) operators for the A-mode
with momentum k and corresponding frequency wgy. Here the mode index

A = S,A,V,R stands for Stokes, Anti-Stokes, vibration and Rayleigh modes,
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respectively. The polarization labels are suppressed within the momentum
symbols for the sake of notational simplicity. Coupling constants are denoted
by Mfk,q for the S-type scattering and Ml’(“k,q for the AS-type scattering. While
writing this tri-linear bosonic Hamiltonian we assumed as usually®® that the
Raman scattering is observed under the condition wgrs4 > wy when the pair-
wise creation of radiation modes has quite small probability so that energy is
conserved. This supposition is equivalent to the rotating wave approximation
of the quantum optics.*® We also assumed that the radiation consists of three
R, S, and AS pulses which are well-separated on the frequency domain so that
[axx, aliy] = Sixrbrn. If a single-mode strong coherent (classical) pumping is
assumed, all one can expect is that the phase-matching conditions would have
limited the number of active phonon modes to one. Nevertheless, it seems to be
reasonable to consider the Raman scattering by an infinite Markoffian system of
phonons.’*®? In particular, it permits one to take into account the broadening
of S and AS lines. The usual selection rules of Raman scattering, namely phase-
matching or quasi-resonance conditions,*® are not essential for the derivation of
the general relations below. Therefore, the results given in this section are also
valid in not so perfect Raman coupling situations which should be important in

real materials.
If we define the number operator nyy for the A-mode with momentum k as

Ny = a};\ak,\, then the total number operator N, for A-mode becomes N, =

>k nkr. Heisenberg equations of motion yield the conservation laws, also known

as Manley-Rowe relations,>

Ns + N4y + Np = (4, (2.22)
Ns — Ny — Ny = C,.
Here constant operators C;,(C; are specified by the initial conditions. Similar
relations can also be constructed for the scattering of photons of a monochromatic

laser beam from a dispersionless optical phonon.**%? Solving these equations for

Ns and Nj, the S and AS correlation function is found to be

< NajNs> = i(V(Ol) _V(Cy) + V(NR) — V(W)
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—2 < Cy; Nr > =2 < Cy; Ny >), (2.23)
where the correlation function < A; B > of two operators A, B is defined by
<A;B>=<AB>-<A><B>

and hence variance of operator A is given by the self-correlation function
V(A) =< A;A >. Here the averages < . > are with respect to the initial
state since Heisenberg picture is used. It is natural to consider an initial state in

which the S and AS modes are in their vacuum states, hence we obtain,

< Na(@) Ns(t) > = 5(V(NR(0)) = V(Nv(0)) + V(Na(t)) - V(Ny (1)
- 2< NR(O);NR(t) > —2< Nv(O); Nv(t) >). (2.24)

An operator A at time t is indicated by A(t) while initially by A(0). That
equation connects the S and AS correlation function to the quantum statistical
behavior of phonons and pump photons.

Within conventional Raman theory quantum properties of pump are usually
neglected through the classical pump assumption.’**® This approximation
introduces a time range to the problem during which changes in the pump
intensity remains negligible. We can apply a similar approximation by assuming
an intense laser pump with photons in coherent states and performing a mean
field average over them in the above equations. Under this assumption, the
correlation function of the S and AS modes is related only to phonon statistics
and the initial, known, number variance of the pump photons. However, time
range of validity for the parametric approximation should be modified in our case.
As we shall show in the subsequent section, statistical behavior of the pump might
change significantly in shorter time than the occurance of a significant change in
its intensity. Our purpose is to examine the equilibrium statistics of phonons
determined by V(Ny(0)); therefore we need to express all time dependent terms
on the right hand side of the Eq.2.24, in terms of initial operators to see any
further relation between the S and AS correlation function and the equilibrium

variance of phonons. For that aim we specify a model system and study its

dynamics.
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We conclude this section by noting that a similar relation can be derived
for the molecular Raman model, which is equivalent to the full bosonic Raman
mode] under Holstein-Primakoff approximation in the case of low excitation
density.’® In that case, S and AS correlations depend on the quantum statistics

of population distributions of the molecular energy levels.

2.2.3 Parametric Raman Model

In reality, coupling of one vibration mode to the pump beam for sufficiently long
time of measurement is not an easy task. Therefore, in this section we investigate
a Raman scattering in which coupling of pump photons to all phonon modes are
allowed. We shall treat the pump as an intense coherent beam of photons and

thus its state | ¢g) in general is described by a multimode coherent state,
| ¥r) =] ® | ) (2.25)
1

in which a are the coherence parameters of the modes 1. According to the
remarks at the end of previous section, we now perform mean field averaging
with respect to pump photon states in Eq.1 assuming the Raman-active material
is placed in an ideal cavity which selects single modes for S and AS radiations,

namely k' = k s. Then after dropping constant terms, the Hamiltonian reduces

to an effective one,

Helf — Z wany + quva(];vaqv + Z(gga?;a:;v + g(’:aTAaqv + H.C.), (2.26)
A=5,A q q

where new effective coupling constants g{l"s are introduced by
AS A,S
gq = ZMkkA’Sqak (227)
k

The summation above can be calculated once the density of states for the pump is
also specified. As one can see, the Hamiltonian will be in the given form, involving
summations over phonon modes, in all cases except in the case of perfectly phase

matched single pump and phonon modes. In order to make sure that our results
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are not too susceptible to any imperfectness of the system arising from multi-mode
nature of pump or phase-mismatches among the phonon and photon modes, we
shall treat the problem using the model described by the above Hamiltonian
involving summations over phonon modes, as a Markoffian bath system. When
finite number of phonon modes are assumed, which is reasonable for real crystals
of finite size, then such a model becomes integrable since the dynamics is ruled
by the following closed set of operator linear differential equations,

d

iaaqV = Wqvaqv + 95“; + 9&4*“,47
d .
z%afs = —wgaTS — ng aqv, (2.28)
q
d .
Zaa,q = wAaA+quaqv.
q

Let us introduce a vector of operators such that Y = [ak, a4, {aqv }]T. We denote
the matrix of coefhicients in the above set of equations by M and its diagonalizing

matrix by D, so that D™'M D = E1 with eigenvalues E. Thus, we get
Yi(t) = Di; D;;' Yi(0) exp (—iEjt), (2.29)

where summation over repeated index is implied. It is therefore possible to write

the solution for A = 5, A-modes in the form,
(l)\(t)Jr = ’I.L,\(t)a‘]; -I- ’U)\(t)aA —I— qu,\(t)aqv. (230)
q

Operators without time arguments are taken at ¢ = 0. Time dependent
parameters u,v,w are determined by the elements of matrix D and eigenvalues
E. Let us note here that some general relations exist among u,v,w due to
the commutation relations for a) operators and they are not independent each
other. More explicit way of evaluating u,v,w is presented below for the single
mode phonon case where vector Y reduces to three dimensions in operator space.
When there are no scattered light modes initially, the correlation function of S
and AS modes becomes

(ns(t);na(t)) = A(t) + Zqu(t)(afcvan + Z Cklpq(t)(a}:vaqwalfvapVX2~31)

klpq
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Here, parameters A, B, C are functions of u,v,w. Since the summations above
can be converted into integrals involving phonon density of states, we see that if
there are Van Hove singularities corresponding to the modes selected by Raman
scattering, as in the case of recent experiments on the generation of non-classical
phonon states via Raman scatterings,? then the correlation of S and AS modes
will be determined strongly by that mode. If this is not the case, then one can
still expect domination of the modes obeying Raman selection rules. Then for

that mode the random phase approximation permits us to write!”

(ns(t)) = lvs(t) I+ | ws |* (1+nv) (2.32)
) = lual®) "+ fwy [* v

) = A@)+ By +C')V(ny),

in which the momentum label corresponding to relevant mode is fixed and
dropped for the notational simplicity and primed parameters evaluated at that
mode. It is possible to argue by the results above that a measurement of
the correlation between S and AS can be utilized to determine the variance
of vibration modes, which we usually consider as phonons here, provided one
knows the mean number of such modes initially. The latter information can be
determined by either one of the first two relations in Eq.2.28, after measurement
of radiation mode intensities. Also measurement of radiation mode intensities and
the knowledge of initial phonon number allow one to keep track of the evolution
of mean phonon number through the Manley-Rowe relations. Interestingly, since
the mean number of phonons with non-classical distributions deviate significantly
from that of Bose-Einstein distribution, it might be possible to find some traces
of non-classicality even here. However, in order to classify the distribution of
phonons strictly it would still be necessary to find the next moment of the
distribution, in other words the variance of phonons.

Now, an explicit way of determining u, v, w parameters will be demonstrated
for the case of a single phonon mode. Because of three dimensional operator

space in this situation, eigenvalues F; are found to be as the roots of the cubic
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