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ABSTRACT

PARALLEL RENDERING ALGORITHMS FOR
DISTRIBUTED-MEMORY MULTICOMPUTERS

Tahsin Mertefe IKurg
Ph.D. in Computer Engineering and Information Science
Supervisors:
Assoc. Prof. Cevdet Aykanat and Prof. Biilent Ozgﬁg
June 1997

In this thesis, utilization of distributed memory multicomputers in gathering radios-
ity, polygon rendering and volumne rendering is investigated.

In parallel gathering radiosity, the target issues are the parallelization of the com-
putation of the form-factor matrix and solution phases on hypercube-connected multi-
computers. Interprocessor communication in matrix computation phase is decreased by
sharing the memory space between matrix elements and the scene data. A demand-
driven algorithm is proposed for better computational load balance during calculation
of form-factors. Gauss-Jacobi (GJ) iterative algorithm is used by all of the previous
works in the solution phase. We apply more efficient Scaled Conjugate-Gradient (SCG)
algorithm in the solution phase. Parallel algorithms were developed for GJ and SCG
algorithms for hypercube-connected multicomputers. In addition, load balancing in the

solution phase is investigated. An efficient data redistribution scheme is proposed. This



scheme achieves perfect load balance in matrix-vector product operations in the solution
phase.

Object-space parallelism is investigated for parallel polygon rendering on hypercube-
connected multicomputers. Briefly, in object-space parallelism, scene data is partitioned
into disjoint sets among processors. Each processor performs the rendering of its local
partition of primitives. After this local rendering phase, full screen partial images in each
processor are merged to obtain the final image. This phase is called pizel merging phase.
Pixel merging phase requires interprocessor communication to merge partial images.
In this work, hypercube interconnection topology and message passing structure are
exploited to merge partial images efficiently. Volume of communication in pixel merging
phase is decreased by only exchanging local foremost pixels in each processor after local
rendering phase. For this purpose, a modified scanline z-buffer algorithm is proposed for
the local rendering phase. This algorithm avoids message fragmentation by storing local
foremost pixels in consecutive memory locations. In addition, it eliminates initialization
of z-buffer, which is a sequential overhead to parallel execution. For pixel merging
phase, we propose two schemes referred to here as pairwise erchange scheme and all-to-
all personalized communication scheme, which are suited to the hypercube topology. We
investigate load balancing in pixel merging phase. Two heuristics, recursive subdivision
and heuristic bin packing, were proposed to achieve better load balancing in pixel merging
phase. These heuristics are adaptive such that they utilize the distribution of foremost
pixels on the screen to subdivide the screen in the pixel merging phase.

Image-space parallelism is investigated for parallel volume rendering of unstructured
grids. In image-space parallelism, the screen is subdivided into regions. Each processor
1s assigned one or more subregions. The primitives (e.g.. tetrahedrals) in the volume data
are distributed among processors according to screen subdivision and processor-subregion
assignments. Then, each processor renders its local subregions. The target topic in this
work is the adaptive subdivision of the screen. Adaptive subdivision issue has not been
investigated in parallel volume rendering of unstructured grids before. Only some re-
searchers utilized adaptive subdivision in parallel polygon rendering and ray tracing.
In this work, several algorithms are proposed to subdivide the screen adaptively. The

algorithms presented in this work can be grouped into two classes: 1-dimensional array
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based algorithms and 2-dimensional mesh based algorithms. Among the 2-dimensional
mesh based algorithms, graph partitioning based subdivision and Hilbert curve based
subdivision algorithms are new approaches in parallel rendering field. An experimental
comparison of the subdivision algorithms are performed on a common frame work. The
subdivision algorithms were employed in the parallelization of a volume rendering algo-
rithm, which is a polygon rendering based algorithm. In the previous works on parallel
polygon rendering, only the number of primitives in a subregion were used to approxi-
mate the work load of the subregion. We experimentally show that this approximation
is not enough. Better speedup values can be obtained by utilizing other criteria such as

number of pixels, number of spans in a region. By utilizing these additional criteria, the

speedup values are almost doubled.



OZET

COK ISLEMCILI DAGITIK-HAFIZALI BILGISAYARLARDA
PARALEL GORUNTULEME ALGORITMALARI

Tahsin Mertefe Kurg
Bilgisayar ve Enformatik Miihendisligi Doktora
Tez Yoneticileri:
Dog. Dr. Cevdet Aykanat and Prof. Biilent Ozgii¢
Haziran 1997

Bu tezde dagitik hafizali ¢ok iglemcili bilgisayarlarin wsima yonteminin toplama meto-
dunda, poligon gorintilemede ve hacim gorintilemede kullanimu aragtirilmigtir.
Toplama metodunda ele alinan temel konular durum-katsayr matrisinin hesaplanmasi
ve ¢ozim adimimin hiperkip baglantili ¢oklu bilgisayarlarda paralel olarak yvapilmasidir.
Duruin-katsay1 matrisinin hesaplanmasimda iglemciler aras1 veri aktarinu her iglemcideki
hafizanin durum-katsay1 matrisi ve 1sima metoduyla gortintilenen ortami olusturan ver-
iler arasinda paylagtinlmas: ile azaltilmigtir. Islemcilerin daha verimli kullanilabilmesi
icin dinamik pavlagtirma yontemi uygulanmigtir. ((6ztun asamasinda Scaled Conjugate-
Gradient metodu bagarili bir sekilde uygulanmigtir. Gauss-Jacobi ve Scaled Clonjugate-
Gradient metodlar igin verimli paralel algoritmalar gelistirilimigtir. Durum-katsay1 ma-
trisinin hesaplanmasmdan sonra her iglemcide kalan sifirdan farklhl durum-katsayi de-
gerlerinin iglemciler arasinda tekrar dagitilmast ile hemen hemen ideal yiik dagilinm

saglannugtir.



Poligon goruntileme konusunda yapilan ¢alismalarda parga uzayinda paralellestirme
yaklasimi ele alinmistir. Par¢a uzayinda paralellestirmede ortami olusturan pargalar
islemciler arasinda dagitilir. Her iglemci kendi pargalarinin uzerinde goruntuleme algo-
ritmalarini galigtinir. Daha sonra her islemcideki resimler birlestirilerek son resim ortaya
gikarihir. Bu ¢aligmada hiperkip bilgisayarinda par¢a uzayinda paralellestirme algo-
ritmalar: geligtirilmigtir. Resimlerin birlestirilmesi sirasinda islemciler arasinda iletigim
hacmini azaltan verimli algorifmalar Snerilmistir. Islemciler arasindaki mesajlarin kopuk
kopuk olmasini 6nlemek igin degistirilmig bir goriintileme algoritmasi 6nerilmistir.

Hacim goriintillemede ise ekran uzayinda paralellestirme yaklagimi aragtirilmgtir.
Bu yaklagimda ekran uzay: iglemciler arasinda bolinir. Her iglemci kendisine ait olan
ekran pargast uzerinde goruntiileme algoritmasini ¢aligtirtir. Ekranin béliinmesine gore
hacim elemanlarida iglemciler arasinda dagitilir. Bu calismada, gesitli ekran uzayinda
bolme yoéntemleri incelendi ve gelistirildi. Bu yontemler ekrani hacim elemanlarinin
ekrandaki dagilimlarina gore bolerek daha iyi yik dagilimi saglar. Bu yontemlerden
cizge parcalamaya dayali bolme ve Hilbert egrisine dayali bolme yeni yontemlerdir.
Bu yontemler deneysel olarak kargilagtirilmigtir. Ayrica, bu caligmada incelenen ve

gelistirilen yontemler poligon gorintiilemeye dayali bir hacim gortintiileme algoritmasina

basar ile uygulanmigladir.
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Chapter 1

Introduction

Rendering in computer graphics can be described as the process of generating a 2-
dimensional representation of a data set defined in 3-dimensional space. Input to this
process is a set of primitives defined in a 3-dimensional coordinate system, usually called
world coordinate system, and a viewing position and orientation also defined in the same
world coordinate system. The primitives are objects, polygons, surfaces, or points con-
nected in a predetermined way (as in volumetric data sets), which constitute the input
data set. The viewing position and orientation define the orientation and location of the
image-plane, which represents the computer screen. The output of the rendering process
is a 2-dimensional picture of the data set on the computer screen. Figure 1.1 illustrates
an example of computer graphics rendering with its input and output.

In this thesis, we investigate the utilization of distributed-memory multicomputers

in three different fields of computer graphics rendering:

e Realistic simulation of light propagation: One of the challenging fields in
computer graphics rendering is to model the light-object interactions and
propagation of light in an environment realistically. Ray tracing [102] and
radiosity [33] are two popular methods used in such applications. The target

method in this thesis is the gathering radiosity [33] method.

e Polygon rendering: Algorithms and methods in polygon rendering field deal

with producing realistic images of computer generated environments com-

posed of polygons.
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The world coordinate system

Y /
Two dimensional representation (picture) z /l\ X

N
S

Primitives (objects, polygons etc.) defined
in 3-dimensional world coordinate system
\ lmage,plane (screen)

Viewing position and orientation

A

Figure 1.1: An example of computer graphics rendering.

e Volume rendering: Volume rendering techniques deal with visualization of
scientific data sets composed of large amounts of numerical data values asso-
ciated with points in 3-dimensional space. This thesis investigates methods
for parallel rendering of unstructured grids, in which points are irregularly

distributed in 3-dimensional space.

Realistic illumination models and shading methods, like gathering radiosity, require
large memory space and computing power. Moreover, increased complexity of computer
generated environments has added more memory space and more computing power re-
quirements in polygon rendering. Similarly, techniques applied in volume rendering and
huge size of data sets obtained in scientific applications require large meinory space and
high computing power. It is unlikely to meet increasing requirements of these fields on
single processor machines with today’s technology. whereas distributed-memory multi-
computers can provide a cost-effective solution. Large memory space and high computing
power requirements are met by connecting many processors with individual memories
and using these processors simultaneously. Each processor in the architecture can per-

form computations asynchronously on different data values, thus providing a flerible
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environment. Flexibility provides a cost-effective working environment for many appli-
cations of different nature and characteristics. Distributed-memory multicomputers can
be upgraded and extended by adding more processors with individual memories to the
environment, thus providing a scalable environment. Scalability provides an inherent
power to meet increasing requirements of the applications. As the name implies, there
is no shared global memory in distributed-memory architectures. Each processor has its
own local memory, which cannot be directly accessed by other processors. Synchroniza-
tion and data éxchange between processors are carried out via exchanging messages over
an interconnection network. Among many interconnection topologies, rings, meshes,
hypercubes, and multistage switch based networks are the most commonly used network
topologies.

In this chapter, brief overviews of gathering radiosity, polygon rendering, and wvol-
ume rendering are given. Following the overviews, contributions of the thesis work are

presented. Organization of the thesis is given in the last section.

1.1 Gathering Radiosity

Given a description of the environment, producing a realistic image of the environment
on the computer is accomplished in three basic steps: (1) - reading the description of
the environment and converting the description into appropriate form to apply rendering
algorithms, (2) - simulating the propagation of light in the environment, (3) - displaying
the environment on the computer screen.

At the first step, the description of the environment to be rendered is read into the
computer. The description of the environment is converted into appropriate form that is
suitable for algorithms to simulate light propagation and to display the environment. For
example, surfaces and objects descriptions should be converted into polygons to apply
polygon rendering algorithms.

Next step is to simulate the propagation of light in the environment and light-object
interactions. Various methods are used in computer graphics rendering [95, 96, 77].
Simple methods, such as Phong method [68], only simulate the interaction of light,

coming directly from light sources, with the objects in the environment. These methods
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result in moderate realism in the images because the contributions of light reflected
from other objects in the environment are not considered. More realistic and complex
methods account for the reflected and refracted light as well. There are two methods,
called ray tracing [102] and radiosity [33], which are widely used for accurately simulating
propagation of light in an environment.

The radiosi'ty method accounts for the diffuse inter-reflections between the surfaces in
a diffuse environment. There are two approaches to radiosity, progressive refinement [15]
and gathering [33] methods. Gathering is a very suitable approach for investigating
lighting effects within a closure. In this method, every surface and object constituting
the environment is discretized into small patches (polygons), which are assumed to be
perfect diffusers. The algorithm calculates the radiosity value of each patch in the scene.
Initially, all patches, except for light sources, have zero initial radiosity values. The
light sources are also treated as patches. The algorithm consists of three successive
computational phases: form-factor computation phase, solution phase and rendering
phase.

The form-factor matrix is computed and stored in the first phase. In an environment
discretized into NV patches, the radiosity b; of each patch “i” is computed as follows:

N
bi=ei+1; ) bjF; (1.1)
j=1

where e; and r; denote the initial radiosity and reflectivity values, respectively, of patch
apm

“” and the form-factor F;; denotes the fraction of light that leaves the patch and

incident on patch “}”. The value of F;; depends on the geometry of the scene and it is
constant as long as the geometry of the scene remains unchanged. The Fj; values are
taken to be zero for convex patches. This linear system of equations can be represented
in matrix form as follows
Cb=(I-RF)b=e (1.2)
where, R is the diagonal reflectivity matrix, b is the radiosity vector to be calculated, e
is the vector representing the self emission (initial emission) values of patches, and F is
the form-factor matrix.
In the second phase, a linear system of equations is solved for each color-band (e.g.

red, green, blue) to find the radiosity values of all patches for these colors. In the last



(W31

CHAPTER 1. INTRODUCTION

phase, results are rendered and displayed on the screen using the radiosity values of the
patches computed in the second phase. The radiosity values are transformed into color
values for shading the polygons. Conventional polygon rendering methods {95, 77] (e.g.
Gouraud shading, z-buffer algorithm) are used in the last step to display the results.

1.2 Polygon Rendering

As noted in the previous section, the last step of realistic image generation is to dis-
play the environment on the computer screen. A pipeline of operations is applied to
transform polygons from 3-dimensional space to 2-dimensional screen space, perform
smooth shading of the polygons, and perform hidden-surface removal to give realism to
the image produced. Light-polygon interactions and shading of the polygons can also
be done concurrently with hidden-surface removal if simple methods to calculate light-
object interactions are used. Hidden-surface removal is a kind of sorting operation [86]
to determine the visible parts of the polygons. Polygons are sorted by their distance
to the screen. The overhead of sorting is decreased by utilizing some kind of coherency
existing in the environment. Among many algorithms, z-buffer and scanline z-buffer
algorithms are more popular due to wider range of applications and better utilization
of coherency. These algorithms are called image-space algorithms since hidden-surface
removal, hence sorting, is performed at pixel locations on the screen. In order to ac-
complish this, polygons are projected onto the screen and distance values are generated
for screen coordinates covered by the projection of the polygon. Hidden-surface removal
at a pixel location is done by comparing the distance values generated at the pixel lo-
cation. These algorithms utilize image-space coherency to calculate the distance values

at pixel locations. Calculation of distance value from one pixel to the next is done via
incremental operations.
1.3 Volume Rendering

Visualization of scientific data aims at displaying vast amount of numerical data ob-

tained from engineering simulations or gathered by scanning real physical entities by
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advanced scan devices. Visualization of volumetric data sets, in which numerical values
are obtained at sample points with 3-dimensional spatial coordinates in a volume, is
referred to here as volume rendering. Sample points in these sets form a 3-dimensional
grid superimposed on the volume. In this grid, sample points are connected to other
sample points in a predetermined way to form volume elements, referred to here as cells.
A sample point may be shared by many cells. In addition, a cell may share a face with
other cells, forming a connectivity relation between volume elements. In volumetric data
sets, two types of grids are commonly encountered. In structured grids, the sample points
are regularly distributed in the volume. There exists implicit and regular connectivity
between volume elements. This type of grids are most common in medical imaging ap-
plications. In unstructured grids, the sample points are distributed irregularly in the
3-dimensional space. There exists irregular connectivity between volume elements if a
connectivity relation exists at all. Unstructured grids are commonly used in engineering
simulations (e.g., computational fluid dynamics).

Volumetric data sets are rendered by finding the contribution of sample points to
the pixels on the screen. These contributions are determined via processing the volume
elements. Each of these contributions are transformed into color values to display the
volume. Among many techniques in volume rendering, ray-casting based direct volume
rendering [54, 92], which is the basis of research on parallel volume rendering in this the-
sis, has become very popular. Direct volume rendering (DVR) describes the process of
visualizing the volume data without generating an intermediate geometrical representa-
tion such as isosurfaces. In ray-casting based direct volume rendering, rays are cast from
pixel locations and traced in the volume. During the traversal in the volume, sample
points are taken along the ray. The contribution of the volume element that contains
the sample point is calculated. Then, these values at each sample point on the ray are
composited in a predetermined order (front-to-back or back-to-front) to obtain the con-
tribution at the pixel. Determining the volume element that contains the sample point
is called point location problem and compositing the contributions in a predetermined
order is called view sort problem. Resolving point location and view sort problems is a

crucial issue that closely affects the performance of the rendering algorithm. Handling
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point location and view sort problems in structured grids are easy due to regular distri-
bution of sample points and implicit regular connectivity between volume elements. On
the other hand, irregular distribution of sample points and irregular connectivity relation
between volume elements (if it exists) make the point location and view sort problems

much more difficult to handle in unstructured grids.

Application of Polygon Rendering Algorithms in Volume Rendering

Although polygon rendering and volume rendering form two diverse application areas
of computer graphics in many aspects, techniques and algorithms used in one field can
easily be adapted to resolve the problems in the other field.

As is stated, ray-casting based direct volume rendering algorithms should resolve the
point location and view sort problems efficiently as these problems affect the perfor-
mance directly. In many application, these problems reduce to finding the intersection
of ray with respective volume elements. These intersections are then sorted in increasing
distance from the screen so that composition of contributions of sample points is done
correctly.

In polygon rendering, image-space hidden-surface removal algorithms such as z-buffer
and scanline z-buffer actually perform a similar sorting of the object database to perform
hidden-surface removal correctly. In addition, polygons are rasterized (or scan-converted)
to generate color and distance values for the pixels covered by the polygon. This raster-
ization corresponds, in a sense, to finding the intersection of the polygon with the rays
cast from those pixel locations. Image-space hidden-surface removal algorithms utilize
image-space coherency to decrease the overheads of sorting and rasterization. Such a co-
herency also exists in ray-casting based DVR applications. Therefore, ray-casting based

DVR can benefit from the application of polygon rendering algorithms since the basic

problems are almost the same.

1.4 Contributions of the Thesis

In this thesis, utilization of distributed memory multicomputers in three fields, which

are gathering radiosity, polygon rendering and volume rendering, in computer graphics
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is investigated. This section presents the contributions of the thesis work.

1.4.1 Parallel Gathering Radiosity

Parallelization of form-factor matrix computation and solution phases of the gathering

radiosity are the key issues in this work. The contributions of the thesis work in these

issues are the following.

o In parallel computation of the form-factor matrix, several algorithms were devel-
oped. Interprocessor communication is decreased by sharing the memory space
between matrix elements and the objects in the scene. A demand-driven algorithm
is proposed to achieve better load balance among processors in form-factor com-
putations. Our demand-driven approach is different from [12, 13]. Unlike their
approach, we avoid re-distribution of matrix rows after matrix is calculated by not
doing a conceptual partitioning of patches among processors. However, our scheme
necessitates two-level indexing in matrix-vector product operations in the solution

phase. A parallel re-numbering scheme is proposed to eliminate two-level indexing.

o All previous works used Gauss-Jacobi (GJ) iterative algorithm in the solution
phase. We apply more efficient Scaled Conjugate-Gradient (SCG) algorithm in the
solution phase. The non-symmetric coefficient matrix is converted to a symmetric
matrix to apply SCG. This conversion is done without perturbing the sparsity

structure of the matrix.

o Parallel algorithms were developed for GJ and SCG algorithms for hypercube-
connected multicomputers. In order to achieve better load balance in the solution
phase, an efficient data redistribution scheme is proposed. This scheme achieves
perfect load balance in matrix-vector product operations in the solution phase. We

obtain high efficiency values in the solution phase using SCG with data redistri-

bution.

A paper version of this work will appear in [50].
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1.4.2 Parallel Polygon Rendering

Object-space parallelism (Section 3.2.1) is investigated for parallel polygon rendering on
hypercube-connected multicomputers. Briefly, in object-space parallelism, scene data is
partitioned into disjoint sets among processors. Each processor performs the rendering of
its local partition of primitives. This phase of rendering is referred to as local rendering
phase. Then, full screen partial images in each processor are merged to obtain the final
image. This phase is called pirel merging phase. The pixel merging phase necessitates
interprocessor communication to merge partial images. In this work, hypercube inter-
connection topology and message passing structure is exploited in pixel merging phase.

The contributions in this thesis are the following.

o Volume of communication in pixel merging phase is decreased by only exchanging

local foremost pixels in each processor after local rendering phase.

e A modified scanline z-buffer algorithm is proposed for local rendering phase. The
nice features of this algorithm are: It avoids message fragmentation by storing local
foremost pixels in consecutive memory locations efficiently. In addition, it elimi-
nates initialization of scanline z-buffer for each scanline on the screen. Initialization

of z-buffer introduces a sequential overhead to parallel rendering.

e For pixel merging phase, we propose two schemes referred to here as pairwise ez-
change scheme and all-to-all personalized communication (AAPC) scheme, which
are suited to the hypercube topology. Pairwise exchange scheme involves mini-
mum number of communication steps, but it has memory-to-memory copy over-
heads. All-to-all personalized communication scheme eliminates these overhead by
increasing the number of communication steps. Our AAPC scheme differs from 2-
phase direct pixel forwarding of Lee [53]. Our algorithm is 1-phase algorithm, i.e.,
pixels are transmitted to destination processors in a single communication phase.

Hence, our algorithm avoids the intermediate z-buffering in [53] totally.

o All of the processors are utilized actively throughout the pixel merging phase by

exploiting the interconnection topology of hypercube and by dividing the screen

among processors.
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e We investigate load balancing in pixel merging phase. Two heuristics, recursive
subdivision and heuristic bin packing, were proposed to achieve better load bal-
ancing in pixel merging phase. These heuristics are adaptive in that they utilize

the distribution of foremost pixels on the screen to subdivide the screen for the

pixel merging phase.

Most of the research work was performed on Intel’s iPSC/2 hypercube multicom-
puter. Recently, the AAPC scheme with heuristic bin packing algorithm was ported
to Parsytec’s CC system with PowerPC processors. In the current implementation. a
hypercube topology is assumed and the topology of CC system is not exploited. Our pre-
liminary results on the CC system achieves rendering rates of 300K - 700K triangles/sec

on 16 processors.
An earlier version of the parallel polygon rendering work appears in [51].

1.4.3 Parallel Volume Rendering

In volume rendering field, image-space parallelism (Section 3.2.1) for parallel volume
rendering of unstructured grids is investigated. In image-space parallelism, the screen is
subdivided into regions. Each processor is assigned one or more subregions. The primi-
tives (e.g., tetrahedrals) in the volume data are distributed among processors according
to screen subdivision and processor-subregion assignments. Then, each processor renders

its local subregions. The contributions in this thesis are the following.

e Main topic in this work is the adaptive subdivision of screen for better load balance.
Adaptive subdivision issue has not been investigated before in parallel volume ren-
dering of unstructured grids. Only some researchers utilized adaptive subdivision
in parallel polygon rendering [76, 99, 65, 26] and in ray tracing/casting [5]. The
algorithms presented in this work can be grouped into two classes: 1-dimensional

array based algorithms and 2-dimensional mesh based algorithms.

e Among the 2-dimensional mesh based algorithms, graph partitioning based sub-

division and Hilbert curve based subdivision algorithms are new approaches in

parallel rendering.
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e An experimental comparison of the subdivision algorithms is performed on a com-

mon frame work.

e The subdivision heuristics are employed in parallelization of a volume rendering
algorithm. The sequential volume rendering algorithm is based on Challinger’s
work [9, .10]. This algorithm is basically a polygon rendering based algorithm.
It requires volume elements composed of polygons and utilizes a scanline z-buffer
approach to resolve point location and view sort problems. In the previous works
on parallel polygon rendering, only the number of primitives in a subregion were
used to approximate the work load of the subregion. We experimentally show
that this approximation is not enough. Better speedup values can be obtained by
utilizing other criteria such as number of pixels and number of spans in a region.

By utilizing these additional criteria, the speedup values are almost doubled.

An earlier version of the parallel volume rendering work is published in [89].

1.5 Organization of the Thesis

The rest of the thesis is organized as follows.

In Chapter 2, parallel implementation of form-factor computation and solution phases
of gathering radiosity on hypercube-connected multicomputers is presented. A brief
description of iPSC/2 hypercube multicomputer, an overview of gathering radiosity and
previous work on parallel gathering radiosity are also included in this chapter.

Chapter 3 presents an overview of sequential polygon rendering. In addition, a tax-
onomy of parallelism in polygon rendering is introduced. Previous works, classified with
respect to this taxonomy, are summarized in this chapter.

[n Chapter 4, an object-space parallel algorithm for polygon rendering on hyper-
cube multicomputers is presented. Several schemes for efficient implementation of local
rendering and pixel merging phases are described.

An overview of volume rendering for unstructured grids is presented in Chapter 5.

Previous works on parallel volume rendering of unstructured grids are summarized in

this chapter.
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Spatial subdivision algorithms, developed in this thesis, for image-space parallel vol-

ume rendering are described in Chapter 6.



Chapter 2

Gathering Radiosity on Hypercubes

Realistic synthetic image generation by computers has been a challenge for many years in
the computer graphics field. Realistic synthetic image generation requires the accurate
calculation and simulation of light propagation and global illumination effects in an
environment. The radiosity method [33] is one of the techniques to simulate the light
propagation in a closed environment. Radiosity accounts for the diffuse inter-reflections
between the surfaces in a diffuse environment. There are two approaches to radiosity,
progressive refinement [15] and gathering [33] methods. The gathering method (the term
radiosity method will also be used interchangeably to refer to gathering method) consists
of three successive computational phases: form-factor computation phase, solution phase
and rendering phase. The form-factor matrix is computed and stored in the first phase.
In the second phase, a linear system of equations is formed and solved for each color-band
(e.g. red, green, blue) to find the radiosity values of all patches for these colors. In the
last phase, results are rendered and displayed on the screen using the radiosity values
of the patches computed in the second phase. Conventional rendering methods [95, 77]
(e.g. Gouraud shading, z-buffer algorithm) are used in the last phase to display the
results.

Gathering is a very suitable approach for investigating lighting effects within a closed
environment. For such applications, the locations of the objects and light sources in the
scene usually remain fixed while the intensity and color of light sources and/or reflectiv-

ity of surfaces change in time. The linear system of equations are solved many times to

13
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investigate the effects of these changes. Therefore, efficient implementation of the solu-
tion phase is important for such applications. Although gathering is excellent for some
applications in realistic image generation, it requires high computing power and large
memory storage to hold the scene data and computation results. As a result, applica-
tions of the method on conventional uniprocessor computers for complex environments
can be far from being practical due to high computation and memory costs.

In this chapter, parallelization of the first two phases of the gathering method is inves-
tigated for hypercube-connected multicomputers. In parallel computation of form-factor
matrix, several algorithms were developed. Interprocessor communication is decreased
by sharing the memory space between matrix elements and the objects in the scene. A
demand-driven algorithm is proposed to achieve better load balance among processors
in form-factor computations. Our demand-driven approach is different from [12, 13]. We
do not perform a conceptual partitioning of patches among processors. Thus, matrix
rows are not redistributed after the matrix is calculated. However, our scheme necessi-
tates two-level indexing in matrix-vector product operations in the solution phase. An
efficient parallel re-numbering scheme is proposed to eliminate the two-level indexing.

The previous works [12, 13, 67, 73] utilized Gauss-Jacobi (GJ) iterative algorithm
in the solution phase. We apply the more efficient Scaled Conjugate-Gradient (SCQG)
algorithm in the solution phase. The non-symmetric coefficient matrix is converted into
a symmetric matrix to apply SCG. This conversion is done without perturbing the
sparsity structure of the matrix. Parallel algorithms were developed for GJ and SCG
algorithms for hypercube-connected multicomputers. In addition, load balancing in the
solution phase is investigated. An efficient data redistribution scheme is proposed. This
scheme achieves perfect load balance in matrix-vector product operations in the solution
phase. We obtain high efficiency values in the solution phase using SCG with data
redistribution.

The organization of this chapter is as follows. Section 2.1 describes the computational
requirements and the methods used in the form-factor computation and solution phases.
The proposed SCG algorithm is described in this section as well. Section 2.2 briefly
summarizes the existing work on the parallelization of the gathering radiosity method.

Section 2.4 presents the parallel algorithms developed for the form-factor computation
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phase. The parallel algorithms developed for the solution phase are presented and dis-
cussed in Section 2.5. Load balancing in the solution phase and a data redistribution
scheme are discussed in Section 2.6. Finally, experimental results on a 16-node Intel

iPSC/2 hypercube multicomputer are presented and discussed in Section 2.7.

2.1 Gathering Radiosity

Radiosity is based on the energy equilibrium within a closure. In this method, every
surface and object constituting the environment is discretized into small patches. Each
patch is assumed to be a perfect diffuser or an ideal Lambertian surface. The algorithm
calculates the radiosity value of each patch in the scene. The radiosity value of a patch is
defined to be the amount of light leaving that patch in equilibrium state. It is a function
of emitted and reflected light from the patch. Initially, all patches have zero initial
radiosity values. The light sources are also treated as patches except they possess non-
zero initial radiosity values. In an environment discretized into .V patches, the radiosity
b; of each patch “i” is computed as follows:

N
b,‘=6,'+r,'ijFij (21)
J=1
where e; and r; denote the initial radiosity and reflectivity values, respectively, of patch
"1” and the form-factor Fj; denotes the fraction of light that leaves the patch “i” and
incident on patch “j”. The value of F}; depends on the geometry of the scene and it is

constant as long as the geometry of the scene remains unchanged. This linear system of

equations can be represented in matrix form as follows:

(1—7‘1F11 —71F12 —-riFin 17 by ] ( €1 ]
—7‘2F21 1 - T‘ngg —7'2F2N b2 (]
= (2.2)
| —rnFvi —rwFn2 ... 1 —ryFyn J | by | | en J

The F; values are taken to be zero for convex patches. Assuming Fj; = 0, the coefficient

matrix in Eq. (2.2) can further be decomposed into three matrices as
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[ 10 [ ™ 0 0 0 ] [ 0 Flg F13 FIN ]
0 1 0 T2 0 0 F21 0 F23 FQN
0 0 0 0 rs ... 0 F31 F32 0 F};N
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I R F

Hence, Eq. (2.2) can be re-written as follows:
Cb=(I-RF)b=e (2.3)

where, R is the diagonal reflectivity matrix, b is the radiosity vector to be calculated, e

is the vector representing the self emission (initial emission) values of patches, and F is

the form-factor matrix.

2.1.1 Form-Factor Computation Phase

An approximate method to calculate the form-factors is proposed in [16], called the
hemi-cube method. In this method, a discrete hemi-cube is placed around the center of
a patch. Each face of the hemi-cube is divided into small squares (surface squares). A
typical herni-cube is composed of 100x100x50 such squares. Each square “s” corresponds
to a delta form-factor (Af(s)), which is a function of the area of the square, and the
displacement of the square in x,y or y,z directions depending on the square “s” being
located on the top face or side faces of the hemi-cube, respectively.

After allocating a hemi-cube over a patch “1”, all other patches in the environment are
projected onto the hemi-cube for hidden patch removal. The patches are passed through
a projection pipeline consisting of visibility test, clipping, perspective projection, and
scan conversion. This projection pipeline is analogous to a z-buffer algorithm except for
the fact that patch numbers are recorded for each allocated hemi-cube surface square in

addition to z values. Then, each square “s” allocated by patch “j” contributes A f(s) to
h

W

the form-factor F;; between patches “i” and “}”. At the end of this process

the form-factor matrix F is constructed. This process is repeated for all patches in the

row of
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environment in order to construct the whole F matrix. Sum of the form-factor values in
each row of the F matrix is equal to 1 by definition.

The F matrix is a sparse matrix because a patch does not see all the patches in
the environment due to the occlusions. Almost 60%-85% of the F matrix elements are
observed to be zero in the test scenes. In order to reduce the memory requirements, F
matrix is stored in compressed form. Space is allocated for only non-zero elements of
the matrix dynamically during the form-factor computation phase. Each element of a

row of the matrix is in the form [column-id,value]. The column-id indicates the j index

of an Fj; value in the ith row.

2.1.2 Solution Phase

In this phase, the linear system of equations (Eq. (2.3)) is solved for each color-band.
Methods for solving such linear system of equations can be grouped as direct methods
and iterative methods. Direct methods such as Gaussian elimination and LU factoriza-
tion [32] disturb the original sparsity of the coefficient matrices during the factorization.
Furthermore, direct methods necessitate maintaining a coefficient matrix and two fac-
tor matrices for each color matrix for lighting simulations. As a result, direct methods
require excessive memory for the solution phase of the radiosity method.

[terative methods start from an initial vector b® and iterate until a predetermined
convergence criterion is reached. The sparsity of the coefficient matrix is preserved
through out the iterations. Maintaining only the form-factor matrix F suffices in the for-
mulations of the iterative methods proposed in this work. Experimental results demon-
strate that iterative methods converge quickly to acceptable accuracy values in the so-
lution phase of the radiosity method. Furthermore, iterative methods are in general
more suitable for parallelization than direct methods. Hence. direct methods are not
considered in this work.

Three popular iterative methods widely used for solving linear system of equations
are Gauss-Jacobi (GJ), Gauss-Seidel (GS), and Conjugate-Gradient (CG) [32]. The
computational complexity of a GS iteration is exactly equal to that of GJ scheme. In
general, GS scheme converges faster than the GJ scheme. Unfortunately, the GS scheme

is inherently sequential and hence it is not suitable for parallelization. Thus, only GJ
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